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Contributions à l’agrégation séquentielle robuste d’experts : travaux sur l’erreur d’approximation et la
prévision en loi. Applications à la prévision pour les marchés de l’énergie.

Résumé : Nous nous intéressons à prévoir séquentiellement une suite arbitraire d’observations. À
chaque instant, des experts nous proposent des prévisions de la prochaine observation. Nous formons
alors notre prévision en mélangeant celles des experts. C’est le cadre de l’agrégation séquentielle
d’experts. L’objectif est d’assurer un faible regret cumulé. En d’autres mots, nous souhaitons que
notre perte cumulée ne dépasse pas trop celle du meilleur expert sur le long terme. Nous cherchons
des garanties très robustes : aucune hypothèse stochastique sur la suite d’observations à prévoir n’est
faite. Celle-ci est supposée arbitraire et nous souhaitons des garanties qui soient vérifiées quoi qu’il
arrive. Un premier objectif de ce travail est l’amélioration de la performance des prévisions. Plusieurs
possibilités sont proposées. Un exemple est la création d’algorithmes adaptatifs qui cherchent à
s’adapter automatiquement à la difficulté de la suite à prévoir. Un autre repose sur la création de
nouveaux experts à inclure au mélange pour apporter de la diversité dans l’ensemble d’experts. Un
deuxième objectif de la thèse est d’assortir les prévisions d’une mesure d’incertitude, voire de prévoir
des lois. Les applications pratiques sont nombreuses. En effet, très peu d’hypothèses sont faites sur
les données. Le côté séquentiel permet entre autres de traiter de grands ensembles de données.
Nous considérons dans cette thèse divers jeux de données du monde de l’énergie (consommation
électrique, prix de l’électricité,. . .) pour montrer l’universalité de l’approche.

Contributions to online robust aggregation: work on the approximation error and on probabilistic
forecasting. Applications to forecasting for energy markets.

Abstract: we are interested in online forecasting of an arbitrary sequence of observations. At each
time step, some experts provide predictions of the next observation. Then, we form our prediction by
combining the expert forecasts. This is the setting of online robust aggregation of experts. The goal
is to ensure a small cumulative regret. In other words, we want that our cumulative loss does not
exceed too much the one of the best expert. We are looking for worst-case guarantees: no stochastic
assumption on the data to be predicted is made. The sequence of observations is arbitrary. A first
objective of this work is to improve the prediction accuracy. We investigate several possibilities. An
example is to design fully automatic procedures that can exploit simplicity of the data whenever
it is present. Another relies on working on the expert set so as to improve its diversity. A second
objective of this work is to produce probabilistic predictions. We are interested in coupling the point
prediction with a measure of uncertainty (i.e., interval forecasts,. . . ). The real world applications
of the above setting are multiple. Indeed, very few assumptions are made on the data. Besides,
online learning that deals with data sequentially is crucial to process big data sets in real time. In
this thesis, we carry out for EDF several empirical studies of energy data sets and we achieve great
forecasting performance.





Remerciements

Ma thèse n’est pas le fruit d’un travail solitaire (loin de là) et n’existerait pas sans l’aide de
nombreuses personnes. Il me paraît donc indispensable de les remercier dans ces quelques lignes.

Mes premières pensées vont à mon directeur de thèse Gilles Stoltz et à Yannig Goude, mon enca-
drant à EDF. Ces quatre années passées sous votre encadrement m’ont considérablement enrichi.
Gilles et Yannig, pour le temps que vous m’avez accordé, pour m’avoir proposé un excellent sujet,
pour avoir calibré avec justesse le compromis encadrement/liberté durant ma thèse, merci. Vous
m’avez proposé des conditions idéales pour réaliser une thèse. J’ai été extrêmement chanceux de
vous avoir rencontré. Je ne connais que peu de personnes (voire aucune) dont la qualité de la rédac-
tion, la rigueur mathématique, l’organisation, la beauté des documents LATEXet l’originalité colorée
des chemises égalent celles de Gilles. Je tiens à te remercier Gilles pour avoir (autant que possible)
essayé de me transmettre les quatre premières de ces qualités. Yannig, j’espère que tu ne regrettes
pas de t’être battu pour sauver mon entretien Menway catastrophique. Je te remercie de m’avoir
fait confiance, pour m’avoir donné l’opportunité de travailler sur de nombreux jeux de données,
pour tes idées et ta motivation. Tu as apporté un point de vue pratique et industriel essentiel à
cette thèse.

Je suis très reconnaissant à Peter Grünwald et Éric Moulines pour avoir pris le temps de rappor-
ter ma thèse. Je suis vraiment honoré que vous ayez accepté et accompli le travail avec beaucoup
d’attention. Je remercie également Georges Hébrail, Pascal Massart, Anne Philippe et Olivier Win-
tenberger d’avoir accepté de faire partie de mon jury de thèse. Olivier, merci de me faire confiance
en m’accueillant prochainement à Copenhague. Je suis sûr que notre collaboration sera fructueuse.

Je remercie vivement mes différents co-auteurs auxquels ce manuscrit doit énormément : Côme,
Gábor, Nicolò, Sébastien et Tim. En particulier, je souhaite remercier profondément mon grand
frère de thèse, Sébastien, pour son enthousiasme et pour nos passionnantes discussions. J’espère
que nous aurons encore de nombreuses opportunités de travailler ensemble.

J’ai vécu cette aventure au sein de trois lieux de travail différents. Avec mon sens de l’organisation
peu développé, il n’a pas toujours été facile de m’y retrouver et de bien planifier mes journées. Mais
j’ai beaucoup apprécié de découvrir plusieurs équipes aux ambiances aussi différentes qu’agréables.
Je remercie tous les membres du laboratoire d’Orsay, de l’équipe de prévision du département



Osiris d’EDF R&D, du DMA. En particulier, merci au personnel de secrétariat (Nathalie, Audrey,
Valérie, Zaïna, Benedicte,. . .) pour votre patience, votre efficacité et votre gentillesse au cours des
différentes formalités administratives. Merci à tous les doctorants et aux nombreuses personnes qui,
au sein de discussions, de pauses café, ou de pique-niques ensoleillés, ont animé ma vie quotidienne
au travail. Un grand merci à mes différents co-bureaux : Émilien pour les parties d’échecs ou de
tennis (jamais finies...), Vincent pour m’avoir accompagné dans le froid du bureau B314 et Paul
pour son enthousiasme sans limites. Un merci spécifique à Audrey, Amandine, Virgine, et Raphaël
pour avoir mis un peu de piment dans la compétition GEFCom. Merci également à toutes les
personnes qui ont guidé mes premiers pas en enseignement au cours de mon monitorat. Je pense
entre autres à Vincent pour, en plus d’avoir si bien préparé les feuilles de TD, m’avoir dépanné
quand j’étais bloqué à Venise à cause de la neige. . .

Si j’en suis arrivé ici, c’est également grâce à toutes les personnes que j’ai croisées lors de mon
parcours scolaire puis universitaire. En vrac, merci à mes anciens professeurs de mathématiques
pour m’y avoir donné goût, merci à Sylvain Arlot pour m’avoir si bien orienté à l’ENS et merci
aux différentes rencontres au passage de séminaires ou de conférences. Je remercie également Shie
Mannor pour son accueil chaleureux à Haifa juste avant ma thèse. Ces six mois en Israël ont été
une formidable expérience scientifique mais aussi culturelle.

La thèse a également tendance à déborder dans la vie personnelle. Un grand merci à tout mon
entourage qui m’a permis d’avoir une vie riche à côté. Merci donc à mes colocs, Clarus et Pablo, pour
les moments partagés au 34 rue Maurice-Arnoux. Merci également à mes amis d’école (Ulminfo, C6,
. . .), ou plus anciens pour les soirées bière, cinéma, coinche, ou jeux de société. Je pense également
à toute ma famille, mes parents, mes soeurs, qui m’ont toujours soutenu et accompagné. Un clin
d’oeil à Raphaël qui a égayé la fin de ma thèse. Un grand merci à Pépé et Mamie pour l’excellent
pineau qui accompagne mon pot de thèse ! Enfin, Élodie, je te suis infiniment reconnaissant. Tu as
été à mes côtés tout au long de la thèse pour me soutenir quand j’en avais besoin. Je te remercie du
fond du coeur pour ta patience, ta générosité et pour tous les merveilleux instants passés ensemble.



Contents

Remerciements 5

Publications and main activities 11

1. Introduction et vue d’ensemble des résultats 15
1.1. Motivation pratique : la prévision de la consommation électrique . . . . . . . . . . 16
1.2. Introduction à la prévision de suites arbitraires . . . . . . . . . . . . . . . . . . . . 18
1.3. Amélioration de la qualité des prévisions . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4. Mélanges et prévision en loi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.5. Autres apports à la prévision pour les marchés de l’énergie . . . . . . . . . . . . . . 35
1.6. Implémentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.7. Conclusion et perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

I. Improving the performance of robust online aggregation 39

2. A second-order bound with excess losses 43
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2. A new regret bound in the standard setting . . . . . . . . . . . . . . . . . . . . . . 45
2.3. Algorithms and bound for parameters varying over time . . . . . . . . . . . . . . . 47
2.4. First application: bounds with experts that report their confidences . . . . . . . . . 50
2.5. Other applications: bounds in the standard setting . . . . . . . . . . . . . . . . . . 53
2.6. Alternative comparison classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3. Mirror descent meets fixed share (and feels no regret) 75
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3. A generalized shifting regret for the simplex . . . . . . . . . . . . . . . . . . . . . . 78
3.4. Projected update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5. Fixed-share update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.6. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



8 Contents

3.7. Refinements and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4. Designing an efficient set of experts for electric load forecasting 93
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2. Sequential aggregation of experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3. Application to electricity load forecasting . . . . . . . . . . . . . . . . . . . . . . . 99
4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

II. Online nonparametric robust aggregation 111

5. A chaining algorithm for online nonparametric regression 115
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2. The Chaining Exponentially Weighted Average Forecaster . . . . . . . . . . . . . . 119
5.3. An efficient chaining algorithm for Hölder classes . . . . . . . . . . . . . . . . . . . 125
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6. A deterministic regression tree for sequential nonparametric prediction 145
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2. A strategy that competes against Lipschitz functions . . . . . . . . . . . . . . . . . 148
6.3. Autoregressive framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.4. From individual sequences to ergodic processes: convergence to L? . . . . . . . . . 157
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

III. Online probabilistic predictions 169

7. How to handle uncertainties in a deterministic world? 173
7.1. The experts provide probability distributions . . . . . . . . . . . . . . . . . . . . . 175
7.2. The experts provide prediction intervals . . . . . . . . . . . . . . . . . . . . . . . . 180
7.3. The experts only provide point forecasts . . . . . . . . . . . . . . . . . . . . . . . . 183

8. Probabilistic electric load and electricity price forecasting 187
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.2. Quantile regression with Generalized Additive Models . . . . . . . . . . . . . . . . 190
8.3. Probabilistic electric load forecasting by quantGAM . . . . . . . . . . . . . . . . . 192
8.4. Probabilistic electricity price forecasting by quantGAM . . . . . . . . . . . . . . . . 199
8.5. Probabilistic electricity price forecasting by combining individual predictors . . . . 204
8.6. Kernel based quantile regression with Lasso penalty . . . . . . . . . . . . . . . . . . 208
8.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

IV. Performance of sequential robust aggregation on real-world data 213

9. Heat load and electricity load multi-horizon forecasting 217
9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219



Contents 9

9.3. A first data set: forecasting heat load . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.4. A second data set: forecasting electricity consumption . . . . . . . . . . . . . . . . 233
9.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

10.Aggregate sub-model predictions 241
10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
10.2. Methodology and performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Appendix: Package opera 249

References 259





Publications and main activities

I list below by type the different activities that were performed during my Ph.D. thesis.

Article in an international journal

[1] M. Devaine, P. Gaillard, Y. Goude, and G. Stoltz. Forecasting electricity consumption by aggre-
gating specialized experts – a review of the sequential aggregation of specialized experts, with
an application to Slovakian and French country-wide one-day-ahead (half-)hourly predictions.
Machine Learning, 90(2):231–260, 2013.

Book chapters

[2] P. Gaillard and Y. Goude. Forecasting the electricity consumption by aggregating experts; how
to design a good set of experts. In A. Antoniadis, X. Brossat, and J-M. Poggi, editors, Modeling
and Stochastic Learning for Forecasting in High Dimensions, volume 217 of Lecture Notes in
Statistics, pages 95–115. Springer, 2015.

Articles in proceedings of selective international conferences

[3] N. Cesa-Bianchi, P. Gaillard, G. Lugosi, and G. Stoltz. Mirror descent meets fixed share (and
feels no regret). In Proceedings of NIPS’12, pages 989–997, 2012.

[4] P. Gaillard and S. Gerchinovitz. A chaining algorithm for online nonparametric regression. In
Proceedings of COLT’15. JMLR: Workshop and Conference Proceedings, 2015. To appear.

[5] P. Gaillard, G. Stoltz, and T. van Erven. A second-order bound with excess losses. In Proceedings
of COLT’14, volume 35, pages 176–196. JMLR: Workshop and Conference Proceedings, 2014.
Finalist best student paper.

Submitted articles

[6] P. Gaillard and P. Baudin. A consistent deterministic regression tree for non-parametric pre-
diction of time series. http://arxiv.org/abs/1405.1533. Submitted, 2015.



12 PUBLICATIONS AND MAIN ACTIVITIES

[7] P. Gaillard, Y. Goude, and R. Nedellec. Semi-parametric models for GEFCom2014 probabilis-
tic electric load and electricity price forecasting. Invited paper to International Journal of
Forecasting (Special Issue on Probabilistic Energy Forecasting), 2015.

Miscellaneous

[8] M. Faure, P. Gaillard, B. Gaujal, and V. Perchet. Online learning and game theory. A quick
overview with recent results and applications. In A. Garivier et al., editor, ESAIM: Proceedings.
EDP Sciences, 2015. Submitted.

Technical reports for EDF R&D

[9] P. Gaillard. Aggregate disaggregate predictions. Technical report, EDF R&D, 2015.

[10] P. Gaillard. How to handle uncertainties in a deterministic world. Technical report, EDF
R&D, 2015.

[11] P. Gaillard, Y. Goude, and C. Bissuel. Heat load forecasting by aggregating experts. Technical
report, EDF R&D, 2015.

Softwares

[12] P. Gaillard. opera: Online Prediction by ExpeRts Aggregation. R-package for online robust
aggregation. To be submitted, 2015.

Competitions

• First price in the electricity price forecasting track of the Global Energy Forecasting Compe-
tition 2014 (GEFCom2014), August – December 2014. See [7] and Chapter 8 for details.

• First price in the electric load forecasting track of the Global Energy Forecasting Competition
2014 (GEFCom2014), August – December 2014. See [7] and Chapter 8 for details.

• Participation in the Allstate Purchase Prediction Challenge hosted by Kaggle, May 2014.



13

Time line of the (pre-)Ph.D. works

Hereafter I trace back in chronological order the main periods of this work.

April – September 2011: M.S.c. internship
Yielded the empirical paper [3] (not included in the present document).

October – December 2011: Predoctoral internship
Yielded the theoretical article [3] which corresponds to Chapter 3.

January – June 2012: Predoctoral internship
Supervised by S. Mannor, at Technion University, Haifa, Israel.
Aimed at clustering and forecasting the electricity consumption of individual Israeli customers. I
also worked on how to calibrate the learning rate of the exponentially weighted average forecaster.

September 2012 – July 2015: Ph.D. Program
The R-package opera [12] was developed and improved throughout the Ph.D.

2012 Work on handling uncertainties in robust aggregation: technical report [10] / Chapter 7
2013 Empirical work on designing experts: book chapter [2] / Chapter 4

Theoretical work on second-order bounds: article [5] / Chapter 2
2014 Empirical studies on several data-sets: technical reports [9, 11] / Chapters 9 and 10

Theoretical work on nonparametric prediction: article [6] / Chapter 6
Machine learning competitions: article [7] / Chapter 8

2015 Theoretical work on nonparametric prediction: article [4] / Chapter 5





1
Introduction et vue d’ensemble des résultats

Ce chapitre introductif présente les principales contributions de cette thèse. Après une brève expo-
sition des enjeux industriels en lien avec EDF, nous introduisons le cadre théorique dans lequel nous
nous placerons dans la majeure partie de la thèse : la prévision séquentielle de suites arbitraires.
Ensuite, nous détaillons les apports tant théoriques qu’appliqués de la thèse. Trois objectifs ont
essentiellement guidé les travaux : améliorer la qualité des prévisions, assortir les prévisions d’une
mesure d’incertitude et montrer l’universalité de la méthodologie en l’appliquant à divers jeux de
données réelles d’EDF.
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16 CHAPITRE 1. INTRODUCTION ET VUE D’ENSEMBLE DES RÉSULTATS

1.1. Motivation pratique : la prévision de la consommation
électrique

Commençons par présenter les enjeux industriels qui ont motivé cette thèse à EDF R&D.

1.1.1. Contexte et enjeux industriels

La prévision de séries temporelles (comme la demande d’électricité) représente un enjeu majeur
pour le groupe EDF. En effet, l’électricité ne se stockant pas, l’équilibre entre la production et la
demande d’électricité doit être maintenu à tout moment afin d’éviter les risques physiques (cou-
pures d’électricité, reconfiguration de réseaux, black-out) ou financiers. EDF doit donc bénéficier
de bonnes prévisions à différents horizons de temps (court terme, moyen terme) afin d’optimiser et
de planifier son parc de production (centrales nucléaires, thermiques, éoliennes,. . .).

Ces dernières années, en raison de l’évolution du paysage électrique français (ouverture du marché
à la concurrence, modifications des usages de consommation), le groupe s’est intéressé à la création
de méthodes plus réactives au changement remettant en question l’hypothèse de stationnarité du
signal (voir Goude [80], Dordonnat [61]). EDF R&D a ainsi développé de nombreuses méthodes de
prévision performantes (voir par exemple [18, 50, 105, 121]).

Dans cette thèse, on se propose d’agréger ces méthodes de façon robuste et adaptative. Cette thèse
se place dans le prolongement de celle de Goude [80] qui présentait des résultats encourageants sur
l’agrégation séquentielle de prédicteurs.

Un premier objectif est d’améliorer la performance des prévisions non seulement en développant
de nouveaux algorithmes d’agrégation mais en travaillant aussi sur le choix des méthodes de base
à inclure dans le mélange.

Un deuxième objectif est d’assortir les prévisions d’une mesure d’incertitude, voire de prévoir des
lois. La prévision en loi est un problème d’actualité à l’égard d’EDF R&D en particulier avec le
développement des énergies renouvelables. La production d’électricité dépend de conditions météo-
rologiques non contrôlables (comme le vent pour les éoliennes) et devient elle-même une quantité
aléatoire à prévoir. Dans de nombreuses situations pratiques, nous sommes alors plus intéressés
par le risque qu’une situation extrême se produise (comme par exemple une demande d’électri-
cité exceptionnellement forte) plutôt que par la prévision ponctuelle de la consommation moyenne.
Les cas difficiles où cela ne se passe pas comme prévu sont importants car ils induisent de fortes
contraintes au réseau ou des pertes financières.

1.1.2. Jeux de données

Dans cette thèse, on s’intéresse à la prévision à court terme de la demande d’électricité, de la
demande de chaleur et du prix de l’électricité. Un des objectifs est de proposer des méthodes de
prévision automatiques (pas de paramètre à calibrer) et universelles (qui fonctionnent sur toutes
sortes de données).

La consommation électrique La prévision de consommation électrique a été l’application princi-
pale tout au long de la thèse (cf. chapitres 2, 4, 8, 9, et 10). Les jeux de données utilisés diffèrent
légèrement entre les chapitres (dates différentes, signaux français ou américains, différentes mailles
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géographiques,. . .) mais la consommation électrique agrégée (i.e., sommée sur suffisamment de
consommateurs) présente globalement toujours les mêmes caractéristiques illustrées en figure 1.1.
Pour résumer, la demande électrique présente une tendance et trois cycles temporels qui sont liés à
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Figure 1.1. : Caractéristiques de la consommation électrique en France sur l’année 2011.

l’activité humaine : au niveau annuel (demande plus forte hiver), au niveau hebdomadaire (demande
plus faible les week-ends), et au niveau journalier (demande plus faible la nuit). La consommation
dépend aussi de variables exogènes comme les tarifs, ou des variables météorologiques comme la
température (utilisation du chauffage pour les températures basses), la couverture nuageuse, ou la
vitesse du vent.

La demande de chaleur Étudiée au chapitre 9, sa prévision est motivée par les centrales de cogéné-
ration qui produisent à la fois de l’électricité mais aussi de l’eau chaude pour chauffer la ville voisine.
Le principal objectif est la production d’eau chaude, celle d’électricité n’étant que secondaire. Deux
différences principales avec la demande électrique française sont à noter. Premièrement, le signal
est ici d’une amplitude beaucoup plus faible que ceux étudiés pour la consommation électrique et
est donc moins stable. Deuxièmement, la demande de chaleur présente des régimes extrêmement
différents en été (pas de corrélation à la température) et en hiver, qui sont difficilement capturés
par un seul modèle.

Le prix de l’électricité Ce signal est beaucoup plus volatil que les deux précédents. En cas de
tension sur le réseau électrique (production trop faible par rapport à la demande), le prix peut,
temporairement et de façon peu prévisible, exploser. Nous en étudions la prévision probabiliste
dans le chapitre 8.

1.1.3. Méthodes de prévision à EDF

La prévision de séries temporelles est une activité essentielle au sein d’EDF R&D qui a développé
de nombreuses méthodes de prévision ces dernières décennies. Avec le temps, le nombre de modèles
compétitifs s’est donc naturellement accru en particulier dans le domaine de la prévision de la
consommation électrique. Certains modèles occupent une place importante dans cette thèse : GAM
(Generalized Additive Models), KWF (Kernelized Wavelet Regression), et CLR (Curve Linear
Regression). Nous les décrivons très brièvement ci-après.
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GAM Les modèles additifs généralisés ont été introduits par Hastie et Tibshirani [87]. Ils ex-
pliquent la consommation comme une somme d’effets non linéaires des variables exogènes. Ces
modèles présentent d’excellentes performances pour la prévision de la consommation électrique
(cf. Pierrot et Goude [121]). Ils commencent à être utilisés par les opérateurs ayant en charge la
prévision d’électricité et font l’objet d’une grande attention au sein du département Osiris d’EDF
R&D avec notamment la thèse en cours de Vincent Thouvenot (2012).

KWF Le deuxième modèle de prévision, KWF est un processus autorégressif fonctionnel. C’est
un modèle non paramétrique qui s’appuie sur les similarités de la consommation récente avec le
passé dans une base d’ondelettes. Ce modèle a été introduit par Antoniadis et al. [16] et approfondi
par Cugliari [55]. Une de ses particularités est de ne pas utiliser de variable exogène (comme
la température) contrairement aux autres modèles. La qualité de ses prévisions n’est donc pas
dépendante de celle des prévisions météorologiques.

CLR Le troisième modèle, CLR, introduit et appliqué à la consommation électrique par Cho et al.
[50, 51], est aussi un modèle autorégressif de processus fonctionnels. Il considère la série temporelle
comme une courbe et effectue une réduction de la dimension suivie d’une transformation des données
pour se ramener à un problème de régression linéaire.

D’autres modèles existent et sont utilisés à EDF, comme le modèle historique paramétrique utilisé
par les opérationnels (le modèle Météore implémenté dans le logiciel Éventail [39]). Au cours de
ma thèse, j’ai également exploré des modèles issus de l’apprentissage statistique comme les forêts
aléatoires ou le boosting. Les forêts aléatoires, introduites par Breiman [35], sont une méthode d’en-
semble qui construit un grand nombre d’arbres de régression aléatoires avant de les moyenner (voir
également le travail de Deswartes [59] sur la consommation électrique). Le boosting (cf. Friedman
[72]) est une autre méthode d’ensemble. Les prédicteurs de base sont des méthodes de régres-
sion très faibles (par exemple des arbres de régression très peu profonds). Ceux-ci sont construits
séquentiellement dans l’objectif de réduire le biais du prédicteur moyenné.

1.2. Introduction à la prévision de suites arbitraires

Motivés par la diversité des méthodes de prévision développées à EDF R&D ces dernières décennies,
nous avons cherché à utiliser un cadre théorique robuste qui puisse réunir des modèles statistiques
reposant sur des hypothèses très différentes. C’est le cadre des suites individuelles (ou arbitraires)
présenté maintenant et qui a la particularité de ne faire aucune hypothèse stochastique sur la suite
à prévoir.

1.2.1. Le cadre des suites arbitraires

Nous cherchons à prévoir de façon séquentielle une suite d’observations y1, . . . , yT à valeurs dans
un espace Y. Dans l’approche statistique classique, des hypothèses de régularité sont faites. Typi-
quement, on suppose l’existence d’un processus stochastique stationnaire sous-jacent. L’hypothèse
la plus courante est que les observations sont les réalisations de variables aléatoires indépendantes
et identiquement distribuées.

Nous nous plaçons ici dans un cadre beaucoup plus robuste : nous ne faisons aucune hypothèse sto-
chastique. La suite est dite arbitraire. Quand l’approche statistique classique demande des garanties
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de performance en espérance ou avec grande probabilité, l’objectif ici est qu’elles soient valables
uniformément sur toutes les suites d’observations possibles. C’est le cadre des suites individuelles
qui connaît un large succès ces dix dernières années en raison de ses garanties extrêmement robustes.
Une excellente (et approfondie) introduction est proposée par le livre de Cesa-Bianchi et Lugosi
[43].

Critère de performance Considérons X un ensemble convexe de prévision (typiquement X est
un intervalle borné de R). Pour évaluer la performance d’une prévision ŷt ∈ X , produite par le
statisticien au temps t, nous considérons une fonction de perte ` : X × Y → R+ qui est supposée
convexe en son premier argument. À l’instant t, `(ŷt, yt) mesure l’écart entre la prévision ŷt et
l’observation yt. L’objectif du statisticien est alors de minimiser sa perte cumulée définie par

L̂T
def
=

T∑
t=1

`(ŷt, yt) . (1.1)

Exemple 1.1. Un exemple de perte ` convexe est donné par la perte carrée (x, y) 7→ (x − y)2

pour X = Y ⊂ R. D’autres pertes utilisées dans ce manuscrit sont la perte absolue (x, y) 7→
|x− y| ou le pourcentage d’erreur absolue (x, y) 7→ |x− y|/y. Pour α ∈ (0, 1), la perte quantile de
Koenker et Bassett [101] définie par (x, y) 7→ (y − x)(α− 1{y<x}) joue également un rôle essentiel
dans la prévision probabiliste (cf. chapitre 7). D’autres pertes plus opérationnelles pourraient aussi
être envisagées pour refléter directement les pertes financières ou les risques de black-out.

Des experts pour nous aider Bien sûr, sans aide ou hypothèse supplémentaire, il est illusoire de
réussir à assurer de bonnes prévisions uniformément sur toutes les suites d’observations possibles.
Heureusement, n’oublions pas notre point de départ, nous disposons d’un ensemble de méthodes
de prévision (développées par EDF R&D dans notre cas et appelées experts dans la suite) qui nous
proposent leurs propres prévisions. La performance du statisticien est alors évaluée relativement
à celle des experts. Ce cadre est celui de la prévision séquentielle avec avis d’experts. Nous le
résumons en figure 1.2.

Notations : T > 1, nombre d’observations ; K > 1, nombre d’experts
À chaque instant t = 1, . . . , T

1. Des experts indexés par k = 1, . . . ,K fournissent chacun une prévision
xk,t ∈ X ;

2. Le statisticien prévoit ŷt ∈ X fondé sur
• les observations passées y1, . . . , yt−1 ∈ Y
• les prévisions présentes et passées des experts xk,s pour 1 6 s 6 t et

1 6 k 6 K.
3. Le statisticien observe yt ∈ Y
4. Le statisticien subit la perte ̂̀t def

= `(ŷt, yt) et les experts les pertes `k,t
def
=

`(xk,t, yt).

Figure 1.2. : Prévision séquentielle avec avis d’experts

Généralement, la prévision ŷt formée par le statisticien à l’instant t > 1 est un mélange des prévi-
sions des experts xk,t pour 1 6 k 6 K, où les poids sont calculés à l’aide des performances passées
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des experts.

Un compromis entre deux erreurs La perte du statisticien est décomposée en deux termes

T∑
t=1

̂̀
t︸ ︷︷ ︸

def
= L̂T

performance du
statisticien

def
= min

k=1,...,K

T∑
t=1

`k,t︸ ︷︷ ︸
def
= L?T

performance de référence
(erreur d’approximation)

+
T∑
t=1

̂̀
t − min

k=1,...,K

T∑
t=1

`k,t︸ ︷︷ ︸
def
= RegT

regret cumulé
(erreur d’estimation)

. (1.2)

Le premier terme de droite est la performance de référence ou l’erreur d’approximation. L’objectif
du statisticien va être de se rapprocher de cette performance sur le long terme. Le plus fréquemment
l’erreur de référence est celle du meilleur expert (comme présenté en équation (1.2)). Cependant, en
élargissant la classe des stratégies de référence, nous allons voir comment la diminuer sensiblement
(voir paragraphe 1.3.1).

Le second terme de droite est le regret cumulé (parfois simplement appelé regret dans la suite). Il
représente la difficulté rencontrée par ce dernier à ne pas connaître à l’avance le meilleur expert et
à devoir l’estimer séquentiellement. Lorsque les pertes instantanées sont bornées, le regret cumulé
augmente au plus linéairement avec le temps. L’objectif du statisticien est qu’il soit sous-linéaire
uniformément sur l’ensemble des suites d’observations et de prévisions d’experts possibles. Autre-
ment dit, on veut que, quoi qu’il arrive, le statisticien donne en moyenne des prévisions presque
aussi performantes que le meilleur des experts ; ce qui s’écrit

lim sup
T→∞

(
sup

(yt)t,(xk,t)k,t

{
1

T

T∑
t=1

̂̀
t − min

k=1,...,K

1

T

T∑
t=1

`k,t

})
6 0 .

Il existe des stratégies de prévision, comme l’agrégation par poids exponentiels détaillée ci-après (cf.
Équation (1.3)), qui garantissent un regret RegT de l’ordre deO

(√
T logK

)
et donc un regret moyen

RegT /T = O
(√

(logK)/T
)
. On peut montrer que cette borne est optimale, dans le sens où aucun

algorithme ne peut obtenir de meilleure vitesse uniformément sur toutes les suites d’observations
et de prévisions d’experts et ce pour toute fonction de perte ` bornée et convexe en son premier
argument.

Peut-on faire mieux ? Cela ne signifie cependant pas que cette vitesse n’est jamais améliorable.
Par exemple, si la fonction de perte est exp-concave∗, on peut obtenir un regret cumulé RegT
constant O

(
logK

)
. C’est par exemple le cas de la perte carrée quand les observations sont bornées.

Un autre axe d’amélioration consiste à développer des stratégies qui jouissent de bonnes garanties
dans le pire des cas mais réussissent aussi à tirer profit de la simplicité de la suite d’observations
jouées par l’environnement. Par exemple, un regret de l’ordre O

(√
L?T lnK

)
, où L?T est la perfor-

mance du meilleur expert (cf. équation (1.2)), est aussi possible et est meilleur que O(
√
T lnK) si

au moins un expert est bon. Cette amélioration est connue sous le nom de « improvement for small
losses » (voir par exemple Cesa-Bianchi et Lugosi [43] pour plus de détails). De telles stratégies
qui réussissent à s’adapter à la difficulté de l’environnement ambiant pour améliorer leurs bornes

∗ Une fonction de perte ` : X × Y → R est dite exp-convave si il existe η > 0 tel que x 7→ exp
(
− η`(x, y)

)
est

concave pour tout y ∈ Y.
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de regret sans connaître à l’avance la suite d’observations sont appelées adaptatives. Une façon
d’en obtenir consiste à prouver des bornes de regret dépendant des observations. C’est ce que nous
faisons au chapitre 2.

1.2.2. La stratégie la plus répandue : le mélange par poids exponentiels

Généralement le statisticien produit ses prévisions en agrégeant les prévisions des experts de façon
convexe. À chaque instant t > 1, il forme un vecteur de poids p̂t = (p̂1,t, . . . , p̂K,t) dans le simplexe
∆K = {p ∈ RK+ :

∑K
k=1 pk = 1} et prévoit la moyenne pondérée ŷt =

∑K
k=1 p̂k,txk,t. C’est le cadre

de l’agrégation robuste séquentielle d’experts. La stratégie la plus connue est l’agrégation par poids
exponentiels (EWA†) introduite en apprentissage séquentiel par Littlestone et Warmuth [107] et
Vovk [139]. Elle attribue les pondérations

p̂k,t
def
=

exp
(
−η
∑t−1

s=1 `(xk,s, ys)
)

∑K
j=1 exp

(
−η
∑t−1

s=1 `(xj,s, ys)
) , (1.3)

où η > 0 est un paramètre d’apprentissage à calibrer. Si la fonction de perte ` est convexe en son
premier argument et bornée à valeurs dans [a, b], on peut montrer qu’EWA a un regret cumulé
uniformément borné par

RegT 6
logK

η
+
ηT (b− a)2

8
. (1.4)

Pour le choix optimal du paramètre d’apprentissage η = (b − a)−1
√

8(logK)/T , on obtient la
borne supérieure (b− a)

√
(logK)T/2 pour le regret cumulé. La preuve est par exemple disponible

au chapitre 2.2 de Cesa-Bianchi et Lugosi [43].

Calibration du paramètre d’apprentissage Le statisticien ne connaît pas forcément les valeurs
de a, b, et T à l’avance. Il doit calibrer le paramètre η de façon séquentielle. Dans ce but, plusieurs
solutions sont possibles au coût d’un facteur multiplicatif constant. La plus simple est connue sous
le nom de « doubling trick ». Pour la calibration de T par exemple, l’idée consiste à réinitialiser
l’algorithme avec η = (b− a)−1

√
8(logK)/t chaque fois que le temps t est une puissance de 2 (en

oubliant toute l’information gagnée dans le passé). La borne de regret n’est alors détériorée que
d’un facteur

√
2/(
√

2 − 1) ≈ 3.41 (cf. Cesa-Bianchi et Lugosi [43, chapitre 2.3]). De façon plus
satisfaisante, on peut aussi redéfinir ηt à chaque instant en fonction des données passées sans avoir
à réinitialiser l’algorithme (cf. [43]).

La calibration du paramètre d’apprentissage joue un rôle essentiel dans l’obtention d’algorithmes
adaptatifs mentionnés plus tôt : si la suite d’observations est régulière, de grandes valeurs de η
permettent parfois une convergence beaucoup plus rapide. Les calibrations théoriques dans le pire
des cas ne sont souvent que peu efficaces et des calibrations plus judicieuses utilisant l’information
passée (voir chapitre 2) ou plus pratiques, comme celle proposée par Devaine et al. [60], sont
nécessaires.

†Exponentially Weighted Average
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1.3. Amélioration de la qualité des prévisions

Une grande partie de cette thèse se concentre sur un objectif de performance pure : comment
diminuer l’erreur (1.1) ? Comme nous l’avons remarqué dans l’équation (1.2), celle-ci se décompose
en deux termes : l’erreur d’approximation et le regret que nous cherchons à diminuer.

Remarquez que ces deux termes d’erreurs sont en compétition : il s’agit de trouver le bon compromis
entre les deux. Typiquement, augmenter le nombre d’experts détériore légèrement les garanties sur
le regret. Ce n’est donc intéressant que si cela permet de diminuer suffisamment l’erreur d’approxi-
mation. Il s’agit du même phénomène que le compromis biais-variance en statistiques classiques.

1.3.1. Diminution de l’erreur d’approximation

La moyenne uniforme des experts est souvent plus robuste et plus efficace que le meilleur des
experts (cf. méthodes d’ensemble [150]). Il pourrait donc être judicieux de l’ajouter à notre ensemble
d’experts au faible coût de remplacer logK par log(K + 1) dans la borne de regret (1.3). Plus
généralement, l’erreur d’approximation (ou performance de référence) peut-être grandement réduite
en essayant de se comparer à des ensembles de stratégies plus importants que les K experts de base.

Plus formellement, on considère un ensemble de stratégies possibles indexées par un ensemble Θ.
Chaque stratégie nous propose à chaque instant t > 1 une prévision fθ,t reposant uniquement sur
les observations passées ys pour 1 6 s 6 t− 1 et les prévisions passées et présentes des experts xk,s
pour 1 6 k 6 K et 1 6 s 6 t. L’objectif est de développer des algorithmes atteignant sur le long
terme la performance de référence

LT (Θ)
def
= inf

θ∈Θ

T∑
t=1

`(fθ,t, yt) . (1.5)

Remarque 1.2. On fera attention à ne pas confondre la prévision du statisticien ŷt ∈ X sur
laquelle ce dernier est évalué, des prévisions des stratégies de référence fθ,t auxquelles le statisticien
est comparé. Les fθ,t jouent le même rôle que les experts xk,t précédemment. En particulier, dans
le cas Θ = {1, . . . ,K} et pour les prévisions de référence fθ,t = xθ,t pour θ ∈ Θ nous retrouvons
le cadre précédent de la prévision avec avis d’experts dans lequel la performance de référence est
celle du meilleur expert.

Si l’ensemble de stratégies de référence Θ est judicieusement choisi, l’erreur d’approximation (1.5)
peut-être sensiblement inférieure à celle de de la définition (1.2) (pour laquelle Θ = {1, . . . ,K} et
fθ,t = xθ,t) sans que cela ne soit trop coûteux au niveau du regret.

Si l’ensemble Θ est fini de faible cardinal |Θ|, nous pouvons simplement utiliser par exemple l’al-
gorithme de mélange par poids exponentiels (EWA) sur les experts fθ,t au lieu de xk,t menant à
un regret O

(√
T log |Θ|

)
. Cependant, si Θ est très grand, voire même infini (non paramétrique

par exemple), il est nécessaire de tirer profit de la structure des stratégies fθ,t pour améliorer la
complexité algorithmique et éventuellement les garanties théoriques.

Nous listons maintenant différents ensembles de stratégies de référence possibles. Chacun corres-
pond à une performance de référence (celle atteinte par la meilleure stratégie définie en (1.5)) avec
laquelle les algorithmes de mélange peuvent être comparés. Dans la suite, nous supposons X ⊂ Rd.
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1.3.1.a. Meilleure combinaison convexe

Un premier ensemble de stratégies de référence judicieux est l’ensemble de toutes les combinaisons
convexes. Il correspond au simplexe Θ =

{
p ∈ RK+ :

∑K
k=1 pk = 1

}
et aux prévisions de référence

fp,t =
K∑
k=1

pkxk,t pour tout p ∈ Θ et tout t = 1, . . . , T .

Se rapprocher sur le long terme de LT (Θ) semble être un objectif bien moins simple que de se
comparer seulement à la performance du meilleur expert. Le nombre de stratégies de référence
dans Θ est en effet ici infini. Cependant, en utilisant le fait que les stratégies de Θ sont très
corrélées (elles ne dépendent que de K − 1 paramètres réels), on peut montrer que si la fonction
de perte ` est convexe et sous-différentiable en son premier argument, ce n’est pas plus difficile.
Ainsi, le « gradient trick » permet dans ce cas de construire un algorithme approchant la meilleure
combinaison convexe à partir d’un algorithme d’agrégation, noté A, n’approchant que le meilleur
expert (cf. Cesa-Bianchi et Lugosi [43, chapitre 2.5]). Pour cela, il suffit de remplacer dans A les
pertes `k,s = `(xk,s, ys) subies par les experts par les pseudo-pertes ˜̀k,s = ∂`(ŷs, ys) · xk,s où ∂` est
un (sous-)gradient de ` en son premier argument et · est le produit scalaire. Le regret cumulé est
du même ordre O(

√
T logK).

Par exemple, EWA décrit en (1.3) donne l’algorithme EG qui attribue les poids

p̂k,t =
exp

(
−η
∑t−1

s=1 ∂`(ŷs, ys) · xk,s
)

∑K
j=1 exp

(
−η
∑t−1

s=1 ∂`(ŷs, ys) · xj,s
) .

Exemple 1.3. Pour comprendre l’intuition de cette modification de l’algorithme, donnons l’exemple
de prévisions réelles (X ⊂ R) évaluées par la perte carrée ` : (x, y) ∈ R2 7→ (x − y)2. Celle-ci est
différentiable et les pseudo-pertes valent ˜̀k,s = 2(ŷs − ys)xk,s. On remarque alors que cette perte
avantage les experts qui rapprochent la prévision du mélange ŷs vers l’observation ys :

• si ŷs > ys : les pseudo-pertes sont positives et favorisent les experts ayant prévu de faibles
valeurs xk,s.

• si ŷs < ys : les pseudo-pertes sont négatives et donc plus faibles pour les experts ayant produit
de grandes prévisions xk,s.

1.3.1.b. Meilleure combinaison linéaire

L’ensemble des combinaisons linéaires correspond à Θ ⊂ RK et aux prévisions

fu,t =

K∑
k=1

ukxk,t pour tout u ∈ Θ et tout t = 1, . . . , T .

Dans le cas des fonctions de pertes ` convexes générales, Kivinen et Warmuth [97] ont introduit une
méthode générique pour convertir un algorithme d’agrégation convexe, noté A, compétitif face au
simplexe Θ = ∆K , en un algorithme approchant la meilleure stratégie de Θ =

{
u ∈ RK : ‖u‖1 6 β

}
la boule `1 de rayon β > 0. Pour cela, il suffit d’utiliser A en remplaçant lesK prévisions des experts
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x1,t, . . . , xK,t par les 2K prévisions −βx1,t, . . . ,−βxK,t, βx1,t, . . . , βxK,t (cf. Kivinen et Warmuth
[97]). Nous utilisons cette réduction au chapitre 8 pour produire des prévisions des quantiles de yt
en utilisant la perte quantile sur des experts prévoyant la moyenne. Nous en déduisons un regret
RegT (Θ) du même ordre de grandeur O(

√
T logK) que celui obtenu face au meilleur expert.

Dans le cas particulier de la perte carrée (avec des prévisions réelles), l’algorithme par excellence
est la régression ridge (Ridge) introduite en apprentissage séquentiel par Azoury et Warmuth [21]
et Vovk [142] qui choisit à l’instant t > 1 le vecteur ût ∈ RK minimisant l’erreur passée régularisée
en norme `2 :

ût ∈ arg min
u∈RK

{
t−1∑
s=1

(ys − u · xs)2 + λ ‖u‖22

}
,

où xs = (x1,s, . . . , xK,s) est le vecteur de prévision des experts. Ridge prévoit ensuite ŷt =∑K
k=1 ûk,txk,t. Ridge a un regret de l’ordre de O

(
K
√
T log T

)
face aux stratégies bornées Θ ={

u ∈ RK : ‖u‖2 6 β
}
pour un paramètre de régularisation λ de l’ordre de O(

√
KT log T ) (cf. As-

tolfi et al. [19]). L’ajout d’un terme de régularisation
(
u · xs

)2 utilisant les prévisions des experts
permet d’obtenir une meilleure vitesse O(K log T ) (cf. [21, 142]).

Jusqu’à présent, nous nous sommes intéressés à une notion de regret usuelle qui consiste à comparer
la perte cumulée du statisticien avec celle du meilleur élément d’un ensemble Θ suffisamment petit
pour pouvoir faire appel directement aux algorithmes de mélanges usuels. Les vitesses du regret
en O(

√
T ) n’étaient pas modifiées. Nous détaillons maintenant d’autres ensembles de stratégies

de référence beaucoup plus grands étudiés dans la suite de ce manuscrit. Ceux-ci nécessitent des
algorithmes adaptés pour faire face à la complexité de Θ.

1.3.1.c. Meilleure suite de combinaisons convexes (cf. chapitre 3)

Un objectif beaucoup plus ambitieux consiste par exemple à comparer la performance du statisticien
à celle d’une suite arbitraire d’éléments de Θ et non plus à un même élément fixe au court du temps.
Ce cadre intéresse particulièrement EDF qui cherche à avoir des méthodes de prévision robustes
aux ruptures liées aux changements du marché de l’énergie. Plus formellement, dans le cas des
combinaisons convexes, cela revient à considérer toutes les stratégies de référence indexées par
Θ = ∆T

K et formant les prévisions

fp1:T ,t =

K∑
k=1

pk,txk,t pour tout p1:T = (p1, . . . ,pT ) ∈ Θ et tout t = 1, . . . , T .

Malheureusement, cet ensemble de stratégies de référence est trop grand. Il n’est pas réaliste de
contrôler le regret uniformément sur toutes les stratégies p1:T ∈ ∆T

K . Cela reviendrait en effet à
connaître à l’avance à chaque instant le vecteur de mélange à utiliser pour prévoir la prochaine
observation. Ce problème est souvent appelé « tracking the best expert ».

État de l’art Plusieurs solutions ont été amenées dans la littérature à faire des hypothèses de régu-
larité ou de parcimonie sur les suites p1:T avec lesquelles nous nous comparons. Des exemples d’al-
gorithmes sont la descente miroir de Herbster et Warmuth [93], l’algorithme fixed share de Herbs-
ter et Warmuth [92] et sa généralisation par Bousquet et Warmuth [32].
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Par exemple, Herbster et Warmuth [92] garantissent pour fixed share une borne de regret de l’ordre
de O

(
Tm0 log(KT/m0)

)
, par rapport à l’ensemble Θ =

{
p1:T ∈ ∆T

K : m(p1:T ) 6 m0

}
. Ici, la

régularité des suites est mesurée par la somme cumulée des différences en norme `1 entre deux
vecteurs consécutifs :

m(p1:T )
def
=

T∑
t=1

‖pt − pt−1‖1 , où p0 = (1/K, . . . , 1/K) .

Bousquet et Warmuth [32] ont proposé un algorithme améliorant la borne de regret quand la suite
de poids utilisée p1:t est parcimonieuse, dans le sens où peu de vecteurs de pondération différents
sont utilisés (i.e., card

{
pt : t ∈ {1, . . . , T}

}
est faible).

Contributions 1.4. Nous proposons au chapitre 3 une analyse unifiée et simplifiée des algo-
rithmes cités ci-dessus dont nous retrouvons (et parfois améliorons) les garanties. Notre analyse
généralise les résultats à un cadre où les poids des vecteurs de comparaison se somment pas néces-
sairement à 1. Cela nous permet d’unifier plusieurs notions de regret jusqu’ici non reliées dans la
littérature, entre autres :

• le regret escompté (cf. Cesa-Bianchi et Lugosi [43, chapitre 2.11]) où les pertes des différents
instants sont pondérées par un facteur βt (pas forcément connu à l’avance par le statisticien) ;

• le regret adaptatif introduit par Hazan et Seshadhri [90] dans lequel le statisticien n’est évalué
qu’entre les instants r et s ∈ {1, . . . , T} qu’il ne connaît pas à l’avance. Autrement dit, il
cherche à minimiser

s∑
t=r

`(ŷt, yt)− min
k=1,...,K

s∑
t=r

`(xk,t, yt) ,

simultanément pour tout couple (r, s) ∈ N2 tel que 1 6 r 6 s 6 T .

1.3.1.d. Meilleure fonction des experts (cf. chapitres 5 et 6)

Un autre objectif consiste à se comparer à un ensemble de stratégies non paramétriques. C’est ce
que l’on fait aux chapitres 5 et 6, où Θ est une classe de fonctions de comparaison.

Ici, nous autorisons les prévisions du statisticien à vivre dans un espace différent de celles des
experts. Plus précisément, nous supposons que les experts fournissent des prévisions xk,t ∈ X quel-
conques, mais que les prévisions du statisticien doivent être réelles. Chaque stratégie de référence
est une fonction g : XK → R ∈ Θ ⊂ R(XK) et produit les prévisions

fg,t = g(xt) pour tout t = 1, . . . , T ,

où xt = (x1,t, . . . , xK,t) ∈ XK est le vecteur de prévision des experts. L’objectif du statisticien est
d’avoir un regret

RegT (Θ)
def
=

T∑
t=1

`(ŷt, yt)− inf
g∈Θ

T∑
t=1

`(g(xt), yt) (1.6)

le plus faible possible. Dans la suite, nous nous restreignons au cas K = 1 (sans perte de généralité),
c’est-à-dire Θ ⊂ RX .
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L’entropie métrique Bien entendu, plus l’ensemble Θ est grand, plus il est difficile de s’y comparer
et cela joue significativement sur l’ordre de grandeur en T des bornes de regret. La taille d’un
ensemble peut être mesurée par la notion d’entropie métrique.

Definition 1.1. L’entropie métrique logN∞(Θ, ε) est définie par le logarithme du nombre mi-
nimal d’éléments de Θ nécessaires pour former un ε-recouvrement de Θ en norme infinie ‖ · ‖∞.
Autrement dit,

logN∞(Θ, ε)
def
= min

{
card(G) : G ⊂ Θ tel que ∀f ∈ Θ, ∃g ∈ G : ‖g − f‖∞ 6 ε

}
.

Exemple 1.5. Donnons les valeurs de l’entropie métrique de quelques classes de fonctions
usuelles qui nous intéresseront dans la suite pour illustrer leurs tailles.

• L’espace des fonctions 1-Lipschitz en dimension d > 1 que l’on note Θlip a une entropie métrique
de l’ordre logN∞(Θlip, ε) ∼ ε−d quand ε→ 0, cf. Lorentz [108].

• L’espace Θhöld des fonctions donc les q ∈ N premières dérivées existent et sont bornées en
norme infinie par B > 0 et telles que les q-èmes dérivées sont Hölder d’ordre α ∈ (0, 1]. En
d’autres termes, pour toute fonction f ∈ Θhöld,

∀x, y ∈ X ,
∣∣f (q)(x)− f (q)(y)

∣∣ 6 |x− y|α . (1.7)

Par exemple, si X = [0, 1]d l’entropie métrique est de l’ordre logN∞(Θhöld, ε) ∼ ε−d/(q+α)

quand ε→ 0, cf. Lorentz [108]. La régularité de la classe Θhöld dépend donc du coefficient de
régularité β = q + α et de la dimension d.

Un algorithme simple ? Si la fonction de perte ` est suffisamment régulière (1-Lipschitz en son pre-
mier argument) et que l’entropie métrique est finie pour tout ε > 0, une solution naturelle est d’uti-
liser un algorithme de mélange (comme EWA) sur les centres des boules d’un ε-recouvrement Θ(ε)

de cardinalité minimale N∞(Θ, ε). On obtient une borne supérieure (en omettant les constantes)

Tε+
√
T logN∞(Θ, ε) (1.8)

sur le regret cumulé (1.6). Le premier terme Tε est l’erreur d’approximation que l’on commet en
se restreignant à Θ(ε). Le deuxième terme est le regret (voir (1.4)) subi par EWA sur la classe finie
d’experts Θ(ε). Pour la classe des fonctions Lipschitz Θlip nous obtenons pour la valeur optimale
ε ≈ T−1/(d+2), un regret RegT

(
Θ(lip)

)
de l’ordre de O(T (d+1)/(d+2)). Pour la classe de fonctions

Hölder, Θhöld le regret est de l’ordre O(T (d+β)/(d+2β)). L’inconvénient principal de cet algorithme
est sa complexité : il nécessite de garder en mémoire et de mettre à jour à chaque instant un nombre
exponentiellement croissant de poids.

Remarque 1.6. Si la fonction de perte ` est exp-concave (comme par exemple la perte carrée
qui nous intéresse au chapitre 5), EWA peut garantir de meilleures vitesses (cf. paragraphe 1.2.2).
Son regret cumulé (1.6) est alors majoré de la même façon par

Tε+ logN∞(Θ, ε) . (1.9)

Nous en déduisons les regrets pour les classes Lipschitz RegT
(
Θ(lip)

)
= O

(
T d/(d+1)

)
et Hölder

RegT
(
Θhöld) = O

(
T d/(d+2β)

)
.
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Contributions 1.7. L’objectif des chapitres 5 et 6 est de trouver des stratégies algorithmi-
quement efficaces et plus performantes (meilleures garanties théoriques) que EWA pour les cas
particuliers des classes Hölder et Lipschitz. Dans le chapitre 5, nous nous intéressons principale-
ment à la perte carrée. Nous effectuons une analyse multi-échelle qui tire ses idées de techniques
de chaînage. Cela nous permet de tirer profit :

• de la vitesse (1.9) à une grande échelle pour effectuer une première approximation grossière
face à un ensemble de référence Θ petit ;

• de la vitesse (1.8) à de petites échelles pour faire des corrections plus fines et permettre de se
comparer à des ensemble Θ plus important.

Nous obtenons ainsi des vitesses optimales pour le regret plus rapides que celles relatives aux
regrets (1.8) et (1.9). Nous proposons le premier algorithme de complexités (en temps et en mémoire)
raisonnables (polynomiales en T ) pour les classes de fonctions Hölder (et donc Lipschitz). Dans
le chapitre 6, nous étudions des fonctions de pertes convexes générales mais dans le cadre des
classes de fonctions de référence Lipschitz. Nous proposons un algorithme qui reprend l’idée des
arbres de régression CART et divise l’espace des variables exogènes X en se basant sur les données
passées. Les bornes sur le regret obtenues dans le pire des cas ne sont pas meilleures que celles
de la borne supérieure (1.8) mais la procédure est algorithmiquement efficace et s’adapte mieux à
la complexité inhérente du problème. Pour finir, nous justifions notre objectif initial en montrant
que minimiser RegT

(
Θlip) permet d’obtenir des stratégies asymptotiquement consistantes dans un

cadre stochastique. Nous détaillons maintenant ces contributions.

Le cas de la perte carrée Nous proposons au chapitre 5 un algorithme (Algorithme 9) reposant
sur des techniques de chaînage qui vérifie (cf. Théorème 5.3), pour toute classe non paramétrique
de fonctions de référence Θ, une borne de regret de la forme

RegT (Θ) 6 c1B
2
(
1 + logN∞(Θ, γ)

)
+ c2B

√
T

∫ γ

0

√
logN∞(Θ, ε) dε , (1.10)

pour tout γ ∈ (B/T,B) oùB est une borne sur max16t6T |yt| et c1, c2 sont deux constantes positives.
Comme l’ont montré Rakhlin et Sridharan [124], cette borne est optimale dès que l’entropie métrique
est du même ordre de grandeur que l’entropie séquentielle (voir Rakhlin et Sridharan [124]), ce qui
est le cas pour la plupart des espaces de fonctions usuels incluant les fonctions Lipschitz, Hölder,
ou les espaces de Besov.

Exemple 1.8. Si Θ a une entropie métrique logN∞(Θ, ε) 6 ε−p avec p ∈ (0, 2), la borne (1.10)
devient O

(
T p/(p+2)

)
qui améliore la complexité O

(
T p/(p+1)

)
obtenue par un simple EWA (cf. re-

marque 1.6). Par exemple, dans le cas Hölder p = d/β donne un regret en O
(
T d/(2β+d)

)
.

L’apport principal du chapitre 5 est une instanciation efficace de l’Algorithme 9 dans le cas des
fonctions Hölder. Il permet pour la première fois d’obtenir, de façon constructive et efficace, la
vitesse presque optimale O

(
T 1/(2β+1)(log T )3/2

)
pour le regret (quand d = 1).

Les fonctions Lipschitz Dans le chapitre 6, nous nous concentrons sur la classe des fonctions
Lipschitz Θlip. Nous proposons un algorithme (Algorithme 12) qui divise séquentiellement l’espace
des variables exogènes X de façon à arbitrer localement et efficacement entre les erreurs d’approxi-
mation et d’estimation. L’idée est d’approcher plus précisément la meilleure fonction f? de Θlip

soit dans les régions difficiles (mauvaise approximation) soit dans les régions où l’on dispose de
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beaucoup de données (bonne estimation).

L’algorithme maintient pour cela un arbre de régression dans lequel chaque nœud n représente une
région X (n) ⊂ X . Plus un nœud est profond dans l’arbre, plus la région correspondante est petite.
Les feuilles de l’arbre forment à tout moment une partition de l’espace des variables exogènes
X . L’arbre approxime f? par des fonctions constantes par morceaux (chaque feuille de l’arbre
étant une fonction constante). Dès que l’algorithme estime qu’une feuille n de l’arbre approxime
trop grossièrement f?, c’est-à-dire que la région de X (n) correspondante est trop vaste pour être
approximée par une constante, l’arbre est agrandi au niveau de cette feuille. Le nœud n devient
un nœud interne et sa région X (n) est séparée en deux sous-régions, chacune associée à une feuille
enfant du nœud n.

Une justification stochastique de l’objectif Nous quittons momentanément le cadre des suites
arbitraires. Nous supposons que le statisticien doit prévoir séquentiellement la prochaine observation
Yt ∈ [0, 1] d’un processus ergodique stationnaire (Yt)t=−∞,...,∞ à partir des observations passées
Y1, . . . , Yt−1 seulement. La limite fondamentale suivante a été prouvée par Algoet [15]. Quelle que
soit la stratégie du statisticien, presque sûrement,

lim inf
T→∞

{
1

T

T∑
t=1

`
(
Ŷt, Yt

)}
> L? ,

où Ŷt est la prévision du statisticien à l’instant t et

L? = E
[

inf
f∈B∞

E
[
`
(
f(Y −1

−∞), Y0

)∣∣Y −1
−∞

]]
est la perte minimale en espérance de la prévision de Y0 par une fonction Borélienne du passé.
Ici B∞ représente l’ensemble de toutes les fonctions Boréliennes de [0, 1]∞ dans [0, 1] et ` est une
fonction de perte Lipschitz et convexe en son premier argument. De nombreux papiers [25, 24, 85, 83]
ont donc construit des stratégies dites consistantes qui atteignent la borne inférieure, à savoir des
stratégies vérifiant

lim sup
T→∞

{
1

T

∑
t

`
(
Ŷt, Yt

)}
6 L? .

Tous ces articles reposent dès le départ sur le caractère stochastique de la suite à prévoir. Dans
le chapitre 6, nous montrons que la consistance n’est en réalité qu’un corollaire de nos bornes
de regret. En d’autres mots, nous proposons une méthode générique pour obtenir une stratégie
consistante à partir d’un algorithme assurant un regret Reg

(
Θlip) sous-linéaire.

1.3.1.e. Création de nouveaux experts (cf. chapitre 4)

D’un point de vue pratique, les experts sont formés par un ensemble de méthodes statistiques
de base dont nous souhaitons améliorer la performance en les agrégeant (voir paragraphe 1.1.3).
Ces méthodes peuvent reposer sur des hypothèses stochastiques et des modèles très différents,
ce qui nous a motivé à adopter le cadre robuste des suites individuelles. Pour diminuer l’erreur
d’approximation, nous n’avons pour l’instant pas touché à ces prévisions de base. En pratique,
travailler sur le jeu d’experts pour qu’il soit suffisamment riche peut pourtant s’avérer très efficace.
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Nous analysons cette approche dans le chapitre 4 et étudions comment créer de nouveaux experts
efficacement à partir des méthodes statistiques à disposition. Nous proposons quatre procédures
pour créer plus de diversité dans notre jeu d’experts :

• modification aléatoire d’un expert initial par méthode de bagging (cf. Breiman [34]) ;
• ajout séquentiel de nouveaux experts cherchant à corriger les erreurs des experts déjà présents

dans le mélange en s’inspirant des méthodes de boosting (cf. Friedman [72]) ;
• spécialisation d’experts à des événements météorologiques particuliers (en utilisant des va-

riables exogènes pour pondérer plus fortement certains instants lors de la phase d’estimation
des experts) ;

• variation de l’horizon de prévision des experts et réalisation de recalages court terme des
résidus.

Application à la prévision de la consommation électrique Nous appliquons la méthode ci-dessus
à un jeu de données couramment employé à EDF pour la prévision court terme de la consomma-
tion électrique et qui a représenté une des motivations pratiques principales de cette thèse (cf.
chapitres 4, 9, 10). Le jeu de données contient cinq années d’observations à un pas demi-horaire de
la consommation globale des clients d’EDF en France ainsi que des variables exogènes qui ont un
effet sur la consommation (température, couverture nuageuse, jours fériés, . . .).

Comme dans toutes nos études empiriques, nous divisons le jeu de données en deux ensembles :
un ensemble d’estimation (ici les quatre premières années) qui est utilisé pour entraîner un certain
nombre d’experts ; et un ensemble de validation (ici la dernière année) sur lequel tous les experts
produisent des prévisions et sont agrégés séquentiellement par un algorithme de mélange. Les
performances finales sont évaluées sur l’ensemble de validation.

Dans le chapitre 4, nous disposons de trois méthodes statistiques de prévision de base pour pro-
duire nos experts. À partir de la méthodologie du paragraphe précédent, nous créons un jeu de
133 experts aussi varié que possible. Si nous remarquons une augmentation de l’erreur d’estimation
(regret cumulé) subie par le mélange en fonction du nombre d’experts considérés, l’erreur d’ap-
proximation est très nettement diminuée. Nous obtenons un gain de performance global de l’ordre
de 25% (en rmse) par rapport au meilleur des 133 experts. Ce gain peut être décomposé en deux
parties : environ la moitié est obtenue grâce aux techniques d’agrégation séquentielle, l’autre moitié
provenant de la création des nouveaux experts.

1.3.2. Diminution de l’erreur d’estimation (cf. chapitre 2)

Comme nous l’avons précisé plus tôt, afin d’améliorer la performance finale de la prévision, il ne
suffit pas de se concentrer seulement sur l’erreur d’approximation. Il faut aussi de construire des
algorithmes de mélange efficaces avec une erreur d’estimation (i.e., un regret cumulé) la plus faible
possible.

Dans ce but, il ne s’agit plus de se concentrer uniquement sur le regret dans le pire des cas déjà bien
étudié et pour lequel de nombreuses stratégies optimales existent. Le pire des cas n’est souvent pas
représentatif de la réalité et les bornes peuvent être significativement améliorées dans de nombreux
scénarios.

Exemple 1.9. Imaginons par exemple qu’après un certain temps, un des experts, noté k?, a
gagné tellement d’avance sur les autres experts, qu’il est clair qu’il sera le vainqueur à la fin du
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jeu (après T instants). Dans ce cas, puisque le regret, que le statisticien cherche à minimiser ici,
comparera à la fin la performance du statisticien avec celle de l’expert k?, il n’est plus nécessaire
de se concentrer sur aucun autre expert, et le regret cesse d’augmenter pour le restant du temps.
On peut donc ici faire beaucoup mieux que la vitesse O(

√
T ) assurée dans le pire des cas.

État de l’art Plusieurs solutions pour exploiter la simplicité de la suite d’observations ont ainsi été
proposées dans la littérature. Elles s’appuient majoritairement sur la calibration d’un paramètre
d’apprentissage (qui apparaît dans la plupart des algorithmes de mélange). Certaines reposent
sur une calibration judicieuse (souvent décroissante) du paramètre d’apprentissage [45, 60, 89,
58, 146]. D’autres agrègent plusieurs paramètres d’apprentissage à partir d’approches souvent très
différentes [46, 126, 48].

Les bornes prenant en compte la variance des experts (aussi appelées bornes du second-ordre)
permettent de capturer la difficulté de la suite à prévoir. Cesa-Bianchi et al. [45], Hazan et Kale
[89] proposent ainsi des stratégies qui vérifient

T∑
t=1

̂̀
t 6 min

16k6K


T∑
t=1

`k,t + c

√√√√lnK
T∑
t=1

vt + c

 , (1.11)

où à l’instant t, ̂̀t =
∑K

k=1 p̂k,t`k,t est la perte linéarisée du statisticien‡, `k,t = `(xk,t, yt) est la
perte de l’expert k et vt =

∑
k6K p̂k,t

(̂̀
t − `k,t

)2 est la variance des pertes sous la distribution p̂t
jouée par l’algorithme. Comme dans toute la suite de cette introduction, c > 0 est une constante
indépendante de T (et éventuellement de K) qui peut être différente d’une écriture à une autre.
Cette borne possède de nombreuses propriétés intéressantes montrées dans les références ci-dessus.
En particulier, si les poids de l’algorithme se concentrent sur un expert, ce qui arrive si un expert
surpasse les autres, le regret n’augmente plus à partir d’un certain temps. L’inconvénient de la
borne ci-dessus est son uniformité : elle ne reflète pas le fait qu’il est plus difficile de se comparer
à certains experts plutôt qu’à d’autres.

Une autre forme de borne du second ordre qui résoudrait cet inconvénient serait de la forme

T∑
t=1

̂̀
t 6 min

k=1,...,K


T∑
t=1

`k,t + c

√√√√logK

T∑
t=1

`2k,t + c

 . (1.12)

Celle-ci exprimerait pleinement le compromis biais-variance auquel fait face le statisticien. Malheu-
reusement, son obtention reste encore aujourd’hui un problème ouvert : pour l’obtenir le statisticien
doit réussir à calibrer correctement le paramètre d’apprentissage sans connaître à l’avance le bon
expert réalisant le meilleur compromis. Ce problème s’est avéré si difficile qu’il a hérité du surnom
d’« impossible tuning » dans la communauté.

Contributions 1.10. Dans le chapitre 2, nous introduisons une nouvelle forme de borne du
second ordre :

T∑
t=1

̂̀
t 6 min

k=1,...,K


T∑
t=1

`k,t + c

√√√√logK

T∑
t=1

(̂̀
t − `k,t

)2
+ c

 . (1.13)

‡Par convexité de la fonction de perte en son premier argument, la perte du statisticien `(ŷt, yt) est majorée par
la perte linéarisée

∑K
k=1 p̂k,t`(xk,t, yt).
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Nous avons déduit de cette borne des propriétés d’adaptation intéressantes. Quoi qu’il arrive, la
vitesse en O

(√
T logK

)
du regret est assurée. Mais la borne est significativement plus faible dans

certaines situations où l’apprentissage est plus simple.

Le cas des faibles pertes Le théorème suivant, prouvé au chapitre 2, exprime le fait que pour
une stratégie vérifiant le regret (1.13), le regret est au plus de l’ordre de O(

√
L?T logK), où L?T est

la perte cumulée du meilleur expert. Comme L?T 6 T , la borne du pire des cas est garantie tout en
obtenant une meilleure vitesse si un des experts subit une faible perte cumulée.

Théorème 1.2. Si une stratégie vérifie la borne de regret (1.13) pour toute suite d’observations,
alors elle vérifie également pour tout k = 1, . . . ,K

T∑
t=1

̂̀
t −

T∑
t=1

`k,t 6 c

√√√√logK
T∑
t=1

(
`k,t − ̂̀t)

+
+ c lnK 6 c

√√√√logK
T∑
t=1

`k,t + c lnK ,

où ( · )+ = max{·, 0}.

Le cas de pertes i.i.d. Le Théorème 1.3 montre que dans un cadre stochastique, si un expert est
significativement meilleur que les autres, la borne (1.13) garantit un regret borné.

Théorème 1.3. On suppose que les pertes des experts `t = (`1,t, . . . , `K,t) ∈ [0, 1]K sont des
variables aléatoires identiquement distribuées et qu’il existe un expert k? tel que

∀t > 1 min
k 6=k?

E
[
`k,t − `k?,t

]
> α pour un certain α > 0.

Alors si une stratégie vérifie la borne de regret (1.13) pour toute suite d’observations, alors elle
vérifie également

E

[
max

k=1,...,K

T∑
t=1

(̂̀t − `k,t)
]
6 c

logK

α
+ c

√
logK

α
.

Le résultat est également valable en grande probabilité. Les précédentes analyses d’algorithmes
adaptatifs étaient spécifiques aux algorithmes utilisés. Notre contribution est de montrer que l’adap-
tation à ces situations faciles est intrinsèque à la borne (1.13). En d’autres mots, il suffit de mon-
trer (1.13) pour assurer qu’une stratégie tire profit de ces situations faciles. Wintenberger [146]
a récemment dérivé de la borne (1.13) dans un cadre stochastique très général des bornes sur le
risque prédictif, qui sont optimales dans le cas d’observations i.i.d.

Comment cette borne est-elle obtenue ? Pour obtenir la borne (1.13), nous avons développé
une nouvelle technique qui associe le choix d’un paramètre d’apprentissage associé à chaque expert.
Ceux-ci ont la forme

ηk =

√
logK∑T

t=1

(̂̀
t − `k,t

)2 . (1.14)
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Nous avons instancié cette technique à deux algorithmes. Le premier est une extension de l’algo-
rithme Prod de Cesa-Bianchi et al. [45]. Il choisit à chaque instant les poids

p̂k,t =
ηk
∏t−1
s=1

(
1 + ηk

(̂̀
s − `k,s

))
∑K

j=1 ηj
∏t−1
s=1

(
1 + ηj

(̂̀
s − `j,s

)) pour tout k = 1, . . . ,K . (ML-Prod)

La seconde stratégie est inspirée de l’algorithme de mélange par poids polynomiaux de Cesa-
Bianchi et Lugosi [42]. Elle choisit les poids

p̂k,t =
η2
k

(∑t−1
s=1

(̂̀
s − `k,s

))
+∑K

j=1 η
2
j

(∑t−1
s=1

(̂̀
s − `j,s

))
+

pour tout k = 1, . . . ,K , (ML-Poly)

où ( · )+
def
= max{·, 0}.

Bien sûr, le choix des paramètres (1.14) nécessite la connaissance à l’avance de toutes les données,
ce qui n’est pas réaliste. Les deux algorithmes peuvent être obtenus de façon totalement adaptative
en calibrant des paramètres d’apprentissage ηk,t qui dépendent du temps et n’utilisent que l’infor-
mation passée. Les versions adaptatives des deux algorithmes ont des regrets de l’ordre :

O
(√

(log log T )(logK)
∑T

t=1

(̂̀
t − `k,t

)2) pour ML-Prod

O
(√

(log T )K
∑T

t=1

(̂̀
t − `k,t

)2) pour ML-Poly .

Même si la dépendance de ML-Poly en le nombre d’experts est légèrement sous-optimale, l’algo-
rithme a démontré d’excellentes performances pratiques sur les différents jeux de données d’EDF.
Nous l’utilisons dans les chapitres 4, 8 et 9.

1.4. Mélanges et prévision en loi

Un autre axe de la thèse a consisté à gérer les incertitudes des prévisions des algorithmes de mélange.
L’objectif, ici, n’est plus de seulement proposer une prévision ponctuelle ŷt de l’observation yt mais
de l’assortir d’une mesure d’incertitude.

La littérature à ce sujet est riche dans un cadre stochastique avec de nombreuses techniques diffé-
rentes : méthodes d’estimation de densité, de mélange (Bayesian model averaging), de bootstrap, de
propagation d’incertitude, etc. Cependant, dans le cadre des suites arbitraires, la grande majorité
des travaux se limite à fournir des prévisions ponctuelles de la moyenne (cf. Cesa-Bianchi et Lugosi
[43]). C’est le cas notamment des précédents travaux effectués à EDF R&D sur la prévision de la
consommation électrique, à savoir Devaine et al. [60], Goude [80].

Pourtant, le problème de prévision d’incertitudes ou de lois est un problème d’actualité important
pour la gestion de l’énergie mais aussi dans de nombreux autres domaines, afin de gérer les risques
encourus et d’optimiser la production. De nombreuses initiatives de recherche vont ainsi dans ce
sens comme la compétition GEFCom2014 (cf. chapitre 8).
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1.4.1. Gestion des incertitudes en prévision de suites arbitraires (cf. chapitre 7)

Nous cherchons à formaliser le cadre de la prévision en loi de suites arbitraires avec l’aide d’experts.
Dans ce but, nous distinguons plusieurs cadres différents en fonction de l’information apportée par
les experts sur l’incertitude de leurs prévisions :

• soit les experts fournissent des lois (ou des intervalles de prévision), il est naturel de chercher
à les combiner, de la même manière que l’on sait déjà le faire pour les prévisions ponctuelles ;

• soit les experts ne fournissent que des prévisions ponctuelles, il s’agit alors de former une
prévision d’incertitude ex-nihilo. Cela part d’une intuition pratique des opérateurs ayant en
charge la prévision d’électricité. Quand les opérateurs reçoivent plusieurs prévisions, si celles-ci
sont significativement différentes, cela signifie un risque accru pour la prévision. En revanche,
si les prévisions des experts sont semblables, le risque semble plus faible.

Dans les deux cadres, de nombreuses définitions naturelles inspirées de la littérature stochastique
sont possibles pour le critère de performance (i.e. l’objectif à réaliser par le statisticien). Mal-
heureusement, parmi celles-ci, certaines sont impossibles à vérifier en suites arbitraires (comme le
compromis niveau-largeur pour les intervalles de prévision) et les autres sont facilement résolues par
le statisticien à partir de techniques standard d’agrégation séquentielle§. C’est le cas par exemple
pour des critères reposant sur la log-vraisemblance, sur la statistique de Kolmogorov, ou sur la perte
quantile de Koenker et Bassett [101]. La minimisation de la perte quantile de Koenker et Bassett
[101] définie par

` : (x, y) 7→ (y − x)
(
α− 1{y<x}

)
(1.15)

illustrée en figure 1.3 nous a d’ailleurs beaucoup inspirés lors de la compétition GEFCom2014.

x

`(x, y)

−1

α = 0.8α = 0.1

α = 0.5

1

1

y

Figure 1.3. : La fonction de perte quantile de Koenker et Bassett [101] pour les quantiles α ∈
{0.1, 0.5, 0.8}. La perte reflète le déséquilibre désiré dans la prévision quantile.

1.4.2. La compétition GEFCom2014 (cf. chapitre 8)

La compétition GEFCom2014 a eu lieu d’août à décembre 2014 avec pour objectif de développer
et comparer des méthodes de référence pour la prévision en loi dans le monde de l’énergie. Nous
avons participé à deux épreuves : l’une sur la consommation électrique et l’autre sur le prix de
l’électricité. Les deux épreuves reposaient sur le même principe : nous devions prévoir la loi de la

§Il s’agit de prouver des bornes de regret pour la fonction de perte adéquate
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quantité d’intérêt, nous étions évalués avec la perte quantile de Koenker et Bassett [101] cumulée
et le jeu de données était révélé séquentiellement au fur et à mesure de la compétition.

Jeu 1 : la consommation électrique Dans cette épreuve, les participants devaient prévoir sé-
quentiellement (mois par mois) la loi de la consommation électrique du prochain mois à l’aide des
données passées de consommation et de variables de températures. Nous avons développé une mé-
thode de prévision probabiliste semi-paramétrique s’inspirant de l’expérience d’EDF R&D sur les
modèles additifs généralisés. L’idée consiste dans un premier temps à estimer les effets non-linéaires
des variables exogènes (météorologiques, calendaires) sur la consommation électrique et sur les er-
reurs de prévision. Dans un deuxième temps, nous prévoyons la loi de la consommation électrique à
l’aide d’une régression linéaire quantile qui minimise la perte quantile de Koenker et Bassett [101].
Un exemple de prévisions obtenues pour le mois de mai 2011 est représenté en figure 1.4.
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Figure 1.4. : Prévision probabiliste de la consommation électrique du mois de mai 2011. L’inter-
valle de confiance 50% (resp. 90%) est représenté en gris foncé (resp. gris clair).

Malheureusement, limités par le temps, nous n’avons pu élaborer qu’un seul expert. Les autres
tentatives n’étant pas suffisamment différentes ou performantes. Cela n’était donc pas suffisant
pour pouvoir appliquer avec succès les méthodes d’agrégation.

Jeu 2 : le prix de l’électricité Comme celui-ci est beaucoup plus volatil que la consommation
électrique, il n’est pas raisonnable de le prévoir correctement à de grands horizons de temps. Dans
cette épreuve, nous devions donc seulement prévoir le prix de la prochaine journée à l’aide des obser-
vations passées du prix (2 ans d’historique) et de variables exogènes (prévision de la consommation
électrique). Ici, notre équipe disposait de beaucoup moins d’expertise. Nous avons pu tester de nom-
breux modèles de prévision : modèles autorégressifs, modèles additifs généralisés, forêts aléatoires
(quantile), boosting, régression linéaire parcimonieuse,. . . En particulier, nous avons agrégé ces pré-
visions en utilisant une version linéarisée de ML-Poly avec la perte quantile. Plus précisément, pour
former notre prévision quantile du prix yt à l’instant t :

1. nous avons construit 13 méthodes de prévision (nos experts) formant des prévisions ponc-
tuelles xk,t de yt ;

2. nous avons utilisé l’astuce de Kivinen et Warmuth [97] pour pouvoir se comparer à l’ensemble
des stratégies linéaires Θ =

{
u ∈ RK : ‖u‖1 6 2

}
(cf. paragraphe 1.3.1.b) ;

3. nous avons ensuite utilisé l’algorithme ML-Poly avec la fonction de perte quantile (1.15) sur
une série de m = 5 000 observations. À chaque pas i = 1, . . . ,m de l’algorithme ML-Poly,
celui-ci tirait aléatoirement uniformément avec remise une observation ys dans les trente jours
précédant yt et formait un vecteur de poids ûi ∈ Θ ;

4. nous avons formé notre prévision quantile ŷ(α)
t en combinant les prévisions des 13 experts

selon les poids ūm = (1/m)
∑m

i=1 ûi.
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Pour les deux jeux de données nos résultats se sont révélés très prometteurs (nous avons remporté
les deux compétitions).

1.5. Autres apports à la prévision pour les marchés de l’énergie

Un autre objectif de la thèse était de démontrer l’universalité des méthodes de mélange au sein
d’EDF R&D. Dans ce but, nous les avons appliquées à de nombreux jeux de données du marché
de l’énergie (consommation électrique à différentes mailles géographiques, prix de l’électricité, cha-
leur) avec différents objectifs finaux (différents horizons de prévision, prévision probabiliste). Nous
décrivons ici deux contributions pratiques de la thèse.

Horizon de prévision Dans le chapitre 9, nous nous intéressons à la prévision à différents horizons
de temps allant d’une heure à 72 heures à l’avance. Nous généralisons les méthodes de mélange
à ce cadre et les appliquons à deux jeux de données : le premier sur la prévision de chaleur (voir
paragraphe 1.1.2), le second sur la consommation électrique.

Prévisions spécialisées Dans le chapitre 4, nous créons des experts qui sont spécialisés à certaines
situations météorologiques comme les périodes de grands froids. Cela permet d’enrichir le jeu d’ex-
pert en apportant de la variété. Nous réduisons ainsi significativement les erreurs de prévision du
mélange.

Nous pouvons cependant nous demander s’il est judicieux de prendre en compte la prévision d’un
expert dans une situation non adéquate (par exemple, un expert spécialisé pour le froid en cas de
forte chaleur). Dans le cadre des experts spécialisés, à chaque instant t, chaque expert assortit sa
prévision xk,t ∈ R d’une mesure de confiance Ik,t ∈ [0, 1] en celle-ci. Dans le cas extrême Ik,t = 0,
l’expert k est inactif et sa prévision (s’il en forme une) n’est pas prise en compte dans le mélange.

La généralisation des méthodes de mélange à ce cadre a déjà été étudiée dans Devaine et al. [60].
Dans le chapitre 2, nous montrons l’intérêt des bornes de regret de la forme (1.13) dans le cadre
des experts spécialisés. Nous obtenons pour la première fois des bornes sur le regret spécialisé du
bon ordre de grandeur pour les indices de confiance Ik,t. Toute stratégie qui vérifie la borne de
regret (1.13) vérifie en effet également dans le cadre des experts spécialisés la borne

T∑
t=1

Ik,t
(̂̀
t − `k,t

)
6 c

√√√√(logK)

T∑
t=1

I2
k,t .

1.6. Implémentation

Les différentes études empiriques de cette thèse sont réalisées avec le logiciel R. J’ai développé le
package opera¶ (cf. [12]) qui propose des outils pour la prévision séquentielle de séries temporelles.
Une brève documentation ainsi qu’un exemple d’utilisation est disponible en annexe. On décrit
ci-dessous les principales fonctionnalités du package dans sa version actuelle.

¶Online Prediction by ExpeRts Aggregation
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Stratégies d’agrégation disponibles Le package opera inclut trois algorithmes d’agrégation sé-
quentielle robuste éprouvés par la littérature : le mélange par poids exponentiels (Littlestone et War-
muth [107], Vovk [139]), l’algorithme fixed share (Herbster et Warmuth [92]) et la régression ridge
(Azoury et Warmuth [21], Vovk [142]). Leurs paramètres d’apprentissage peuvent soit être fixés par
l’utilisateur, soit optimisés séquentiellement par l’algorithme sur une grille en suivant la méthode
de Devaine et al. [60]. Les stratégies introduites au chapitre 2 de cette thèse (ML-Poly, ML-Prod)
ainsi que l’algorithme BOA de Wintenberger [146] sont aussi proposées avec la calibration séquen-
tielle théorique des paramètres d’apprentissage.

Fonctions de perte Quatre fonctions de pertes ` sont disponibles : la perte carrée (x, y) 7→
(x − y)2, la perte absolue (x, y) 7→ |x − y|, le pourcentage de perte absolue (x, y) 7→ |x − y|/y
et la perte quantile (x, y) 7→ (y − x)(α − 1{y<x}). Ces fonctions de perte peuvent être également
utilisées dans leur version gradient pour pouvoir approcher la meilleure combinaison convexe (cf.
paragraphe 1.3.1.a).

Le package contient également des fonctions pour calculer les pertes, subies par le statisticien ou
les experts, ainsi que certaines erreurs d’approximation du paragraphe 1.3.1. Il propose pour finir
l’extension des méthodes ci-dessus au cadre des experts spécialisés.

1.7. Conclusion et perspectives

Dans cette thèse nous sommes partis d’une problématique opérationnelle d’EDF R&D : comment
réunir de façon robuste et adaptative les nombreux modèles de prévision développés à EDF? Dans
ce but, nous adoptons le cadre de l’agrégation séquentielle de prédicteurs et nous poursuivons les
travaux initiés par Goude [80] et Devaine et al. [60] à EDF R&D. Nous apportons à ce cadre des
contributions théoriques (travaux sur l’erreur d’approximation et l’erreur d’estimation) et pratiques
(application et adaptation des méthodes à plusieurs jeux de données réelles).

L’organisation de ce manuscrit est résumée en figure 1.5. Les chapitres sont assemblés en quatre
thèmes. Le premier réunit les chapitres 2 à 4 et étudie différentes améliorations de la performance
du mélange. La seconde partie du manuscrit présente des résultats sur la prévision séquentielle non
paramétrique (chapitres 5 et 6). Les chapitres 7 et 8 s’intéressent à la prévision d’incertitudes (ou
même de lois). Enfin, le manuscrit s’achève par plusieurs études empiriques sur des jeux de données
réelles d’EDF R&D (chapitres 9 et 10).

Un certain nombre de perspectives de recherche toujours ouvertes sont soulignées au long du ma-
nuscrit. Par exemple, la régression séquentielle non paramétrique a encore été très peu étudiée dans
le cadre des suites individuelles. Dans ce manuscrit, nous proposons des méthodes efficaces pour
traiter les classes de fonctions Lipschitz et Hölder en faible dimension. Il peut être intéressant de
développer des méthodes de prévision efficaces pour d’autres classes de fonctions (espace de Be-
sov, classes parcimonieuses) ou pour des dimensions plus importantes. Le problème de la grande
dimension est d’ailleurs un problème d’actualité pour EDF R&D qui aura bientôt à disposition
en temps réel la consommation électrique de 30 millions de foyers français. Tirer profit d’une telle
masse d’informations représente à la fois un défi majeur et une grande opportunité pour EDF.
Peu de résultats existent cependant dans le cadre des suites arbitraires (voir Gerchinovitz [78]) et
l’obtention d’une méthode séquentielle robuste qui propose des combinaisons parcimonieuses de
façon efficace reste pour l’instant une question ouverte.
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Introduction

In this part we consider the setting of sequential prediction of arbitrary sequences with expert
advice (see the monograph of Cesa-Bianchi and Lugosi [43] for a nice introduction), which unfolds
as follows. A player is asked to predict element by element a sequence of real observations y1, . . . , yT .
Before each time step t = 1, . . . , T , the player has access to a finite number K of base forecasting
methods (henceforth referred to as experts) that provide predictions xk,t. The goal of the player is
to aggregate sequentially the expert forecasts so as to minimize his cumulative loss, which can be
split up into two terms as follows:

T∑
t=1

`(ŷt, yt)︸ ︷︷ ︸
performance of the player

def
= min

k=1,...,K

T∑
t=1

`(xk,t, yt)︸ ︷︷ ︸
reference performance
(approximation error)

+ RT︸ ︷︷ ︸
regret

(estimation error)

, (R1)

where ` is a nonnegative loss function and ŷt is the combined prediction formed by the player at
time t. The first term in the right-hand side of (R1) is the reference performance (also referred
to as approximation error) that the player aims at competing with. Usually it is the performance
obtained by the best fixed expert (as displayed in Equation (R1)). The second term is the regret
(also called estimation error). It evaluates the ability of the player to retrieve the reference strategy
(i.e., the strategy that achieves the reference performance) online.

In the following three chapters we focus on improving player’s performance by using two levers: we
aim at reducing both the approximation error (Chapters 2, 3, and 4) and the regret (Chapter 2).

In Chapter 2 we control the regret by designing two new combining strategies (ML-Poly and ML-
Prod). These strategies are based on fully data-driven calibration of their parameters and new
tuning techniques (multiple learning rates). We prove a new form of second-order regret bound
that adapts well to the inherent difficulty of the data. The chapter ends with the study of alter-
native comparison classes (based on Markov chain modeling) in order to improve the reference
performance.

Chapter 3 reduces the approximation error by allowing the reference strategy to evolve over time.
We prove performance bounds under an analysis that significantly unifies a large body of previous
work.

Chapter 4 is an empirical paper that also focuses on the approximation error. It studies several
ways to enlarge the set of experts based on ideas from bagging or boosting techniques in order to
make the approximation error significantly smaller. Then, it studies the performance obtained by
several algorithms (including some of Chapters 2 and 3) on a real world data set.





2
A second-order bound with excess losses

We study online aggregation of the predictions of experts, and first show new second-order regret
bounds in the standard setting, which are obtained via a version of the Prod algorithm (and also
a version of the polynomially weighted average algorithm) with multiple learning rates. These
bounds are in terms of excess losses, the differences between the instantaneous losses suffered by
the algorithm and the ones of a given expert. We then demonstrate the interest of these bounds
in the context of experts that report their confidences as a number in the interval [0, 1] using a
generic reduction to the standard setting. We conclude by two other applications in the standard
setting, which improve the known bounds in case of small excess losses and show a bounded regret
against i.i.d. sequences of losses.
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2.1. Introduction

In the (simplest) setting of prediction with expert advice, a learner has to make online sequential
predictions over a series of rounds, with the help of K experts [70, 107, 140, 43]. In each round
t = 1, . . . , T , the learner makes a prediction by choosing a vector pt = (p1,t, . . . , pK,t) of nonnegative
weights that sum to one. Then every expert k incurs a loss `k,t ∈ [a, b] and the learner’s loss iŝ̀
t = p>t `t =

∑K
k=1 pk,t`k,t, where `t = (`1,t, . . . , `K,t). The goal of the learner is to control his

cumulative loss, which he can do by controlling his regret Rk,T against each expert k, where
Rk,T =

∑
t6T

(̂̀
t − `k,t

)
. In the worst case, the best bound on the standard regret Rk,T that can

be guaranteed is of order O
(√
T lnK

)
; see, e.g., Cesa-Bianchi and Lugosi [43], but this can be

improved. For example, when losses take values in [0, 1], Rk,T = O
(√

Lk,T lnK
)
, with Lk,T =∑T

t=1 `k,t, is also possible, which is better when the losses are small—hence the name improvement
for small losses for this type of bounds [43].

Second-order bounds Cesa-Bianchi et al. [45] raised the question of whether it was possible to
improve even further by proving second-order (variance-like) bounds on the regret. They could
establish two types of bound, each with its own advantages. The first is of the form

Rk,t 6
lnK

η
+ η
∑T

t=1`
2
k,t (2.1)

for all experts k, where η 6 1/2 is a parameter of the algorithm. If one could optimize η with
hindsight knowledge of the losses, this would lead to the desired bound

(((
((((

(((
((((

(

Rk,T = O
(√

lnK
∑T

t=1`
2
k,t

)
, (2.2)

but, unfortunately, no method is known that actually achieves (2.2) for all experts k simultaneously
without such hindsight knowledge. As explained by Cesa-Bianchi et al. [45] and Hazan and Kale
[89], the technical difficulty is that the optimal η would depend on

∑
t `

2
k?T ,t

, where

k?T ∈ argmin
k=1,...,K

{
T∑
t=1

`k,t +
√

lnK
∑T

t=1`
2
k,t

}
.

But, because k?T can vary with T , the sequence of the
∑
`2k?t ,t

is not monotonic and, as a consequence,
standard tuning methods (like for example the doubling trick) cannot be applied directly on this
sequence (only on the least non-decreasing sequence larger than it, which is then the key quantity
in the regret bound though it is difficult to interpret).

This is why this issue — when hindsight bounds seem too good to be obtained in a sequential
fashion — is sometimes referred to as the problem of impossible tunings. Improved bounds with
respect to (2.1) have been obtained by Hazan and Kale [89] and Chiang et al. [49] but they suffer
from the same impossible tuning issue.

The second type of bound distinguished by Cesa-Bianchi et al. [45] is of the form

Rk,T = O
(√

lnK
∑T

t=1vt

)
, (2.3)
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uniformly over all experts k, where vt =
∑

k6K pk,t
(̂̀
t − `k,t

)2 is the variance of the losses at
instance t under distribution pt. It can be achieved by a variant of the exponentially weighted
average forecaster using the appropriate tuning of a time-varying learning rate ηt [45, 58]. The
bound (2.3) was shown in the mentioned references to have several interesting consequences (see
Section 2.5). Its main drawback comes from its uniformity: it does not reflect that it is harder to
compete with some experts than with other ones.

Excess losses Instead of uniform regret bounds like (2.3), we aim to get expert-dependent regret
bounds. We see this result as paving the way for solving the open problem of impossible tuning
stated in (2.2).

The key quantities in our analysis turn out to be the instantaneous excess losses `k,t − ̂̀t, and we
provide in Sections 2.2 and 2.3 a new second-order bound of the form

Rk,T = O


√√√√lnK

T∑
t=1

(̂̀t − `k,t)2

 , (2.4)

which holds for all experts k simultaneously. To achieve this bound, we develop a variant of the Prod
algorithm of Cesa-Bianchi et al. [45] with two innovations: first we extend the analysis for Prod to
multiple learning rates ηk (one for each expert) in the spirit of a variant of the Hedge algorithm
with multiple learning rates proposed by Blum and Mansour [29]. Standard tuning techniques
of the learning rates would then still lead to an additional O(

√
K lnT ) multiplicative factor, so,

secondly, we develop new techniques that bring this factor down to O(ln lnT ), which we consider
to be essentially a constant. Duchi et al. [63] also studied learning with multiple learning rates in
a somewhat different context, namely, general online convex optimization; but the obtained regret
bound is uniform over the experts.

The interest of the bound (2.4) is demonstrated in Sections 2.4 and 2.5, as well as in the recent
paper by Wintenberger [146]. Section 2.4 considers the setting of prediction with experts that report
their confidences as a number in the interval [0, 1], which was first studied by Blum and Mansour
[29]. Our general bound (2.4) leads to the first bound on the confidence regret that scales optimally
with the confidences of each expert. Section 2.5 returns to the standard setting described at the
beginning of this paper: we show an improvement for small excess losses, which supersedes the
basic improvement for small losses described at the beginning of the introduction. Also, we prove
that in the special case of independent, identically distributed losses, our bound leads to a constant
regret. Finally, Wintenberger [146] shows that bounds of the form (2.4) entail regret bounds on the
cumulative predictive risks of the associated strategy without any assumption on the underlying
stochastic process (in particular, without the usual dependency assumptions).

2.2. A new regret bound in the standard setting

We extend the Prod algorithm of Cesa-Bianchi et al. [45] to work with multiple learning rates.

Theorem 2.1. For all sequences of loss vectors `t ∈ [0, 1]K , the cumulative loss of Algorithm 1
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Algorithm 1: Prod with multiple learning rates (ML-Prod)

Parameters: a vector η = (η1, . . . , ηK) of positive learning rates
Initialization: a vector w0 = (w1,0, . . . , wK,0) of nonnegative weights that sum to 1

For each round t = 1, 2, . . .
1. form the mixture pt defined component-wise by

pk,t =
ηkwk,t−1∑K
j=1 ηjwj,t−1

2. observe the loss vector `t and incur loss ̂̀t = p>t `tP
3. for each expert k perform the update

wk,t = wk,t−1

(
1 + ηk

(̂̀
t − `k,t

))

run with learning rates ηk 6 1/2 is bounded by

T∑
t=1

̂̀
t 6 min

16k6K

{
T∑
t=1

`k,t +
1

ηk
ln

1

wk,0
+ ηk

T∑
t=1

(̂̀
t − `k,t

)2}
.

If we could optimize the bound of the theorem with respect to ηk, we would obtain the desired
result:

T∑
t=1

̂̀
t 6 min

16k6K


T∑
t=1

`k,t + 2

√√√√ T∑
t=1

Vk,t ln
1

wk,0

 (2.5)

where Vk,t =
(̂̀
t − `k,t

)2. The question is therefore how to get the optimized bound (2.5) in a fully
sequential way. Working in regimes (resorting to some doubling trick) seems suboptimal, since K
quantities

∑
t Vk,t need to be controlled simultaneously and new regimes will start as soon as one of

these quantities is larger than some dyadic threshold. This would lead to an additional O(
√
K lnT )

multiplicative factor in the bound. We propose in Section 2.3 a finer scheme, based on time-varying
learning rates ηk,t, which only costs a multiplicative O(ln lnT ) factor in the regret bounds. Though
the analysis of a single time-varying parameter is rather standard since the paper by Auer et al.
[20], the analysis of multiple such parameters is challenging and does not follow from a routine
calculation. That the “impossible tuning” issue does not arise here was quite surprising to us.

Empirical variance of the excess losses A consequence of (2.5) is the following bound, which is
in terms of the empirical variance of the excess losses `k,t − ̂̀t:

T∑
t=1

̂̀
t 6 min

16k6K


T∑
t=1

`k,t + 4 ln
1

wk,0
+ 2

√√√√ T∑
t=1

(̂̀
t − `k,t −

Rk,T
T

)2

ln
1

wk,0

 . (2.6)

Proposition 2.2. Suppose losses take values in [0, 1]. If (2.5) holds, then (2.6) holds.
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Proof A bias-variance decomposition indicates that, for each k,

T∑
t=1

Vk,t =

T∑
t=1

(̂̀
t − `k,t

)2
=

T∑
t=1

(̂̀
t − `k,t −Rk,T /T

)2
+ T

(
Rk,T /T

)2
. (2.7)

It is sufficient to prove the result when the minimum is restricted to k such that Rk,T > 0. For such
k, (2.5) implies that R2

k,T 6 4T ln(1/wk,0). Substituting this into the rightmost term of (2.7), the
result into (2.5), and using that

√
x+ y 6

√
x+
√
y for x, y > 0 concludes the proof. �

Proof (of Theorem 2.1) The proof follows from a simple adaptation of Lemma 2 in Cesa-Bianchi
et al. [45] and takes some inspiration from Section 6 of Blum and Mansour [29].

For t > 0, we denote by rt ∈ [−1, 1]K the instantaneous regret vector defined component-wise by
rk,t = ̂̀

t − `k,t and we define Wt =
∑K

k=1wk,t. We bound lnWT from above and from below.

On the one hand, using the inequality ln(1 + x) > x − x2 for all x > −1/2 (stated as Lemma 1
in Cesa-Bianchi et al. [45]), we have, for all experts k, that

lnWT > lnwk,T = lnwk,0 +
T∑
t=1

ln
(
1 + ηkrk,t

)
> lnwk,0 + ηk

T∑
t=1

rk,t − η2
k

T∑
t=1

r2
k,t .

The last inequality holds because, by assumption, ηk 6 1/2 and hence ηk
(̂̀
t − `k,t

)
6 1/2 as well.

We now show by induction that, on the other hand, WT = W0 = 1 and thus that lnWT = 0. By
definition of the weight update (step 3 of the algorithm), Wt equals

K∑
k=1

wk,t =
K∑
k=1

wk,t−1

(
1 + ηkrk,t

)
= Wt−1 +

( K∑
k=1

ηkwk,t−1︸ ︷︷ ︸
=η>wt−1

)̂̀
t −

K∑
k=1

ηkwk,t−1︸ ︷︷ ︸
=η>wt−1 pk,t

`k,t .

Substituting the definition of pt (step 1 of the algorithm), as indicated in the line above, the last
two sums are seen to cancel out, leading to Wt = Wt−1. Combining the lower bound on lnWT with
its value 0 and rearranging concludes the proof. �

2.3. Algorithms and bound for parameters varying over time

To achieve the optimized bound (2.5), the learning parameters ηk must be tuned using preliminary
knowledge of the sums

∑T
t=1

(̂̀
t−`k,t

)2. In this section we show how to remove this requirement, at
the cost of a logarithmic factor ln lnT only (unlike what would be obtained by working in regimes
as mentioned above). We do so by having the learning rates ηk,t for each expert vary with time.

2.3.1. Multiplicative updates (adaptive version of ML-Prod)

We generalize Algorithm 1 and Theorem 2.1 to Algorithm 2 and Theorem 2.3.

Theorem 2.3. For all sequences of loss vectors `t ∈ [0, 1]K , for all rules prescribing sequences
of learning rates ηk,t 6 1/2 that, for each k, are nonincreasing in t, the cumulative loss

∑
t6T

̂̀
t of
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Algorithm 2 is bounded by

min
16k6K

{
T∑
t=1

`k,t+
1

ηk,0
ln

1

wk,0
+

T∑
t=1

ηk,t−1

(̂̀
t−`k,t

)2
+

1

ηk,T
ln

(
1 +

1

e

K∑
k′=1

T∑
t=1

(
ηk′,t−1

ηk′,t
− 1

))}
.

Algorithm 2: Prod with multiple adaptive learning rates (Adapt-ML-Prod)

Parameter : a rule to sequentially pick positive learning rates
Initialization: a vector w0 = (w1,0, . . . , wK,0) of nonnegative weights that sum to 1

For each round t = 1, 2, . . .
0. pick the learning rates ηk,t−1 > 0 according to the rule
1. form the mixture pt defined component-wise by

pk,t = ηk,t−1wk,t−1

/
η>t−1wt−1

2. observe the loss vector `t and incur loss ̂̀t = p>t `t
3. for each expert k perform the update

wk,t =

(
wk,t−1

(
1 + ηk,t−1

(̂̀
t − `k,t

))) ηk,t
ηk,t−1

Corollary 2.4. With uniform initial weights w0 = (1/K, . . . , 1/K) and learning rates, for
t > 1,

ηk,t−1 = min

{
1

2
,

√
lnK

1 +
∑t−1

s=1

(̂̀
s − `k,s

)2
}
,

the cumulative loss of Algorithm 2 is bounded by

min
16k6K

{
T∑
t=1

`k,t +
CK,T√

lnK

√√√√1 +

T∑
t=1

(̂̀
t − `k,t

)2
+ 2CK,T

}
,

where CK,T = 3 lnK + ln

(
1 +

K

2e

(
1 + ln(T + 1)

))
= O(lnK + ln lnT ).

This optimized corollary is the adaptive version of (2.5). Its proof is postponed to Section 2.A.3
of the additional material (and shows that meaningful bounds can be achieved as well with non-
uniform initial weights). Here we only give the main ideas in the proof of Theorem 2.3. The complete
argument is given in Section 2.A.2 of the additional material. We point out that the proof technique
is not a routine adaptation of well-known tuning tricks such as, for example, the ones of Auer et al.
[20].

Proof (sketch for Theorem 2.3) We follow the path of the proof of Theorem 2.1 and bound
lnWT from below and from above. The lower bound is easy to establish as it only relies on individual
non-increasing sequences of rates, (ηk,t)t>0 for a fixed k: the weight update (step 3 of the algorithm)
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Algorithm 3: Polynomially weighted averages with multiple learning rates (ML-Poly)

Parameter : a rule to sequentially pick positive learning rates ηt =
(
η1,t, . . . , ηK,t

)
Initialization: the vector of regrets with each expert R0 = (0, . . . , 0)

For each round t = 1, 2, . . .
0. pick the learning rates ηk,t−1 according to the rule
1. form the mixture pt defined component-wise by

pk,t =
ηk,t−1 (Rk,t−1)+∑K
j=1 ηj,t−1 (Rj,t−1)+

where x+ denotes the vector of the nonnegative parts of the components of x
2. observe the loss vector `t and incur loss ̂̀t = p>t `t
3. for each expert k update the regret:

Rk,t = Rk,t−1 + ̂̀t − `k,t
was indeed tailored for it to go through. More precisely, by induction and still with the inequality
ln(1 + x) > x− x2 for x > −1/2, we get that

lnWT > lnwk,T >
ηk,T
ηk,0

lnwk,0 + ηk,T

T∑
t=1

(
rk,t − ηk,t−1r

2
k,t

)
.

The difficulties arise in proving an upper bound. We proceed by induction again and aim at upper
boundingWt byWt−1 plus some small term. The core difficulty is that the powers ηk,t/ηk,t−1 in the
weight update are different for each k. In the literature, time-varying parameters could previously
be handled using Jensen’s inequality for the function x 7→ xαt with a parameter αt = ηt/ηt−1 > 1

that was the same for all experts: this is, for instance, the core of the argument in the main proof
of Auer et al. [20] as noticed by Györfi and Ottucsák [83] in their re-worked version of the proof.
This needs to be adapted here as we have αk,t = ηk,t−1/ηk,t, which depends on k. We quantify the
cost for the αk,t not to be all equal to a single power αt, say 1: we have αk,t > 1 but the gap to 1

should not be too large. This is why we may apply the inequality x 6 xαk,t + (αk,t− 1)/e, valid for
all x > 0 and αk,t > 1. We can then prove that

Wt 6Wt−1 +
1

e

K∑
k=1

(
ηk,t−1

ηk,t
− 1

)
,

where the second term on the right-hand side is precisely the price to pay for having different
time-varying learning rates — and this price is measured by how much they vary. �

2.3.2. Polynomial potentials

As illustrated in Cesa-Bianchi and Lugosi [42], polynomial potentials are also useful to minimize
the regret. We present here an algorithm based on them (with order p = 2 in the terminology of the
indicated reference). Its bound has the same poor dependency on the number of expertsK and on T
as achieved by working in regimes (see the discussion in Section 2.2), but its analysis is simpler and
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more elegant than that of Algorithm 2 (see Section 2.A.4 in the appendix; the analysis resembles
the proof of Blackwell’s approachability theorem). The right dependencies might be achieved by
considering polynomial functions of arbitrary orders p as in Cesa-Bianchi and Lugosi [42] but we
were unable to provide an accurate analysis for these values.

Theorem 2.5. For all sequences of loss vectors `t ∈ [0, 1]K , the cumulative loss of Algorithm 3
run with learning rates

ηk,t−1 =
1

1 +
∑t−1

s=1

(̂̀
s − `k,s

)2
is bounded by

T∑
t=1

̂̀
t 6 min

16k6K

{
T∑
t=1

`k,t +

√√√√K
(
1 + ln(1 + T )

)(
1 +

T∑
t=1

(̂̀
t − `k,t

)2)}
.

2.4. First application: bounds with experts that report their
confidences

We justify in this section why the second-order bounds exhibited in the previous sections are
particularly adapted to the setting of prediction with experts that report their confidences, which
was first considered∗ by Blum and Mansour [29]. It differs from the standard setting in that, at the
start of every round t, each expert k expresses its confidence as a number Ik,t ∈ [0, 1]. In particular,
confidence Ik,t = 0 expresses that expert k is inactive (or sleeping) in round t. The learner now has
to assign nonnegative weights pt, which sum up to 1, to the set At = {k : Ik,t > 0} of so-called
active experts and suffers loss ̂̀t =

∑
k∈At pk,t`k,t. (It is assumed that, for any round t, there is at

least one active expert k with Ik,t > 0, so that At is never empty.)

The main difference in prediction with confidences comes from the definition of the regret. The
confidence regret with respect to expert k takes the numbers Ik,t into account and is defined as

Rc
k,T =

T∑
t=1

Ik,t
(̂̀
t − `k,t

)
. (2.8)

When Ik,t is always 1, prediction with confidences reduces to regular prediction with expert advice,
and when the confidences Ik,t only take on the values 0 and 1, it reduces to prediction with sleeping
(or specialized) experts as introduced by Blum [28] and Freund et al. [71].

Because the confidence regret scales linearly with Ik,t, one would therefore like to obtain bounds
on the confidence regret that scale linearly as well. When confidences do not depend on k, this is
achieved, e.g., by the bound (2.3). However, for confidences that do depend on k, the best available

∗ Technically, Blum and Mansour [29] decouple the confidences Ik,t, which they refer to as “time selection
functions”, from the experts, but as we explain in Appendix 2.C.2, the two settings are equivalent.
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stated bound [29, Theorem 16] is

Rc
k,T =

T∑
t=1

Ik,t
(̂̀
t − `k,t

)
= O

√∑
t6T

Ik,t`k,t

 . (2.9)

(We rederive this bound in Appendix 2.C.2.) If, in this bound, all confidences Ik,t are scaled down
by a factor λk ∈ [0, 1], then we would like the bound to also scale down by λk, but instead it scales
only by

√
λk. In the remainder of this section we will show how our new second-order bound (2.4)

solves this issue via a generic reduction of the setting of prediction with confidences to the standard
setting from Sections 2.1 and 2.2.

Remark 2.1. We consider the case of linear losses. The extension of our results to convex losses
is immediate via the so-called gradient trick. The latter also applies in the setting of experts that
report their confidences. The details were essentially provided by Devaine et al. [60] (we recall them
in Section 2.C.1).

Generic reduction to the standard setting There exists a generic reduction from the setting of
sleeping experts to the standard setting of prediction with expert advice [13, 103]. This reduction
generalizes easily to the setting of experts that report their confidences, as we will now explain.

Given any algorithm designed for the standard setting, we run it on modified losses ˜̀k,s, which
will be defined shortly. At round t > 1, the algorithm takes as inputs the past modified losses ˜̀k,s,
where s 6 t − 1, and outputs a weight vector p̃t on {1, . . . ,K}. This vector is then used to form
another weight vector pt, which has strictly positive weights only on At:

pk,t =
Ik,t p̃k,t∑K

k′=1 Ik′,t p̃k′,t
for all k. (2.10)

This vector pt is to be used with the experts that report their confidences. Then, the losses `k,t are
observed and the modified losses are computed as follows: for all k,

˜̀
k,t = Ik,t`k,t + (1− Ik,t)̂̀t where ̂̀

t =
∑
k∈At

pk,t`k,t .

Proposition 2.6. The induced confidence regret on the original losses `k,t equals the standard
regret of the algorithm on the modified losses ˜̀k,t. In particular,

Ik,t
(̂̀
t − `k,t

)
=

K∑
i=1

p̃i,t ˜̀i,t − ˜̀k,t
for all rounds t and experts k.

Proof First we show that the loss in the standard setting (on the losses ˜̀k,t) is equal to the loss
in the confidence regret setting (on the original losses `k,t):

K∑
k=1

p̃k,t ˜̀k,t =

K∑
k=1

p̃k,t

(
Ik,t`k,t + (1− Ik,t)̂̀t)
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=
K∑
k=1

p̃k,tIk,t`k,t + ̂̀t −( K∑
k=1

p̃k,tIk,t

) ̂̀
t

=

(
K∑
k′=1

p̃k′,t Ik′,t

)
K∑
k=1

pk,t`k,t + ̂̀t −( K∑
k=1

p̃k,tIk,t

) ̂̀
t = ̂̀

t.

The proposition now follows by subtracting ˜̀k,t on both sides of the equality. �

Corollary 2.7. An algorithm with a standard regret bound of the form

Rk,T 6 Ξ1

√
(lnK)

∑
t6T

(̂̀
t − `k,t

)2
+ Ξ2 for all k, (2.11)

leads, via the generic reduction described above (and for losses `k,t ∈ [0, 1]), to an algorithm with a
confidence regret bound of the form

Rc
k,T 6 Ξ1

√
(lnK)

∑
t6T

I2
k,t

(̂̀
t − `k,t

)2
+ Ξ2 6 Ξ1

√
(lnK)

∑
t6T

I2
k,t + Ξ2 for all k. (2.12)

We note that the second upper-bound,
√∑

I2
k,t, can be extracted from the proof of Theorem 11 in

Chernov and Vovk [48]—but not the first one, which, combined with the techniques of Section 2.5.1,
yields a bound on the confidence regret for small (excess) losses.

Comparison to the instantiation of other regret bounds We now discuss why (2.12) improves
on the literature. Consider first the improved bound for small losses from the introduction, which
takes the form Ξ3

√∑
t `k,t + Ξ4. This improvement does not survive the generic reduction, as the

resulting confidence regret bound is

Ξ3

√√√√ T∑
t=1

˜̀
k,t + Ξ4 = Ξ3

√√√√√√
T∑
t=1

Ik,t`k,t +

T∑
t=1

(1− Ik,t)̂̀t︸ ︷︷ ︸
undesirable

+ Ξ4,

which is no better than plain Ξ′3
√
T + Ξ′4 bounds.

Alternatively, bounds (2.3) of Cesa-Bianchi et al. [45] and de Rooij et al. [58] are of the form

Ξ5

√√√√ T∑
t=1

K∑
k=1

pk,t
(
`k,t − ̂̀t)2 + Ξ6,

uniformly over all experts k. These lead to a confidence regret bound against expert k of the form

Ξ5

√√√√ T∑
t=1

K∑
k=1

pk,t I
2
k,t

(̂̀
t − `k,t

)2
+ Ξ6 6 Ξ5

√√√√ T∑
t=1

K∑
k=1

pk,t I
2
k,t + Ξ6,

which depends not just on the confidences of this expert k, but also on the confidences of the other
experts. It therefore does not scale proportionally to the confidences of the expert k at hand.
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We note that even bounds of the form (2.2), if they existed, would not be suitable either. They
would indeed lead to

Rck,T = O


√√√√ T∑

t=1

(
Ik,t`k,t + (1− Ik,t)̂̀t)2

 ,

which also does not scale linearly with the confidences of expert k.

2.5. Other applications: bounds in the standard setting

We now leave the setting of prediction with confidences, and detail other applications of our new
second-order bound (2.4). First, in Section 2.5.1, we show that, like (2.1) and (2.3), our new bound
implies an improvement over the standard bound O

(√∑
t `k,t lnK

)
, which is itself already better

than the worst-case bound if the losses of the reference expert are small. The key feature in our
improvement is that excess losses `k,t − ̂̀t can be considered instead of plain losses `k,t. Then, in
Section 2.5.2, we look at the non-adversarial setting in which losses are i.i.d., and show that our
new bound implies constant regret of order O

(
lnK

)
.

2.5.1. Improvement for small excess losses

It is known [45, 58] that (2.3) implies a bound of the form

Rk∗,T = O

(√
lnK

Lk∗,T (T − Lk∗,T )

T

)
, (2.13)

where k∗ ∈ arg mink Lk,T is the expert with smallest cumulative loss. This bound symmetrizes the
standard bound for small losses described in the introduction, because it is small also if Lk∗,T is
close to T , which is useful when losses are defined in terms of gains [45].

However, if one is ready to lose symmetry, another way of improving the standard bound for small
losses is to express it in terms of excess losses:√√√√lnK

∑
t : `k,t>̂̀t

(
`k,t − ̂̀t) 6√lnK

∑
t6T

`k,t ,

where the inequality holds for nonnegative losses. As we show next, bounds of the form (2.4) indeed
entail bounds of this form.

Theorem 2.8. If the regret of an algorithm satisfies (2.11) for all sequences of loss vectors
`t ∈ [0, 1]K , then it also satisfies

Rk,T 6 2 Ξ1

√√√√lnK
∑

t : `k,t>̂̀t
(
`k,t − ̂̀t)+

(
Ξ2 + 2 Ξ1

√
Ξ2 lnK + 4 Ξ2

1 lnK
)
. (2.14)

In general, losses take values in the range [a, b]. To apply our methods, they therefore need to be
translated by −a and scaled by 1/(b − a) to fit the canonical range [0, 1]. In the standard im-
provement for small losses, these operations remain visible in the regret bound, which becomes
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Rk,T = O
(√

(b− a)(Lk,T − Ta) lnK
)
in general. In particular, if a < 0, then no significant im-

provement over the worst-case bound O
(√
T lnK

)
is realized. By contrast, our original second-order

bound (2.11) and its corollary (2.14) both have the nice feature that translations do not affect the
bound because (`k,t−a)− (̂̀t−a) = `k,t− ̂̀t, so that our new improvement for small losses remains
meaningful even for a < 0.

Proof We define the positive and the negative part of the regret with respect to an expert k by,
respectively,

R+
k,T =

T∑
t=1

(̂̀
t − `k,t

)
1{`k,t6̂̀t} and R−k,T =

T∑
t=1

(̀
k,t − ̂̀t)1{`k,t>̂̀t} .

The proof will rely on rephrasing the bound (2.11) in terms of R+
k,T and R−k,T only. On the one

hand, Rk,T = R+
k,T −R

−
k,T , while, on the other hand,√∑

t6T

(̂̀
t − `k,t

)2
6

√∑
t6T

∣∣∣̂̀t − `k,t∣∣∣ =
√
R+
k,T +R−k,T 6 2

√
R+
k,T , (2.15)

where we used `k,t ∈ [0, 1] for the first inequality and where we assumed, with no loss of generality,
that R+

k,T > R
−
k,T . Indeed, if this was not the case, the regret would be negative and the bound would

be true. Therefore for all experts k, substituting these (in)equalities in the initial inequality (2.11),
we are left with the quadratic inequality

R+
k,T −R

−
k,T 6 2Ξ1

√
R+
k,T lnK + Ξ2 . (2.16)

Solving for R+
k,T using Lemma 2.9 below (whose proof can be found in Section 2.A.1) yields√

R+
k,T 6

√
R−k,T + Ξ2 + 2Ξ1

√
lnK 6

√
R−k,T +

√
Ξ2 + 2Ξ1

√
lnK ,

which leads to the stated bound after re-substitution into (2.16). �

Lemma 2.9. Let a, c > 0. If x > 0 satisfies x2 6 a+ cx, then x 6
√
a+ c.

2.5.2. Stochastic (i.i.d.) losses

van Erven et al. [138] provide a specific algorithm that guarantees worst-case regret bounded
by O

(√
Lk?,T lnK

)
, but at the same time is able to adapt to the non-adversarial setting with

independent, identically distributed (i.i.d.) loss vectors, for which its regret is bounded by O(K).
Theorem 2.8 already indicated that any algorithm satisfying a regret bound of the form (2.11) also
achieves a worst-case bound that is at least as good as O

(√
Lk?,T lnK

)
. Here we consider i.i.d.

losses that satisfy the same assumption as the one imposed by van Erven et al.:

Assumption 2.10. The loss vectors `t ∈ [0, 1]K are independent random variables such that
there exists an action k? and some α ∈ (0, 1] for which the expected differences in loss satisfy

∀t > 1, min
k 6=k?

E
[
`k,t − `k?,t

]
> α .
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As shown by the following theorem, any algorithm that satisfies our new second-order bound (with
a constant Ξ1 factor and a Ξ2 factor of order lnK) is guaranteed to achieve constant regret of order
O(lnK) under Assumption 2.10.

Theorem 2.11. If a strategy achieves a regret bound of the form (2.11) and the loss vectors
satisfy Assumption 2.10, then the expected regret for that strategy is bounded by a constant: for
all T ,

E[Rk?,T ] 6 C(Ξ1,Ξ2, α)
def
= (Ξ2

1 lnK)/α+ Ξ1

√
(Ξ2 lnK)/α+ Ξ2 ;

while for any T and any δ ∈ (0, 1), its regret is bounded with probability at least 1− δ by

Rk?,T 6 C(Ξ1,Ξ2, α) +
6 Ξ1

α

√√√√(ln
1

δ
+ ln

(
1 +

1

2e
ln
(
1 + C(Ξ1,Ξ2, α)/4

)))
lnK .

By the law of large numbers, the cumulative loss of any action k 6= k? will exceed the cumulative
loss of k? by a linear term in the order of αT , so that, for all sufficiently large T , the fact that
Rk?,T is bounded by a constant implies that the algorithm will have negative regret with respect
to all other k.

Because we want to avoid using any special properties of the algorithm except for the fact that it
satisfies (2.11), our proof of Theorem 2.11 requires a Bernstein-Freedman-type martingale concen-
tration result [68] rather than basic applications of Hoeffding’s inequality, which are sufficient in the
proof of van Erven et al. [138]. However, this type of concentration inequalities is typically stated
in terms of a deterministic bound M on the cumulative conditional variance

∑
Vt. To bound the

deviations by the (random) quantity
√∑

Vt instead of the deterministic
√
M , peeling techniques

can be applied as in Cesa-Bianchi et al. [44, Corollary 16]; this leads to an additional
√

lnT factor
(in case of an additive peeling) or

√
ln lnT (in case of a geometric peeling). Here, we replace these

non-constant factors by a term of order ln lnE
[∑

Vt
]
, which will be seen to be less than a constant

in our case.

Theorem 2.12. Let (Xt)t>1 be a martingale difference sequence with respect to some filtration
F0 ⊆ F1 ⊆ F2 ⊆ . . . and let Vt = E

[
X2
t

∣∣Ft−1

]
for t > 1. We assume that Xt 6 1 a.s., for all t > 1.

Then, for any δ ∈ (0, 1) and any T > 1, with probability at least 1− δ,

T∑
t=1

Xt 6 3

√√√√(1 +

T∑
t=1

Vt

)
ln
γ

δ
+ ln

γ

δ
,

where

γ = 1 +
1

2e

(
1 + ln

(
1 + E

[
T∑
t=1

Vt

]))
.

Theorem 2.12 and its proof (see Section 2.A.5 for the latter) may be of independent interest, because
our derivation uses new techniques that we originally developed for time-varying learning rates in
the proof of Theorem 2.3. Instead of studying supermartingales of the form exp

(
λ
∑
Xt − (e −

2)λ2
∑
Vt
)
for some constant value of λ, as is typical, we are able to consider (predictable) random



56 CHAPTER 2. A SECOND-ORDER BOUND WITH EXCESS LOSSES

variables Λt, which in some sense play the role of the time-varying learning parameter ηt of the
(ML-)Prod algorithm.

Proof (of Theorem 2.11) We recall the notation rk,t = ̂̀
t− `k,t for the instantaneous regret. We

start from F0, the trivial σ–algebra {∅,Ω} (consisting of the empty set and the whole underlying
probability space), and define by induction the following martingale difference sequence: for all
t > 1,

Yt = −rk?,t + E
[
rk?,t

∣∣Ft−1

]
and Ft = σ(Y1, . . . , Yt) is the σ–algebra generated by the random variables Y1, . . . , Yt. We first
bound the expectation of the regret. We note that

E
[
rk?,t

∣∣Ft−1

]
=

K∑
k=1

pk,t E
[
`k,t − `k?,t

∣∣Ft−1

]
=

K∑
k=1

pk,t E
[
`k,t − `k?,t

]
> α(1− pk?,t) , (2.17)

while by convexity of ( · )2,

r2
k?,t 6

K∑
k=1

pk,t
(
`k,t − `k?,t

)2
6 1− pk?,t , (2.18)

thus,
Wt = E

[
Y 2
t

∣∣Ft−1

]
6 E

[
r2
k?,t

∣∣Ft−1

]
6 1− pk?,t . (2.19)

Therefore, using that expectations of conditional expectations are unconditional expectations,

E[Rk?,T ] > αE[ST ] and E

[
T∑
t=1

r2
k?,t

]
6 E[ST ] (2.20)

where

ST =

T∑
t=1

(1− pk?,t) .

Substituting these inequalities in (2.11) using Jensen’s inequality for
√
· , we get

E[ST ] 6
Ξ1

√
lnK

α

√
E[ST ] +

Ξ2

α
.

Solving the quadratic inequality (see Lemma 2.9) yields E[ST ] 6
(
(Ξ1

√
lnK)/α +

√
Ξ2/α

)2. By
(2.20) this bounds E

[∑T
t=1 r

2
k?,t

]
, which we substitute into (2.11), together with Jensen’s inequality,

to prove the claimed bound on the expected regret.

Now, to get the high-probability bound, we apply Theorem 2.12 to Xt = Yt/2 6 1 a.s. and
Vt = Wt/4 and use the bounds (2.17) and (2.19). We find that, with probability at least 1− δ,

αST 6 Rk?,T + 3
√

(4 + ST ) ln(γ/δ) + 2 ln(γ/δ)

6 Rk?,T + 3
√
ST ln(γ/δ) + 8 ln(γ/δ) ,

where
γ 6 1 + (1/2e)

[
1 + ln

(
1 + E[ST ]/4

)]
,
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and where we used
√

ln(γ/δ) > 1. Combining the bound (2.11) on the regret with (2.18) yields
Rk?,T 6 Ξ1

√
ST lnK + Ξ2, so that, still with probability at least 1− δ,

αST 6
(

Ξ1

√
lnK + 3

√
ln(γ/δ)

)√
ST +

(
8 ln(γ/δ) + Ξ2

)
.

Solving for
√
ST with Lemma 2.9 and using that α 6 1, this implies

√
ST 6

Ξ1

√
lnK + 3

√
ln(γ/δ)

α
+

1√
α

√
8 ln(γ/δ) + Ξ2

6
Ξ1

√
lnK

α
+

√
Ξ2

α
+

6

α

√
ln
γ

δ
.

Substitution into the (deterministic) regret bound Rk?,T 6 Ξ1

√
ST lnK + Ξ2 concludes the proof.

�

2.6. Alternative comparison classes

We focused in the previous sections on improved regret bounds. However, the cumulative loss of
an algorithm can be decomposed as the cumulative loss of the best element in a comparison class
plus the regret with respect to that class. In this section we discuss alternative comparison classes,
formed by combining the original base experts into meta-experts. We explain why, up to considering
meta-experts, the study of these alternative classes falls under the umbrella of the setting described
in Section 2.4. The meta-experts we introduce are based on partial rankings of the experts, which
generalizes the full ranking setting introduced by Kleinberg et al. [99, 98], and their probabilistic
extension to Markov chains in Section 2.6.2.

Remark 2.2. For the sake of readability we restrict our attention in this subsection to the case
of sleeping experts, i.e., to the case where Ik,t ∈ {0, 1} (see Section 2.4). All definitions and results
readily extend to the case of experts reporting general confidences Ik,t ∈ [0, 1].
Partial rankings A partial ranking σ1:m = (σ1, . . . , σm) creates a chain of experts: if expert σ1 is
sleeping, then some other expert σ2 is asked for advice; if the second expert is sleeping as well, then
some third expert σ3 (different from σ1 and σ2) is considered; and so on until expert σm. Since
σ1:m corresponds to a ranking of a subset of size m of the experts, we call it a partial ranking.
At round t, given the set of active experts At, the partial ranking σ1:m is sleeping, Iσ1:m,t = 0, if
{σ1, . . . , σm} ∩ At = ∅. Otherwise, it picks the expert k(σ1:m,At) = σmin{j : σj∈At}.

The interest in partial rankings lies in that they sleep less often than the base experts. This
strengthens the comparison class, but also leads to increased running time for algorithms and a
larger regret bound. Indeed, there are K!/(K −m)! 6 Km partial rankings of length m so that via
the generic reduction described in Section 2.4, any standard algorithm will guarantee regret

T∑
t=1

Iσ1:m,t
(̂̀
t − `k(σ1:m,At)

)
= O

(√
Tm lnK

)
for all σ1:m.

A unification between two seemingly different approaches in the literature The comparison
class introduced above puts under the same umbrella two approaches that previously were con-
sidered unrelated. The value m = 1 corresponds to the setting described in Section 2.4, while the
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value m = K amounts to considering full rankings of the experts as in Kleinberg et al. [99, 98].
Intermediate values of m provide a natural way to interpolate between the two settings, which
trades off how well the full ranking setting is approximated against computational efficiency and
magnitude of the regret.

Because of our assumption that there is always at least one active expert, all full rankings σ1:K are
active in each round. This holds great appeal, but unfortunately no efficient algorithm has been
found for learning full rankings, and a hardness result by Kleinberg et al. [98] rules out many of the
plausible candidates. In particular, the algorithms for learning permutations by Helmbold and War-
muth [91] and Yasutake et al. [149] do not apply, because the loss of rankings cannot be expressed
in the linear form they require, and Kanade et al. [96] require stochastic assumptions about the set
At of active experts. It is therefore necessary to consider intermediate values of m.

2.6.1. Numerical experiments

We illustrate in this section that, indeed, considering partial rankings of not too large a length
m > 1 leads to a reduction of the cumulative loss compared to m = 1. We do so in a qualitative
way, by comparing the performance of two algorithms for values m ∈ {1, 2, 3, 4}. The cumulative
(or average) losses first decrease when m increases to 2 or 3, and then level off. This is because of
a trade-off between the approximation error (equal to the cumulative or average loss of the best
partial ranking, which decreases as m increases) and the sequential estimation error (the regret,
which increases with m). This trade-off should be reminiscent of the bias-variance trade-off in
statistics.

More precisely, we consider an electricity forecasting data set analyzed by Devaine et al. [60]. The
data set contains half-hourly measurements of the total electricity consumption in France from
September 1, 2007 to August 31, 2008, together with several covariates, including temperature,
cloud cover, wind, etc. The goal is to forecast the consumption one day ahead, for the time interval
12:00–12:30, with the help of 24 experts (consumption forecasting models) that are unavailable
(sleeping) on some of the days, and prediction accuracy is measured in gigawatt (GW) by the root
mean squared error (rmse). For details about the data set we refer to Devaine et al. [60]. In the
original data set the experts are too synchronized in terms of their sleeping behavior. We correct
for this by introducing 6 deterministic sleeping scenarios that depend on the weather. The first
two of these scenarios activate an expert only on the 70% of days with the highest (respectively
lowest) cloud cover, which simulates specializing in cloudy (respectively sunny) days. The last four
scenarios are constructed similarly from the attributes wind and temperature. Since we do not know
the specializations of the 24 original experts, we assign each expert one of the sleeping scenarios at
random, and, in addition to the expert’s sleeping behavior in the original data set, we also put the
expert to sleep as dictated by their assigned scenario.

We evaluate ML-Prod and the exponentially weighted average forecaster on pseudo-losses that come
from the so-called gradient trick (see 2.C.1 in the supplementary material). The second forecaster
is then called EG (exponentiated gradient). We did not attempt to optimize the learning rates η
of these forecasters: the results below should be considered showing a qualitative behavior that
we observed for all values of η we tried. Figure 2.1 shows the performance of the algorithms when
run for partial rankings of lengths m = 1, . . . , 4. To evaluate the effect of the randomness in the
assignment of sleeping scenarios, we repeat the experiment 100 times and present a boxplot of the
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resulting rmse. We see that, for both algorithms, the rmse follows the behavior described at the
beginning of this subsection, decreasing with m till a certain value, e.g., m = 3 or m = 4 after
which there is no benefit of increasing the size of the comparison class.
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Figure 2.1.: Boxplots of the average prediction errors for two algorithms when run on partial rank-
ings of different lengths m.

2.6.2. Markov chain modeling

Because of the chain idea indicated when introducing partial rankings it is natural to also think
of alternative comparison classes based on Markov chains. The results below show that this model
is equivalent to the one based on rankings. We parameterize a Markov chain by a pair (q, Q),
where q = (q1, . . . , qK) is a probability vector on experts and Q is (the transposition of) a K ×K
stochastic matrix. That is, for all experts i, the i-th column (Qi,j)j of Q is a probability vector.
We use the Markov chain to generalize the redistribution of the prediction weights according to
confidences stated in (2.10).

Let At denote the diagonal matrix with the vector (Ik,t)k as its diagonal and let IK denotes the
K ×K identity matrix. The matrices At and IK − At, when applied to some vector q, select the
components corresponding respectively to the active and sleeping experts. In general, the vector
Atq of masses on the active experts does not sum up to 1: there is some missing mass, which
corresponds to the vector (IK−At)q. We redistribute this missing mass using the transition matrix
Q, getting in the second round AtQ(IK − At)q as the redistributed mass on active experts and
(IK − At)Q(IK − At)q as the vector of mass still not allocated. We can iterate the process for a
given number r of repetitions. Depending on Q and r there may be missing mass at the end of the
process, which we correct for. (We will discuss in detail under which conditions there is no missing
mass.)

More formally, the missing mass after r > 0 iterations equals 1− τ rt , with

τ rt ≡ τ rt (q, Q,At) = 1− 1>(IK −At)
(
Q(IK −At)

)r
q ∈ [0, 1] , (2.21)

where the vector 1 = (1, . . . , 1) is used to sum the probabilities. The resulting distribution qrt ≡
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qrt (q, Q,At) =
(
qr1,t, . . . , q

r
K,t

)
is defined arbitrarily when τ rt = 0 and otherwise as

qrt =
1

τ rt

r∑
i=0

At
(
Q(IK −At)

)i
q . (2.22)

In particular, qrt is a probability vector that is positive only on the set At of active experts.
The confidence regret against a Markov chain (q, Q) becomes

Rc
(q,Q),T =

T∑
t=1

τ rt
(̂̀
t − `>t qrt

)
.

Equivalence of competing with rankings and with Markov chains: finitely many repetitions
The definition (2.8) corresponds to a Markov chain (q, Q) in which q is a point mass and there are
no redistribution steps (i.e., r = 0), such that Q is not used. The following theorem shows that for
any given r 6 K − 1, competing with the class of all Markov chains (q, Q) with r repetitions is
equally hard as competing with the class of all partial rankings of length m 6 r + 1. Its proof can
be found in the supplementary material.

Theorem 2.13. Let 0 6 r 6 K − 1. Then there exists a constant C ≡ C(K,T ) such that for
all Markov chains (q, Q),

T∑
t=1

τ rt

(̂̀
t − `>t qrt

)
6 C

√√√√ T∑
t=1

τ rt (2.23)

if and only if
T∑
t=1

Iσ1:m,t

(̂̀
t − `σ1:m,t

)
6 C

√√√√ T∑
t=1

Iσ1:m,t (2.24)

for all partial rankings σ1:m of length m 6 r + 1.

Extension to infinitely many repetitions In this paragraph, we restrict our attention to transition
matrices Q that are irreducible. This means that, for all experts k and k′, there should be a path
(s1, s2, . . . , sv) of experts with s1 = k and sv = k′ such that Qsi+1,si > 0 for all steps i = 1, . . . , v−1

in the path. In this case, IK −Q(IK −At) is invertible, with inverse

(
IK −Q(IK −At)

)−1
=

∞∑
i=0

(
Q(IK −At)

)i
.

We can thus let r → ∞ in (2.21) and (2.22), which leads to τ∞t = 1 (all the mass is redistributed
now) and gives rise to the distribution q∞t = At

(
IK −Q(IK −At)

)−1
q.

Note that this distribution depends on Q in a non-convex way. Nevertheless, at first sight one
might hope that some clever trick will allow competing with the distributions q∞t anyway. The
following theorem, proved in the supplementary material, shows that such a trick would have to be
clever indeed, because an algorithm can compete with q∞t if and only if it can compete with the
comparison class of all full rankings, which we know to be computationally difficult, as discussed
above.
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Theorem 2.14. There exists C ≡ C(K,T ) such that for all irreducible Markov chains (q, Q),

T∑
t=1

(̂̀
t − `>t q∞t

)
6 C if and only if

T∑
t=1

(̂̀
t − `σ1:K ,t

)
6 C

for all full rankings σ1:K .

Combining Theorem 2.14 with Theorem 2.13, we see that, essentially, the case of r = K − 1

repetitions already captures the difficulty of dealing with r =∞ repetitions.

Appendices for Chapter 2

2.A. Proofs

We gather in this appendix several facts and results whose proofs were omitted from the main body
of the chapter.

2.A.1. Proof of Lemma 2.9

Solving x2 6 a+ cx for x, we find that

1

2
c− 1

2

√
c2 + 4a 6 x 6

1

2
c+

1

2

√
c2 + 4a .

In particular, focusing on the upper bound, we get 2x 6 c+
√
c2 + 4a 6 c+

√
c2 +
√

4a = 2c+2
√
a,

which was to be shown.

2.A.2. Proof of Theorem 2.3

The proof will rely on the following simple lemma.

Lemma 2.15. For all x > 0 and all α > 1, we have x 6 xα + (α− 1)/e.

Proof The inequality is straightforward when x > 1, so we restrict our attention to the case
where x < 1. The function α 7→ xα = eα lnx is convex and thus is above any tangent line. In
particular, considering the value x lnx of the derivative function α 7→ (lnx) eα lnx at α = 1, we get

∀α > 0, xα − x > (x lnx) (α− 1) .

Now, since we only consider α > 1, it suffices to lower bound x lnx for the values of interest for x,
namely, the ones in (0, 1) as indicated at the beginning of the proof. On this interval, the stated
quantity is at least −1/e, which concludes the proof. �

We now prove Theorem 2.3.
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Proof (of Theorem 2.3) As in the proof of Theorem 2.1, we bound lnWT from below and from
above. For the lower bound, we start with lnWT > lnwk,T . We then show by induction that for all
t > 0,

lnwk,t > ηk,t

t∑
s=1

(
rk,s − ηk,s−1r

2
k,s

)
+
ηk,t
ηk,0

lnwk,0 ,

where rk,s = ̂̀
s − `k,s denotes the instantaneous regret with respect to expert k. The inequality is

trivial for t = 0. If it holds at a given round t, then by the weight update (step 3 of the algorithm),

lnwk,t+1 =
ηk,t+1

ηk,t

(
lnwk,t + ln

(
1 + ηk,trk,t+1

))
>
ηk,t+1

ηk,t

(
ηk,t
ηk,0

lnwk,0 + ηk,t

t∑
s=1

(
rk,s − ηk,s−1r

2
k,s

))
+
ηk,t+1

ηk,t

(
ηk,trk,t+1 − η2

k,tr
2
k,t+1

)
= ηk,t+1

t+1∑
s=1

(
rk,s − ηk,s−1r

2
k,s

)
+
ηk,t+1

ηk,0
lnwk,0 ,

where the inequality comes from the induction hypothesis and from the inequality ln(1+x) > x−x2

for all x > −1/2 already used in the proof of Theorem 2.1.

We now bound from above lnWT , or equivalently, WT itself. We show by induction that for all
t > 0,

Wt 6 1 +
1

e

K∑
k=1

t∑
s=1

(
ηk,s−1

ηk,s
− 1

)
.

The inequality is trivial for t = 0. To show that if the property holds for some t > 0 it also holds
for t+ 1, we prove that

Wt+1 6Wt +
1

e

K∑
k=1

(
ηk,t
ηk,t+1

− 1

)
. (2.25)

Indeed, since x 6 xα + (α − 1)/e for all x > 0 and α > 1 (see Lemma 2.15), we have, for each
expert k,

wk,t+1 6
(
wk,t+1

) ηk,t
ηk,t+1 +

1

e

(
ηk,t
ηk,t+1

− 1

)
; (2.26)

we used here x = wk,t+1 and α = ηk,t/ηk,t+1, which is larger than 1 because of the assumption that
the learning rates are nonincreasing in t for each k. Now, by definition of the weight update (step
3 of the algorithm),

K∑
k=1

(
wk,t+1

) ηk,t
ηk,t+1 =

K∑
k=1

wk,t
(
1 + ηk,trk,t+1

)
= Wt ,

where the second inequality follows from the same argument as in the last display of the proof
of Theorem 2.1, by using that ηk,twk,t is proportional to pk,t+1. Summing (2.26) over k thus
yields (2.25) as desired.

Finally, combining the upper and lower bounds on lnWT and rearranging leads to the inequality
of Theorem 2.3. �
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2.A.3. Proof of Corollary 2.4

The following lemma will be useful.

Lemma 2.16. Let a0 > 0 and a1, . . . , am ∈ [0, 1] be real numbers and let f : (0,+∞) →
[0,+∞) be a nonincreasing function. Then

m∑
i=1

ai f
(
a0 + . . .+ ai−1

)
6 f(a0) +

∫ a0+a1+...+am

a0

f(u) du .

Proof Abbreviating si = a0 + . . .+ ai for i = 0, . . . ,m, we find that

m∑
i=1

ai f(si−1) =

m∑
i=1

ai f(si) +

m∑
i=1

ai
(
f(si−1)− f(si)

)
6

m∑
i=1

ai f(si) +

m∑
i=1

(
f(si−1)− f(si)

)
6

m∑
i=1

ai f(si) + f(s0),

where the first inequality follows because f(si−1) > f(si) and ai 6 1 for i > 1, while the second
inequality stems from a telescoping argument together with the fact that f(sm) > 0. Using that f
is nonincreasing together with si − si−1 = ai for i > 1, we further have

ai f(si) =

∫ si

si−1

f(si) dy 6
∫ si

si−1

f(y) dy .

Substituting this bound in the above inequality completes the proof. �

We will be slightly more general and take

ηk,t = min

1

2
,

√
γk

1 +
∑t

s=1 r
2
k,s


for some constant γk > 0 to be defined by the analysis.

Because of the choice of nonincreasing learning rates, the first inequality of Theorem 2.3 holds true,
and the regret Rk,t is upper-bounded by

1

ηk,0
ln

1

wk,0
+

1

ηk,T
ln

(
1 +

1

e

K∑
k′=1

T∑
t=1

(
ηk′,t−1

ηk′,t
− 1

)
︸ ︷︷ ︸

first term

)
+

T∑
t=1

ηk,t−1r
2
k,t︸ ︷︷ ︸

second term

. (2.27)

For the first term in (2.27), we note that for each k′ and t > 1 one of three possibilities must hold,
all depending on which of the inequalities in ηk′,t 6 ηk′,t−1 6 1/2 are equalities or strict inequalities.
More precisely, either ηk′,t = ηk′,t−1 = 1/2; or√

γk′

1 +
∑t

s=1 r
2
k′,s

= ηk′,t < ηk′,t−1 =
1

2
6

√
γk′

1 +
∑t−1

s=1 r
2
k′,s

;
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or ηk′,t 6 ηk′,t−1 < 1/2. In all cases, the ratios ηk′,t−1/ηk′,t − 1 can be bounded as follows:

T∑
t=1

(
ηk′,t−1

ηk′,t
− 1

)
6

T∑
t=1


√√√√1 +

∑t
s=1 r

2
k′,t

1 +
∑t−1

s=1 r
2
k′,t

− 1


=

T∑
t=1

√√√√1 +
r2
k′,t

1 +
∑t−1

s=1 r
2
k′,s

− 1

 6 1

2

T∑
t=1

r2
k′,t

1 +
∑t−1

s=1 r
2
k′,s

, (2.28)

where we used, for the second inequality, that g(1 + z) 6 g(1) + z g′(1) for z > 0 for any concave
function g, in particular the square root. We apply Lemma 2.16 with f(x) = 1/x to further bound
the sum in (2.28), which gives

T∑
t=1

r2
k′,t

1 +
∑t−1

s=1 r
2
k′,s

6 1 + ln

(
1 +

T∑
t=1

r2
k′,t

)
−��

�ln(1) 6 1 + ln(T + 1) . (2.29)

For the second term in (2.27), we write

T∑
t=1

ηk,t−1r
2
k,t 6

√
γk

T∑
t=1

r2
k,t√

1 +
∑t−1

s=1 r
2
k,s

.

We apply Lemma 2.16 again, with f(x) = 1/
√
x, and get

T∑
t=1

r2
k,t√

1 +
∑t−1

s=1 r
2
k,s

6 1− 2
√

1︸ ︷︷ ︸
60

+2

√√√√(1 +

T∑
t=1

r2
k,t

)
. (2.30)

We may now get back to (2.27). Substituting the obtained bounds on its first and second terms,
and using ηk,0 > ηk,T , we find it is no greater than

1

ηk,T

(
ln

1

wk,0
+BK,T

)
+ 2

√√√√γk

(
1 +

T∑
t=1

r2
k,t

)
, (2.31)

where BK,T = ln
(

1 + K
2e

(
1 + ln(T + 1)

))
.

Now if
√

1 +
∑T

t=1 r
2
k,t > 2

√
γk then ηk,T < 1/2 and (2.31) is bounded by

√√√√1 +
T∑
t=1

r2
k,t

(
2
√
γk +

ln 1
wk,0

+BK,T
√
γk

)
.

Alternatively, if
√

1 +
∑T

t=1 r
2
k,t 6 2

√
γk, then ηk,T = 1/2 and (2.31) does not exceed

2 ln
1

wk,0
+ 2BK,T + 4γk.
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In either case, (2.31) is smaller than the sum of the latter two bounds, from which the corollary
follows upon taking γk = ln(1/wk,0) = lnK.

2.A.4. Proof of Theorem 2.5

The proof has a geometric flavor—the same as in the proof of the approachability theorem [27].
With a diagonal matrix D = diag(d1, . . . , dK), with positive on-diagonal elements di, we associate
an inner product and a norm as follows:

∀x,y ∈ RK , 〈x, y〉D = x>Dy and ‖x‖D =
√
x>Dx .

We denote by πD the projection on RK− under the norm ‖ · ‖D. It turns out that this projection is
independent of the considered matrix D satisfying the constraints described above: it equals

∀x ∈ RK , πD(x) = x− x+ ,

where we recall that x+ denotes the vector whose components are the nonnegative parts of the
components of x. This entails that for all x,y ∈ RK

‖(x+ y)+‖2D = ‖x+ y − πD(x+ y)‖2D 6 ‖x+ y − πD(x)‖2D = ‖x+ + y‖2D . (2.32)

Now, we consider, for each instance t > 1, the diagonal matrix Dt = diag(η1,t, . . . , ηK,t), with
positive elements on the diagonal. As all sequences (ηk,t)t>0 are non-increasing for a fixed k, we
have, for all t > 1, that

∀x ∈ RK , ‖x‖Dt 6 ‖x‖Dt−1
. (2.33)

This entails thatww(Rt)+

ww
Dt
6
ww(Rt)+

ww
Dt−1

=
ww(Rt−1 + rt)+

ww
Dt−1

6
ww(Rt−1)+ + rt

ww
Dt−1

, (2.34)

where we denoted by rt the vector (rk,t)16k6K of the instantaneous regrets and where we ap-
plied (2.32). Taking squares and developing the squared norm, we getww(Rt)+

ww2

Dt
6
ww(Rt−1)+

ww2

Dt−1
+ ‖rt‖2Dt−1

+ 2 r>t Dt−1 (Rt−1)+ . (2.35)

But the inner product equals

2 r>t Dt−1 (Rt−1)+ = 2
K∑
k=1

ηk,t−1 (Rk,t−1)+ rk,t = 2η>t−1 (Rt−1)+

K∑
k=1

pk,trk,t︸ ︷︷ ︸
=0

= 0 ,

where the last but one equality follows from step 1 of the algorithm.

Hence (2.35) entails
ww(Rt)+

ww2

Dt
−
ww(Rt−1)+

ww2

Dt−1
6 ‖rt‖2Dt−1

, which, summing over all rounds
t > 1, leads to

ww(RT )+

ww2

DT
−���

��
��ww(R0)+

ww2

D0
6

T∑
t=1

‖rt‖2Dt−1
=

T∑
t=1

K∑
k=1

ηk,t−1r
2
k,t



66 CHAPTER 2. A SECOND-ORDER BOUND WITH EXCESS LOSSES

=
K∑
k=1

T∑
t=1

r2
k,t

1 +
∑t−1

s=1 r
2
k,s

6 K
(
1 + ln(1 + T )

)
, (2.36)

where the last equality follows from substituting the value of ηk,t−1 and the last inequality was
proved in (2.29). Finally, (2.36) implies that, for any expert k = 1, . . . ,K,

ηk,T (Rk,T )2
+ 6

ww(RT )+

ww2

DT
6 K

(
1 + ln(1 + T )

)
,

so that
Rk,T 6

√
K
(
1 + ln(1 + T )

)
η−1
k,T .

The proof is concluded by substituting the value of ηk,T .

2.A.5. Proof of Theorem 2.12 (variation on the Bernstein–Freedman inequality)

Let ϕ : R → R and ϕ : R → R be defined by ϕ(λ) = eλ − λ− 1 on the one hand, ϕ(0) = 1/2 and
ϕ(λ) = ϕ(λ)/λ2 on the other hand. The following lemma is due to Freedman [68, Lemmas 1.3a and
3.1]. Note that we are only proving a one-sided inequality and do not require the lower bound on
X imposed in the mentioned reference.

Lemma 2.17. — Freedman [68]. The function ϕ is increasing. As a consequence, for all
bounded random variables X 6 1 a.s., for all σ–algebras F such that E[X | F ] = 0 a.s., and for all
nonnegative random variables Λ > 0 that are F–measurable,

E
[

exp(ΛX)
∣∣F] 6 exp

(
ϕ(Λ)V

)
a.s. where V = E

[
X2
∣∣F] = Var(X | F) .

Proof That ϕ is increasing follows from a function study. Using this, we get ϕ(ΛX) 6 ϕ(Λ),
which can be rewritten as

eΛX − ΛX − 1 6 ϕ(Λ)X2 .

By integrating both sides with respect to E[ · | F ] and by using that Λ is F–measurable and that
E[X | F ] = 0 a.s., we get

E
[

exp(ΛX)
∣∣F] 6 1 + ϕ(Λ)V a.s.

The proof is concluded by the inequality 1 + u 6 eu, valid for all u ∈ R. �

Proof (of Theorem 2.12) We fix x > 0. The analysis relies on a non-increasing sequence of
random variables 1 > Λ1 > Λ2 > . . . > 0 such that each Λt is Ft−1–measurable. More precisely, we
pick

Λt = min

{
1,

√
x

1 +
∑t−1

s=1 Vs

}
and choose, by convention, Λ0 = 1. We define, for all t > 1,

Ht = exp

(
Λt

t∑
s=1

(
Xs −

ϕ(Λs)

Λs
Vs

))
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and H0 = 1. Below we will apply Markov’s inequality to Ht and we therefore need to bound E[Ht].
By Lemma 2.17,

E
[
exp
(
ΛtXt − ϕ(Λt)Vt

) ∣∣∣Ft−1

]
6 1 a.s.,

so that for all t > 1,

E[Ht] = E
[
E[Ht | Ft−1]

]
= E

[
exp

(
Λt

t−1∑
s=1

(
Xs −

ϕ(Λs)

Λs
Vs

))
E
[
exp
(
ΛtXt − ϕ(Λt)Vt

) ∣∣∣Ft−1

]]
6 E

[
H

Λt/Λt−1

t−1

]
.

Applying Lemma 2.15 with α = Λt−1/Λt, this can be further bounded as

E[Ht] 6 E
[
H

Λt/Λt−1

t−1

]
6 E[Ht−1] +

1

e
E
[

Λt−1

Λt
− 1

]
.

Proceeding by induction and given that H0 = 1, we get, for all T > 1,

E[HT ] 6 1 +
1

e

T∑
t=1

E
[

Λt−1

Λt
− 1

]
.

The same argument and calculations as in (2.28) and (2.29) finally show that

E[HT ] 6 1 +
1

2e
E

[
1 + ln

(
1 +

T∑
t=1

Vt

)]
︸ ︷︷ ︸

6γ

;

that the left-hand side is less than γ follows from Jensen’s inequality for the logarithm. An appli-
cation of Markov’s inequality entails that

P

{
T∑
t=1

Xt >
x

ΛT
+

T∑
t=1

ϕ(Λt)

Λt
Vt

}
= P

{
lnHT > x

}
= P

{
HT > ex

}
6 E[HT ] e−x .

To conclude the proof, it thus suffices to take x such that

E[HT ] e−x 6 δ , e.g., x = ln
γ

δ

and to show that

x

ΛT
+

T∑
t=1

ϕ(Λt)

Λt
Vt 6 3

√
x

√√√√1 +
T∑
t=1

Vt + x , (2.37)

which we do next.
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Because Λt 6 1 and ϕ is increasing, we have ϕ(Λt) = ϕ(Λt)/Λ
2
t 6 ϕ(1) = e− 2 6 1. Therefore,

T∑
t=1

ϕ(Λt)

Λt
Vt 6

T∑
t=1

ΛtVt 6
T∑
t=1

√
x

1 +
∑t−1

s=1

Vs Vt 6 2
√
x

√√√√1 +
T∑
t=1

Vt ,

where we used for the second inequality the definition of Λt as a minimum and applied the same
argument as in (2.30) for the third one. It only remains to bound x/ΛT , for which we use the upper
bound (again, following from the definition of ΛT as a minimum)

x

ΛT
6 x+

√
x

√√√√1 +
T−1∑
t=1

Vt 6 x+
√
x

√√√√1 +
T∑
t=1

Vt .

Putting things together, we proved (2.37), which concludes this proof. �

2.B. Proof of Theorems 2.13 and 2.14

We recall that for the sake of simplicity, the theorem was stated and will thus be proved only in
the case when the confidences are binary, Ik,t ∈ {0, 1}.

Proof (of Theorem 2.13) We prove first that (2.23) implies (2.24). To this end, let σ1:m be any
partial ranking of length m 6 r + 1. Now choose q and Q such that qσ1 = 1 one the one hand,
Qσi+1σi = 1 for i = 1, . . . ,m−1 and Qσmσm = 1 on the other hand. (The columns of Q not indexed
by a σi can be chosen arbitrarily.) If one of the experts in σ1:m is active, we then have that τ tr = 1

and, denoting by σi the first active expert in the sequence (σ1, . . . , σm), that qrt is a point mass
on σi. Alternatively, if none of the experts in σ1:m is active, we have τ tr = 0. So in both cases
τ rt = Iσ1:m,t and when the latter equals 1, the losses are equal, `(q,Q),t = `σ1:m,t. The implication
(2.23) ⇒ (2.24) follows from these equalities.

For the converse implication, we first note that partial rankings of lengths m 6 r + 1 can be
re-parameterized in a redundant way, in terms of paths s0:r = (s0, . . . , sr) of length r + 1. Here
each step si ∈ {1, . . . ,K} in the path indicates an expert, with repetitions allowed (unlike in the
case of partial rankings). A path s0:r induces canonically a partial ranking σ(s0:r) by deleting all
repetitions, i.e., all steps sj such that sj = si for some i < j. This partial ranking σ(s0:r) is of
length m 6 r + 1.

Now we set the confidence Is0:r,t and, in the case when the latter equals 1, the action k(s0:r, At)

and the loss `s0:r,t of the path s0:r as, respectively, the confidence, the action and the loss of the
induced partial ranking σ(s0:r). The bound (2.24) entails that

T∑
t=1

Is0:r,t

(̂̀
t − `s0:r,t

)
6 C

√√√√ T∑
t=1

Is0:r,t for all paths s0:r. (2.38)

We now introduce convex weights Ms0:r on the paths of length r+ 1 that induce weights on partial
rankings which, when aggregated (and normalized), lead to the convex weights (2.22) on the experts.
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Namely, we consider the weights

Ms0:r =

 r∏
j=1

Qsj+1,sj

 qs0 ; (2.39)

they form a convex weight vector on all paths of length r + 1. By (2.38) and Jensen’s inequality

∑
s0:r

Ms0:r

T∑
t=1

Is0:r,t

(̂̀
t − `s0:r,t

)
6 C

∑
s0:r

Ms0:r

√√√√ T∑
t=1

Is0:r,t

6 C

√√√√ T∑
t=1

∑
s0:r

Ms0:rIs0:r,t . (2.40)

We now explain why for all experts k′ and all At,∑
s0:r

Ms0:r Is0:r,t 1{k(s0:r,At)=k′} = τ rt q
r
k′,t . (2.41)

This will ensure that both the left and right-hand sides of (2.40) equal the ones of (2.23). Indeed,
the very definition (2.22) indicates that for all k,

τ rt q
r
k,t = 1{k∈At}

qk +
r∑
i=1

∑
b1,...,bi 6∈At

Qk,bi

i−1∏
j=1

Qbj+1,bj

 qb1

 ;

or, in words, we look at all paths starting from some sleeping expert b1, going through a chain
b1, . . . , bi of sleeping experts, and ending up with k as the first active expert. This is exactly what
we have as well in (2.39) and (2.41). �

Proof (of Theorem 2.14) We first show that irreducible Markov chains induce all full rankings.
Indeed, let π1:K = (π1, . . . , πK) be a ranking of the experts. Then if we take qπ1 = 1 and any Q
such that Qπi+1πi = 1 for i = 1, . . . ,K − 1, we find that q∞t is a point mass on the first active
expert in π1:K , so that the loss of (q, Q) is equal to the loss of π1:K for all rounds t. This implies
that any uniform bound C(T ) on the regret for irreducible Markov chains (q, Q) implies the same
bound on the regret for full rankings.

For the converse implication, we note that any irreducible Markov chain (q, Q) induces a distribu-
tion on full rankings via a construction similar to the construction in the proof of Theorem 2.13. �

2.C. Additional material for Section 2.4

2.C.1. The gradient trick — how to deal with convex losses via a reduction to the
linear case

Freund et al. [71] consider the case of convex aggregation in the context of sleeping experts and
design several strategies, each specific to a convex loss function. Devaine et al. explain in Section 2.2
of Devaine et al. [60] how to reduce the problem of convex aggregation to linear losses, via the
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standard gradient trick (see, e.g., Section 2.5 of Cesa-Bianchi and Lugosi [43]), and could exhibit a
unified analysis of all the strategies of Freund et al. [71].

We briefly recall this reduction here and note that it also holds for the generalization from sleeping
experts to experts that report their confidences.

Setting and notation (see Freund et al. [71]). Suppose the experts predict by choosing an
element xk,t from a convex set X ⊆ Rd of possible predictions, and that their losses at round
t are determined by a convex and differentiable function ft, such that `k,t = ft(xk,t). At each
step, the forecaster chooses a weight vector pt over At and aggregates the expert forecasts as
x̂t =

∑
k∈At pk,txk,t , with resulting loss ̂̀t = ft

(
x̂t
)
.

Instead of competing with the best expert, we may wish to compete with the best fixed convex
combination of experts in the following way. At round t, a weight vector q with nonnegative
components that sum to 1 aggregates the forecasts according to

xq,t =
∑
k∈At

qkIk,t
Qt(q)

xk,t where Qt(q) =
∑
k′∈At

qk′Ik′,t ;

the resulting loss equals ft(xq,t).

The regret with respect to a given q is then defined as

Rc
q,T =

T∑
t=1

Qt(q)
(̂̀
t − ft(xq,t)

)
,

which reduces to the confidence regret of Section 2.4 if q is a point-mass.

The reduction to linear losses. We may now reduce this problem to the case of linear losses
considered in Sections 2.1 and 2.4. We do so by resorting to the so-called gradient trick. We denote
by ∇ft the gradient of ft and introduce pseudo-losses `′k,t = ∇ft(x̂t)>xk,t for all experts k. We
denote by `′t the vector of the pseudo-losses. Because of the convexity inequality

ft(y) > ft(x) +∇ft(x)>(y − x) ∀x, y ∈ X ,

we have

max
q

Rc
q,T = max

q

T∑
t=1

Qt(q)
(
ft
(
x̂t
)
− ft(xq,t)

)
6 max

q

T∑
t=1

Qt(q)
(
∇ft

(
x̂t
)>(

x̂t − xq,t
))

= max
q

T∑
t=1

Qt(q)

p>t `′t − ∑
k∈At

qkIk,t
Qt(q)

`′k,t

.
Substituting the definition of Qt(q), we get that maxq R

c
q,T is upper-bounded by

max
q

T∑
t=1

∑
k′∈At

qk′Ik′,tp
>
t `
′
t −

∑
k∈At

qkIk,t`
′
k,t

 = max
q

K∑
k=1

qk

T∑
t=1

Ik,t
(
p>t `

′
t − `′k,t

)
︸ ︷︷ ︸

Rc
k,T

= max
k

Rc
k,T ,
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where the first equality is because Ik,t = 0 for k 6∈ At, and the last equality follows by linearity of
the expression in q.

Therefore, any regret bound for the linear prediction setting with losses `′k,t implies a bound for
competing with the best convex combination of expert predictions in the original convex setting
with losses `k,t.

2.C.2. Hedge with multiple learning rates for experts that report their confidences

In this section, we discuss another algorithm with multiple learning rates, which was proposed
by Blum and Mansour [29]. We slightly adjust its presentation so that it fits the setting of this
chapter: Blum and Mansour always consider all combinations of K experts and M confidences
M = {I1,t, . . . , IM,t}, which they refer to as “time selection functions.” These enter as

√
ln(KM) in

their Theorem 16. To recover their setting, we can consider M copies of each expert, one for each
“time selection function”, so that our effective number of experts becomes KM and we also obtain
a
√

ln(KM) factor in our bounds. Converse, to couple time selection functions and experts, like
we do, Blum and Mansour (see their Section 6) simply takeM = {I1,t, . . . , IK,t}, so that M = K

and hence they obtain
√

ln(KM) =
√

2 lnK, which is the same as our
√

lnK up to a factor
√

2.
Thus the two settings are essentially equivalent.

Theorem 2.18. — Adapted from Blum and Mansour [29]. For all K-tuples η of positive learn-
ing rates in [0, 1]K , for all sequences of loss vectors `t ∈ [0, 1]K and of confidences (I1,t, . . . , IK,t) ∈
[0, 1]K , the confidence regret of Algorithm 4 is bounded as follows: for all experts k ∈ {1, . . . ,K},

Rck,t =
T∑
t=1

Ik,t
(̂̀
t − `k,t

)
6

ln(1/wk,0)

ηk
+ (e− 1)ηk

T∑
t=1

Ik,t`k,t + (e− 1) ln(1/wk,0) . (2.42)

Optimizing (2.42) with respect to ηk, for all k ∈ {1, . . . ,K} we obtain

Rck,t 6 2

√√√√(e− 1)

T∑
t=1

Ik,t`k,t ln(1/wk,0) + (e− 1) ln(1/wk,0) ,

as indicated in (2.9).

Remark 2.3. Although, in practice, we cannot optimize (2.42) with respect to ηk, it is possible
to tune the parameters ηk,t of MLC-Hedge sequentially using a similar approach as in the proof
of Theorem 2.3, at the same small O(ln lnT ) cost. (We believe that there is some cost here for
this tuning; the bound stated in Section 6 of Blum and Mansour [29] only considers the case of an
optimization in hindsight and alludes to the possibility of some online tuning, not working out the
details.)

The analysis of MLC-Hedge suggests that its bound can probably not be obtained in a two-step
procedure, by first exhibiting a bound in the standard setting for some ML-Hedge algorithm and
then applying the generic reduction from Section 2.4 to get an algorithm suited for experts that
report their confidences. Thus, the approach taken in the main body of this chapter seems more
general.
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Algorithm 4: Hedge with multiple learning rates for experts reporting confidences (MLC-Hedge)

Parameters: a vector η = (η1, . . . , ηK) of learning rates
Initialization: a vector w0 = (w1,0, . . . , wK,0) of nonnegative weights that sum to 1

For each round t = 1, 2, . . .
1. form the mixture pt defined by

pk,t =
Ik,t
(
1− e−ηk

)
wk,t−1∑K

k′=1 Ik′,t
(
1− e−ηk′

)
wk′,t−1

2. observe the loss vector `t and incur loss ̂̀t = p>t `t
3. for each expert k perform the update

wk,t = wk,t−1 exp
(
ηk Ik,t

(
e−ηk ̂̀t − `k,t))

Proof (of Theorem 2.18) As in the proof of Theorem 2.1, we upper and lower bound lnWT .
For all k, the lower bound WT > wk,T together with the fact that

wk,T = wk,0 exp

(
ηk

T∑
t=1

Ik,t
(
e−ηk ̂̀t − `k,t)

)
,

yields
T∑
t=1

Ik,t
(
e−ηk ̂̀t − `k,t) 6 lnWT + ln(1/wk,0)

ηk
,

which entails
T∑
t=1

Ik,t ̂̀t 6
(

T∑
t=1

Ik,t`k,t +
lnWT + ln(1/wk,0)

ηk

)
eηk . (2.43)

We now upper-bound WT by W0 = 1. To do so, we show that Wt+1 6 Wt for all t > 0. By the
weight update (step 3 of the algorithm), Wt =

∑K
k=1wk,t equals

K∑
k=1

wk,t−1 exp
(
ηk Ik,t

(
e−ηk ̂̀t − `k,t)) =

K∑
k=1

wk,t−1 exp
(
−ηkIk,t`k,t

)
exp
(
ηke
−ηkIk,t ̂̀t). (2.44)

For all η ∈ R, the function x ∈ [0, 1] 7→ eηx is convex, and therefore,

eηx 6 (1− x)e0 + x eη = 1−
(
1− eη

)
x .

In particular for all η > 0 and for all x ∈ [0, 1]

e−ηx 6 1−
(
1− e−η

)
x and eηx 6 1 +

(
1− e−η

)
eηx . (2.45)

Bounding (2.44) further with the two inequalities stated above, we get
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Wt 6
K∑
k=1

wk,t−1

(
1−

(
1− e−ηk

)
Ik,t`k,t

)(
1 +

(
1− e−ηk

)
���

�
eηk e−ηkIk,t ̂̀t)

6
K∑
k=1

wk,t−1

(
1 +

(
1− e−ηk

)
Ik,t
(̂̀
t − `k,t

))
= Wt−1 +

K∑
k=1

wk,t−1

(
1− e−ηk

)
Ik,t︸ ︷︷ ︸

=Zt pk,t

(̂̀
t − `k,t

)

= Wt−1 + Zt

( ̂̀
t −

K∑
k=1

pk,t`k,t︸ ︷︷ ︸
=0

)
= Wt−1 ,

where Zt =
∑K

k′=1wk′,t−1

(
1− e−ηk′

)
Ik′,t and the first equality is by the definition of pt (step 1 of

the algorithm). This concludes the induction.

We then get from (2.43)

T∑
t=1

Ik,t ̂̀t 6
(

T∑
t=1

Ik,t`k,t +
ln(1/wk,0)

ηk

)
eηk .

The claim of the theorem follows by the upper bound eηk 6 1 + (e− 1)ηk for ηk ∈ [0, 1], which is a
special case of (2.45). �





3
Mirror descent meets fixed share (and feels no regret)

Mirror descent with an entropic regularizer is known to achieve shifting regret bounds that are
logarithmic in the dimension. This is done using either a carefully designed projection or by a weight
sharing technique. Via a novel unified analysis, we show that these two approaches deliver essentially
equivalent bounds on a notion of regret generalizing shifting, adaptive, discounted, and other related
regrets. Our analysis also captures and extends the generalized weight sharing technique of Bousquet
and Warmuth, and can be refined in several ways, including improvements for small losses and
adaptive tuning of parameters.
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3.1. Introduction

Online convex optimization is a sequential prediction paradigm in which, at each time step, the
learner chooses an element from a fixed convex set S and then is given access to a convex loss
function defined on the same set. The value of the function on the chosen element is the learner’s
loss. Many problems such as prediction with expert advice, sequential investment, and online re-
gression/classification can be viewed as special cases of this general framework. Online learning
algorithms are designed to minimize the regret. The standard notion of regret is the difference
between the learner’s cumulative loss and the cumulative loss of the single best element in S. A
much harder criterion to minimize is shifting regret, which is defined as the difference between
the learner’s cumulative loss and the cumulative loss of an arbitrary sequence of elements in S.
Shifting regret bounds are typically expressed in terms of the shift, a notion of regularity measuring
the length of the trajectory in S described by the comparison sequence (i.e., the sequence of ele-
ments against which the regret is evaluated). In online convex optimization, shifting regret bounds
for convex subsets S ⊆ Rd are obtained for the projected online mirror descent (or follow-the-
regularized-leader) algorithm. In this case the shift is typically computed in terms of the p-norm
of the difference of consecutive elements in the comparison sequence —see Herbster and Warmuth
[93], Zinkevich [151] and Cesa-Bianchi and Lugosi [43].

We focus on the important special case when S is the simplex. In Herbster and Warmuth [93]
shifting bounds are shown for projected mirror descent with entropic regularizers using a 1-norm
to measure the shift.∗ When the comparison sequence is restricted to the corners of the simplex
(which is the setting of prediction with expert advice), then the shift is naturally defined to be the
number of times the trajectory moves to a different corner. This problem is often called “tracking
the best expert” —see, e.g., Herbster and Warmuth [92], Vovk [141], Herbster and Warmuth [93],
Bousquet and Warmuth [32], Duchi et al. [62], and it is well known that exponential weights
with weight sharing, which corresponds to the fixed-share algorithm of Herbster and Warmuth
[92], achieves a good shifting bound in this setting. In Bousquet and Warmuth [32] the authors
introduce a generalization of the fixed-share algorithm, and prove various shifting bounds for any
trajectory in the simplex. However, their bounds are expressed using a quantity that corresponds
to a proper shift only for trajectories on the simplex corners.

In this chapter we offer a unified analysis of mirror descent, fixed share, and the generalized fixed
share of Bousquet and Warmuth [32] for the setting of online convex optimization in the simplex.
Our bounds are expressed in terms of a notion of shift based on the total variation distance. Our
analysis relies on a generalized notion of shifting regret which includes, as special cases, related
notions of regret such as adaptive regret, discounted regret, and regret with time-selection functions.
Perhaps surprisingly, we show that projected mirror descent and fixed share achieve essentially the
same generalized regret bound. Finally, we show that widespread techniques in online learning,
such as improvements for small losses and adaptive tuning of parameters, are all easily captured
by our analysis.

∗Similar 1-norm shifting bounds can also be proven using the analysis of Zinkevich [151]. However, without using
entropic regularizers it is not clear how to achieve a logarithmic dependence on the dimension, which is one of the
advantages of working in the simplex.
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3.2. Preliminaries

For simplicity, we derive our results in the setting of online linear optimization. As we show in the
supplementary material, these results can be easily extended to the more general setting of online
convex optimization through a standard linearization step.

Online linear optimization may be cast as a repeated game between the forecaster and the envi-
ronment as follows. We use ∆d to denote the simplex

{
q ∈ [0, 1]d : ‖q‖1 = 1

}
.

For each round t = 1, . . . , T ,
1. Forecaster chooses p̂t = (p̂1,t, . . . , p̂d,t) ∈ ∆d

2. Environment chooses a loss vector `t = (`1,t, . . . , `d,t) ∈ [0, 1]d

3. Forecaster suffers loss p̂>t `t .

Figure 3.1.: Online linear optimization in the simplex.

The goal of the forecaster is to minimize the accumulated loss, e.g., L̂T =
∑T

t=1 p̂
>
t `t. In the now

classical problem of prediction with expert advice, the goal of the forecaster is to compete with the
best fixed component (often called “expert”) chosen in hindsight, that is, with mini=1,...,T

∑T
t=1 `i,t;

or even to compete with a richer class of sequences of components. In Section 3.3 we state more
specifically the goals considered in this chapter.

We start by introducing our main algorithmic tool, described in Figure 5, a share algorithm whose
formulation generalizes the seemingly unrelated formulations of the algorithms studied in Herb-
ster and Warmuth [92, 93], Bousquet and Warmuth [32]. It is parameterized by the “mixing func-
tions” ψt : [0, 1]td → ∆d for t > 2 that assign probabilities to past “pre-weights” as defined below.
In all examples discussed in this chapter, these mixing functions are quite simple, but working with
such a general model makes the main ideas more transparent. We then provide a simple lemma that
serves as the starting point† for analyzing different instances of this generalized share algorithm.

Algorithm 5: The generalized share algorithm.

Parameters: learning rate η > 0 and mixing functions ψt for t > 2

Initialization: p̂1 = v1 = (1/d, . . . , 1/d)

For each round t = 1, . . . , T ,
1. Predict p̂t ;
2. Observe loss `t ∈ [0, 1]d ;
3. [loss update] For each j = 1, . . . , d define

vj,t+1 =
p̂j,t e

−η `j,t∑d
i=1 p̂i,t e

−η `i,t
the current pre-weights, and vt+1 = (v1,t+1, . . . , vd,t+1);

Vt+1 =
[
vi,s
]
16i6d, 16s6t+1

the d× (t+ 1) matrix of all past and current pre-weights;
4. [shared update] Define p̂t+1 = ψt+1

(
Vt+1

)
.

†We only deal with linear losses in this chapter. However, it is straightforward that for sequences of η–exp-concave
loss functions, the additional term η/8 in the bound is no longer needed.
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Lemma 3.1. For all t > 1 and for all qt ∈ ∆d, Algorithm 5 satisfies

(
p̂t − qt

)>
`t 6

1

η

d∑
i=1

qi,t ln
vi,t+1

p̂i,t
+
η

8
.

Proof By Hoeffding’s inequality (see, e.g., Cesa-Bianchi and Lugosi [43, Section A.1.1]),

d∑
j=1

p̂j,t `j,t 6 −
1

η
ln

 d∑
j=1

p̂j,t e
−η `j,t

+
η

8
. (3.1)

By definition of vi,t+1, for all i = 1, . . . , d we then have
∑d

j=1 p̂j,t e
−η `j,t = p̂i,t e

−η `i,t/vi,t+1, which
implies p̂>t `t 6 `i,t + (1/η) ln(vi,t+1/p̂i,t) + η/8. The proof is concluded by taking a convex
aggregation with respect to qt. �

3.3. A generalized shifting regret for the simplex

We now introduce a generalized notion of shifting regret which unifies and generalizes the notions of
discounted regret (see Cesa-Bianchi and Lugosi [43, Section 2.11]), adaptive regret (see Hazan and Se-
shadhri [90]), and shifting regret (see Zinkevich [151]). For a fixed horizon T , a sequence of discount
factors βt,T > 0 for t = 1, . . . , T assigns varying weights to the instantaneous losses suffered at each
round. We compare the total loss of the forecaster with the loss of an arbitrary sequence of vectors
q1, . . . , qT in the simplex ∆d. Our goal is to bound the regret

T∑
t=1

βt,T p̂
>
t `t −

T∑
t=1

βt,T q
>
t `t

in terms of the “regularity” of the comparison sequence q1, . . . , qT and of the variations of the
discounting weights βt,T . By setting ut = βt,T q

>
t ∈ Rd+, we can rephrase the above regret as

T∑
t=1

‖ut‖1 p̂>t `t −
T∑
t=1

u>t `t . (3.2)

In the literature on tracking the best expert Herbster and Warmuth [92], Vovk [141], Herb-
ster and Warmuth [93], Bousquet and Warmuth [32], the regularity of the sequence u1, . . . ,uT
is measured as the number of times ut 6= ut+1. We introduce the following regularity measure

m(uT1 ) =
T∑
t=2

DTV(ut,ut−1) (3.3)

where for x = (x1, . . . , xd),y = (y1, . . . , yd) ∈ Rd+, we defineDTV(x,y) =
∑

xi>yi
(xi−yi). Note that

when x,y ∈ ∆d, we recover the total variation distance DTV(x,y) = 1
2 ‖x− y‖1, while for general

x,y ∈ Rd+, the quantityDTV(x,y) is not necessarily symmetric and is always bounded by ‖x− y‖1.
The traditional shifting regret of Herbster and Warmuth [92], Vovk [141], Herbster and Warmuth
[93], Bousquet and Warmuth [32] is obtained from (3.2) when all ut are such that ‖ut‖1 = 1.
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3.4. Projected update

The shifting variant of the EG algorithm analyzed in Herbster and Warmuth [93] is a special case
of the generalized share algorithm in which the function ψt+1 performs a projection of the pre-
weights on the convex set ∆α

d = [α/d, 1]d ∩∆d. Here α ∈ (0, 1) is a fixed parameter. We can prove
(using techniques similar to the ones shown in the next section—see the supplementary material)
the following bound which generalizes Herbster and Warmuth [93, Theorem 16].

Theorem 3.2. For all T > 1, for all sequences `1, . . . , `t ∈ [0, 1]d of loss vectors, and for all
u1, . . . ,uT ∈ Rd+, if Algorithm 1 is run with the above update, then

T∑
t=1

‖ut‖1 p̂>t `t −
T∑
t=1

u>t `t 6
‖u1‖1 ln d

η
+
m(uT1 )

η
ln
d

α
+
(η

8
+ α

) T∑
t=1

‖ut‖1 . (3.4)

This bound can be optimized by a proper tuning of α and η parameters. We show a similarly tuned
(and slightly better) bound in Corollary 3.4.

3.5. Fixed-share update

Next, we consider a different instance of the generalized share algorithm corresponding to the
update

p̂j,t+1 =
d∑
i=1

(α
d

+ (1− α)1i=j

)
vi,t+1 =

α

d
+ (1− α)vj,t+1 , 0 6 α 6 1 (3.5)

Despite seemingly different statements, this update in Algorithm 5 can be seen to lead exactly to
the fixed-share algorithm of Herbster and Warmuth [92] for prediction with expert advice. We now
show that this update delivers a bound on the regret almost equivalent to (though slightly better
than) that achieved by projection on the subset ∆α

d of the simplex.

Theorem 3.3. With the above update, for all T > 1, for all sequences `1, . . . , `T of loss vectors
`t ∈ [0, 1]d, and for all u1, . . . ,uT ∈ Rd+,

T∑
t=1

‖ut‖1 p̂
>
t `t −

T∑
t=1

u>t `t 6
‖u1‖1 ln d

η
+
η

8

T∑
t=1

‖ut‖1

+
m(uT1 )

η
ln
d

α
+

∑T
t=2 ‖ut‖1 −m(uT1 )

η
ln

1

1− α
.

Note that if we only consider vectors of the form ut = qt = (0, . . . , 0, 1, 0, . . . , 0) then m(qT1 ) corre-
sponds to the number of times qt+1 6= qt in the sequence qT1 . We thus recover Herbster and War-
muth [92, Theorem 1] and Bousquet and Warmuth [32, Lemma 6] from the much more general
Theorem 3.3.

The fixed-share forecaster does not need to “know” anything in advance about the sequence of the
norms ‖ut‖ for the bound above to be valid. Of course, in order to minimize the obtained upper
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bound, the tuning parameters α, η need to be optimized and their values will depend on the maximal
values ofm(uT1 ) and

∑T
t=1 ‖ut‖1 for the sequences one wishes to compete against. This is illustrated

in the following corollary, whose proof is omitted. Therein, h(x) = −x lnx−(1−x) ln(1−x) denotes
the binary entropy function for x ∈ [0, 1]. We recall‡ that h(x) 6 x ln(e/x) for x ∈ [0, 1].

Corollary 3.4. Suppose Algorithm 5 is run with the update (3.5). Let m0 > 0 and U0 > 0. For
all T > 1, for all sequences `1, . . . , `T of loss vectors `t ∈ [0, 1]d, and for all sequences u1, . . . ,uT ∈
Rd+ with ‖u1‖1 +m(uT1 ) 6 m0 and

∑T
t=1 ‖ut‖1 6 U0,

T∑
t=1

‖ut‖1 p̂
>
t `t −

T∑
t=1

u>t `t 6

√√√√U0

2

(
m0 ln d+ U0 h

(
m0

U0

))
6

√√√√U0m0

2

(
ln d+ ln

(
eU0

m0

))

whenever η and α are optimally chosen in terms of m0 and U0.

Proof (of Theorem 3.3) Applying Lemma 3.1 with qt = ut/ ‖ut‖1, and multiplying by ‖ut‖1,
we get for all t > 1 and ut ∈ Rd+

‖ut‖1 p̂
>
t `t − u>t `t 6

1

η

d∑
i=1

ui,t ln
vi,t+1

p̂i,t
+
η

8
‖ut‖1 . (3.6)

We now examine

d∑
i=1

ui,t ln
vi,t+1

p̂i,t
=

d∑
i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
+

d∑
i=1

(
ui,t−1 ln

1

vi,t
− ui,t ln

1

vi,t+1

)
. (3.7)

For the first term on the right-hand side, we have

d∑
i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
=

∑
i :ui,t>ui,t−1

(
(ui,t − ui,t−1) ln

1

p̂i,t
+ ui,t−1 ln

vi,t
p̂i,t

)

+
∑

i :ui,t<ui,t−1

(
(ui,t − ui,t−1) ln

1

vi,t︸ ︷︷ ︸
60

+ui,t ln
vi,t
p̂i,t

)
. (3.8)

In view of the update (3.5), we have 1/p̂i,t 6 d/α and vi,t/p̂i,t 6 1/(1 − α). Substituting in (3.8),
we get

d∑
i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)

6
∑

i :ui,t>ui,t−1

(ui,t − ui,t−1) ln
d

α
+

 ∑
i: ui,t>ui,t−1

ui,t−1 +
∑

i: ui,t<ui,t−1

ui,t

 ln
1

1− α

‡As can be seen by noting that ln
(
1/(1− x)

)
< x/(1− x)
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= DTV(ut,ut−1) ln
d

α
+

 d∑
i=1

ui,t −
∑

i :ui,t>ui,t−1

(ui,t − ui,t−1)


︸ ︷︷ ︸

=‖ut‖1−DTV(ut,ut−1)

ln
1

1− α
.

The sum of the second term in (3.7) telescopes. Substituting the obtained bounds in the first sum
of the right-hand side in (3.7), and summing over t = 2, . . . , T , leads to

T∑
t=2

d∑
i=1

ui,t ln
vi,t+1

p̂i,t
6 m(uT1 ) ln

d

α
+

(
T∑
t=2

‖ut‖1 −m(uT1 )

)
ln

1

1− α

+

d∑
i=1

ui,1 ln
1

vi,2
− ui,T ln

1

vi,T+1︸ ︷︷ ︸
60

.

We hence get from (3.6), which we use in particular for t = 1,

T∑
t=1

‖ut‖1 p̂
>
t `t − u>t `t 6

1

η

d∑
i=1

ui,1 ln
1

p̂i,1
+
η

8

T∑
t=1

‖ut‖1

+
m(uT1 )

η
ln
d

α
+

∑T
t=2 ‖ut‖1m(uT1 )

η
ln

1

1− α
.

�

3.6. Applications

We now show how our regret bounds can be specialized to obtain bounds on adaptive and discounted
regret, and on regret with time-selection functions. We show regret bounds only for the specific
instance of the generalized share algorithm using update (3.5); but the discussion below also holds
up to minor modifications for the forecaster studied in Theorem 3.2.

Adaptive regret was introduced by Hazan and Seshadhri [90] and can be viewed as a variant
of discounted regret where the monotonicity assumption is dropped. For τ0 ∈ {1, . . . , T}, the τ0-
adaptive regret of a forecaster is defined by

Rτ0−adapt
T = max

[r, s] ⊂ [1, T ]

s+ 1− r 6 τ0

{
s∑
t=r

p̂>t `t − min
q∈∆d

s∑
t=r

q>`t

}
. (3.9)

The fact that this is a special case of (3.2) clearly emerges from the proof of Corollary 3.5 below
here.

Adaptive regret is an alternative way to measure the performance of a forecaster against a changing
environment. It is a straightforward observation that adaptive regret bounds also lead to shifting
regret bounds (in terms of hard shifts). In this chapter we note that these two notions of regret share
an even tighter connection, as they can be both viewed as instances of the same alma mater notion of
regret, i.e., the generalized shifting regret introduced in Section 3.3. The work Hazan and Seshadhri
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[90] essentially considered the case of online convex optimization with exp-concave loss function;
in case of general convex functions, they also mentioned that the greedy projection forecaster of
Zinkevich [151] enjoys adaptive regret guarantees. This is obtained in much the same way as we
obtain an adaptive regret bound for the fixed-share forecaster in the next result.

Corollary 3.5. Suppose that Algorithm 5 is run with the shared update (3.5). Then for all
T > 1, for all sequences `1, . . . , `T of loss vectors `t ∈ [0, 1]d, and for all τ0 ∈ {1, . . . , T},

Rτ0−adapt
T 6

√
τ0

2

(
τ0 h

(
1

τ0

)
+ ln d

)
6

√
τ0

2
ln(edτ0)

whenever η and α are chosen optimally (depending on τ0 and T ).

As mentioned in Hazan and Seshadhri [90], standard lower bounds on the regret show that the
obtained bound is optimal up to the logarithmic factors.

Proof For 1 6 r 6 s 6 T and q ∈ ∆d, the regret in the right-hand side of (3.9) equals the
regret considered in Theorem 3.3 against the sequence uT1 defined as ut = q for t = r, . . . , s and
0 = (0, . . . , 0) for the remaining t. When r > 2, this sequence is such that DTV(ur,ur−1) =

DTV(q,0) = 1 and DTV(us+1,us) = DTV(0, q) = 0 so that m(uT1 ) = 1, while ‖u1‖1 = 0. When
r = 1, we have ‖u1‖1 = 1 and m(uT1 ) = 0. In all cases, m(uT1 ) + ‖u1‖1 = 1, that is, m0 = 1.
Specializing the bound of Theorem 3.3 with the additional choice U0 = τ0 gives the result. �

Discounted regret was introduced in Cesa-Bianchi and Lugosi [43, Section 2.11] and is defined
by

max
q∈∆d

T∑
t=1

βt,T
(
p̂>t `t − q>`t

)
. (3.10)

The discount factors βt,T measure the relative importance of more recent losses to older losses.
For instance, for a given horizon T , the discounts βt,T may be larger as t is closer to T . On the
contrary, in a game-theoretic setting, the earlier losses may matter more then the more recent ones
(because of interest rates), in which case βt,T would be smaller as t gets closer to T . We mostly
consider below monotonic sequences of discounts (both non-decreasing and non-increasing). Up to a
normalization, we assume that all discounts βt,T are in [0, 1]. As shown in Cesa-Bianchi and Lugosi
[43], a minimal requirement to get non-trivial bounds is that the sum of the discounts satisfies
UT =

∑
t6T βt,T →∞ as T →∞.

A natural objective is to show that the quantity in (3.10) is o(UT ), for instance, by bounding it
by something of the order of

√
UT . We claim that Corollary 3.4 does so, at least whenever the

sequences (βt,T ) are monotonic for all T . To support this claim, we only need to show that m0 = 1

is a suitable value to deal with (3.10). Indeed, for all T > 1 and for all q ∈ ∆d, the measure of
regularity involved in the corollary satisfies

‖β1,Tq‖1 +m
(
(βt,Tq)t6T

)
= β1,T +

T∑
t=2

(
βt,T − βt−1,T

)
+

= max
{
β1,T , βT,T

}
6 1 ,

where the second equality follows from the monotonicity assumption on the discounts.
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The values of the discounts for all t and T are usually known in advance. However, the horizon T
is not. Hence, a calibration issue may arise. The online tuning of the parameters α and η shown in
Section 3.7.3 entails a forecaster that can get discounted regret bounds of the order

√
UT for all T .

The fundamental reason for this is that the discounts only come in the definition of the fixed-share
forecaster via their sums. In contrast, the forecaster discussed in Cesa-Bianchi and Lugosi [43,
Section 2.11] weighs each instance t directly with βt,T (i.e., in the very definition of the forecaster)
and enjoys therefore no regret guarantees for horizons other than T (neither before T nor after T ).
Therein, the knowledge of the horizon T is so crucial that it cannot be dealt with easily, not even
with online calibration of the parameters or with a doubling trick. We insist that for the fixed-share
forecaster, much flexibility is gained as some of the discounts βt,T can change in a drastic manner
for a round T to values βt,T+1 for the next round. However we must admit that the bound of
Cesa-Bianchi and Lugosi [43, Section 2.11] is smaller than the one obtained above, as it of the
order of

√∑
t6T β

2
t,T , in contrast to our

√∑
t6T βt,T bound. Again, this improvement was made

possible because of the knowledge of the time horizon.

As for the comparison to the setting of discounted losses of Chernov and Zhdanov [47], we note
that the latter can be cast as a special case of our setting (since the discounting weights take the
special form βt,T = γt . . . γT−1 therein, for some sequence γs of positive numbers). In particular, the
fixed-share forecaster can satisfy the bound stated in Chernov and Zhdanov [47, Theorem 2], for
instance, by using the online tuning techniques of Section 3.7.3. A final reference to mention is the
setting of time-selection functions of Blum and Mansour [29, Section 6], which basically corresponds
to knowing in advance the weights ‖ut‖1 of the comparison sequence u1, . . . ,uT the forecaster will
be evaluated against. We thus generalize their results as well.

3.7. Refinements and extensions

We now show that techniques for refining the standard online analysis can be easily applied to our
framework. We focus on the following: improvement for small losses, sparse target sequences, and
dynamic tuning of parameters. Not all of them where within reach of previous analyses.

3.7.1. Improvement for small losses

The regret bounds of the fixed-share forecaster can be significantly improved when the cumulative
loss of the best sequence of experts is small. The next result improves on Corollary 3.4 whenever
L0 � U0. For concreteness, we focus on the fixed-share update (3.5).

Corollary 3.6. Suppose Algorithm 5 is run with the update (3.5). Let m0 > 0, U0 > 0, and
L0 > 0. For all T > 1, for all sequences `1, . . . , `T of loss vectors `t ∈ [0, 1]d, and for all sequences
u1, . . . ,uT ∈ Rd+ with ‖u1‖1 +m(uT1 ) 6 m0,

∑T
t=1 ‖ut‖1 6 U0, and

∑T
t=1 u

>
t `t 6 L0,

T∑
t=1

‖ut‖1 p̂
>
t `t −

T∑
t=1

u>t `t 6

√√√√L0m0

(
ln d+ ln

(
eU0

m0

))
+ ln d+ ln

(
eU0

m0

)

whenever η and α are optimally chosen in terms of m0, U0, and L0.
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Here again, the parameters α and η may be tuned online using the techniques shown in Section 3.7.3.
The above refinement is obtained by mimicking the analysis of Hedge forecasters for small losses
(see, e.g., Cesa-Bianchi and Lugosi [43, Section 2.4]). In particular, one should substitute Lemma 3.1
with the following lemma in the analysis carried out in Section 3.5; its proof follows from the mere
replacement of Hoeffding’s inequality by Cesa-Bianchi and Lugosi [43, Lemma A.3], which states
that for all η ∈ R and for all random variables X taking values in [0, 1], one has lnE[e−ηX ] 6
(e−η − 1)EX.

Lemma 3.7. Algorithm 5 satisfies

1− e−η

η
p̂>t `t − q>t `t 6

1

η

d∑
i=1

qi,t ln

(
vi,t
p̂i,t+1

)
,

for all qt ∈ ∆d.

3.7.2. Sparse target sequences

The work Bousquet and Warmuth [32] introduced forecasters that are able to efficiently compete
with the best sequence of experts among all those sequences that only switch a bounded number of
times and also take a small number of different values. Such “sparse” sequences of experts appear
naturally in many applications. In this section we show that their algorithms in fact work very well
in comparison with a much larger class of sequences u1, . . . ,uT that are “regular”—that is, m(uT1 ),
defined in (3.3) is small—and “sparse” in the sense that the quantity n(uT1 ) =

∑d
i=1 maxt=1,...,T ui,t

is small. Note that when qt ∈ ∆d for all t, then two interesting upper bounds can be provided.
First, denoting the union of the supports of these convex combinations by S ⊆ {1, . . . , d}, we have
n(qT1 ) 6 |S|, the cardinality of S. Also, n(qT1 ) 6

∣∣{qt, t = 1, . . . , T}
∣∣, the cardinality of the pool

of convex combinations. Thus, n(uT1 ) generalizes the notion of sparsity of Bousquet and Warmuth
[32].

Here we consider a family of shared updates of the form

p̂j,t = (1− α)vj,t + α
wj,t
Zt

, 0 6 α 6 1 , (3.11)

where the wj,t are nonnegative weights that may depend on past and current pre-weights and
Zt =

∑d
i=1wi,t is a normalization constant. Shared updates of this form were proposed by Bous-

quet and Warmuth [32, Sections 3 and 5.2]. Apart from generalizing the regret bounds of Bous-
quet and Warmuth [32], we believe that the analysis given below is significantly simpler and more
transparent. We are also able to slightly improve their original bounds.

We focus on choices of the weights wj,t that satisfy the following conditions: there exists a constant
C > 1 such that for all j = 1, . . . , d and t = 1, . . . , T ,

vj,t 6 wj,t 6 1 and C wj,t+1 > wj,t . (3.12)

The next result improves on Theorem 3.3 when T � d and n(uT1 ) � m(uT1 ), that is, when the
dimension (or number of experts) d is large but the sequence uT1 is sparse. Its proof can be found
in the supplementary material; it is a variation on the proof of Theorem 3.3.
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Theorem 3.8. Suppose Algorithm 5 is run with the shared update (3.11) with weights satisfying
the conditions (3.12). Then for all T > 1, for all sequences `1, . . . , `T of loss vectors `t ∈ [0, 1]d,
and for all sequences u1, . . . ,uT ∈ Rd+,

T∑
t=1

‖ut‖1 p̂
>
t `t −

T∑
t=1

u>t `t 6
n(uT1 ) ln d

η
+
n(uT1 )T lnC

η
+
η

8

T∑
t=1

‖ut‖1

+
m(uT1 )

η
ln

maxt6T Zt
α

+

∑T
t=2 ‖ut‖1 −m(uT1 )

η
ln

1

1− α
.

Corollaries 8 and 9 of Bousquet and Warmuth [32] can now be generalized (and even improved);
we do so—in the supplementary material—by showing two specific instances of the generic up-
date (3.11) that satisfy (3.12).

3.7.3. Online tuning of the parameters

The forecasters studied above need their parameters η and α to be tuned according to various
quantities, including the time horizon T . We show here how the trick of Auer et al. [20] of having
these parameters vary over time can be extended to our setting. For the sake of concreteness we
focus on the fixed-share update, i.e., Algorithm 5 run with the update (3.5). We respectively replace
steps 3 and 4 of its description by the loss and shared updates

vj,t+1 =
p̂

ηt
ηt−1

j,t e−ηt`j,t∑d
i=1 p̂

ηt
ηt−1

i,t e−ηt`i,t
and pj,t+1 =

αt
d

+ (1− αt) vj,t+1 , (3.13)

for all t > 1 and all j ∈ {1, . . . , d}, where (ητ ) and (ατ ) are two sequences of positive numbers,
indexed by τ > 1. We also conventionally define η0 = η1. Theorem 3.3 is then adapted in the
following way (when ηt ≡ η and αt ≡ α, Theorem 3.3 is exactly recovered).

Theorem 3.9. The forecaster based on the updates (3.13) is such that whenever ηt 6 ηt−1

and αt 6 αt−1 for all t > 1, the following performance bound is achieved. For all T > 1, for all
sequences `1, . . . , `T of loss vectors `t ∈ [0, 1]d, and for all u1, . . . ,uT ∈ Rd+,

T∑
t=1

‖ut‖1 p̂
>
t `t −

T∑
t=1

u>t `t 6

(
‖ut‖1
η1

+

T∑
t=2

‖ut‖1
(

1

ηt
− 1

ηt−1

))
ln d

+
m(uT1 )

ηT
ln
d(1− αT )

αT
+

T∑
t=2

‖ut‖1
ηt−1

ln
1

1− αt
+

T∑
t=1

ηt−1

8
‖ut‖1 .

We provide an illustration of this bound in the supplementary material.
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Appendices for Chapter 3

3.A. Online convex optimization on the simplex

By using a standard reduction, the results of the main body of the chapter (for linear optimization
on the simplex) can be applied to online convex optimization on the simplex. In this setting, at
each step t the forecaster chooses p̂t ∈ ∆d and then is given access to a convex loss `t : ∆d → [0, 1].
Now, using Algorithm 5 with the loss vector `t ∈ ∂`t(p̂t) given by a subgradient of `t leads to the
desired bounds. Indeed, by the convexity of `t, the regret at each time t with respect to any vector
ut ∈ Rd+ with ‖ut‖1 > 0 is then bounded as

‖ut‖1
(
`t(p̂t)− `t

(
ut
‖ut‖1

))
6
(
‖ut‖1 p̂t − ut

)>
`t .

3.B. Proofs

3.B.1. Proof of Theorem 3.8; application of the bound to two different updates

Proof The beginning and the end of the proof are similar to the one of Theorem 3.3, as they
do not depend on the specific weight update. In particular, inequalities (3.6) and (3.7) remain the
same. The proof is modified after (3.8), which this time we upper bound using the first condition
in (3.12),

d∑
i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
=

∑
i :ui,t>ui,t−1

(ui,t − ui,t−1) ln
1

p̂i,t
+ ui,t−1 ln

vi,t
p̂i,t

+
∑

i :ui,t<ui,t−1

(ui,t − ui,t−1)︸ ︷︷ ︸
60

ln
1

vi,t︸ ︷︷ ︸
>ln(1/wi,t)

+ui,t ln
vi,t
p̂i,t

. (3.14)

By definition of the shared update (3.11), we have 1/p̂i,t 6 Zt/(αwi,t) and vi,t/p̂i,t 6 1/(1 − α).
We then upper bound the quantity at hand in (3.14) by

∑
i :ui,t>ui,t−1

(ui,t − ui,t−1) ln

(
Zt

αwi,t

)
+

 ∑
i :ui,t>ui,t−1

ui,t−1 +
∑

i :ui,t<ui,t−1

ui,t

 ln
1

1− α

+
∑

i :ui,t<ui,t−1

(ui,t − ui,t−1) ln
1

wi,t

= DTV(ut,ut−1) ln
Zt
α

+
(
‖ut‖1 −DTV(ut,ut−1)

)
ln

1

1− α
+

d∑
i=1

(ui,t − ui,t−1) ln
1

wi,t
.
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Proceeding as in the end of the proof of Theorem 3.3, we then get the claimed bound, provided
that we can show that

T∑
t=2

d∑
i=1

(ui,t − ui,t−1) ln
1

wi,t
6 n(uT1 ) (ln d+ T lnC)− ‖u1‖1 ln d ,

which we do next. Indeed, the left-hand side can be rewritten as

T∑
t=2

d∑
i=1

(
ui,t ln

1

wi,t
− ui,t ln

1

wi,t+1

)
+

T∑
t=2

d∑
i=1

(
ui,t ln

1

wi,t+1
− ui,t−1 ln

1

wi,t

)

6

(
T∑
t=2

d∑
i=1

ui,t ln
C wi,t+1

wi,t

)
+

(
d∑
i=1

ui,T ln
1

wi,T+1
−

d∑
i=1

ui,1 ln
1

wi,2

)

6

(
d∑
i=1

(
max

t=1,...,T
ui,t

) T∑
t=2

ln
C wi,t+1

wi,t

)

+

(
d∑
i=1

(
max

t=1,...,T
ui,t

)
ln

1

wi,T+1
−

d∑
i=1

ui,1 ln
1

wi,2

)

=
d∑
i=1

(
max

t=1,...,T
ui,t

)(
(T − 1) lnC + ln

1

wi,2

)
−

d∑
i=1

ui,1 ln
1

wi,2
,

where we used C > 1 for the first inequality and the second condition in (3.12) for the second
inequality. The proof is concluded by noting that (3.12) entails wi,2 > (1/C)wi,1 > (1/C)vi,1 =

1/(dC) and that the coefficient maxt=1,...,T ui,t − ui,1 in front of ln(1/wi,2) is nonnegative. �

The first update uses wj,t = maxs6t vj,s. Then (3.12) is satisfied with C = 1. Moreover, since a sum
of maxima of nonnegative elements is smaller than the sum of the sums, Zt 6 min{d, t} 6 T . This
immediately gives the following result.

Corollary 3.10. Suppose Algorithm 5 is run with the update (3.11) with wj,t = maxs6t vj,s.
For all T > 1, for all sequences `1, . . . , `T of loss vectors `t ∈ [0, 1]d, and for all q1, . . . , qT ∈ ∆d,

T∑
t=1

p̂>t `t −
T∑
t=1

q>t `t 6
n(qT1 ) ln d

η
+
η

8
T +

m(qT1 )

η
ln
T

α
+
T −m(qT1 )− 1

η
ln

1

1− α
.

The second update we discuss uses wj,t = maxs6t e
γ(s−t)vj,s in (3.11) for some γ > 0. Both condi-

tions in (3.12) are satisfied with C = eγ . One also has that

Zt 6 d and Zt 6
∑
τ>0

e−γτ =
1

1− e−γ
6

1

γ

as ex > 1 + x for all real x. The bound of Theorem 3.8 then instantiates as

n(qT1 ) ln d

η
+
n(qT1 )Tγ

η
+
η

8
T +

m(qT1 )

η
ln

min{d, 1/γ}
α

+
T −m(qT1 )− 1

η
ln

1

1− α

when sequences ut = qt ∈ ∆d are considered. This bound is best understood when γ is tuned
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optimally based on T and on two bounds m0 and n0 over the quantities m(qT1 ) and n(qT1 ). Indeed,
by optimizing n0Tγ+m0 ln(1/γ), i.e., by choosing γ = m0/(n0 T ), one gets a bound that improves
on the one of the previous corollary:

Corollary 3.11. Let m0, n0 > 0. Suppose Algorithm 5 is run with the update

wj,t = max
s6t

eγ(s−t)vj,s

where γ = m0/(n0 T ). For all T > 1, for all sequences `1, . . . , `T of loss vectors `t ∈ [0, 1]d, and for
all q1, . . . , qT ∈ ∆d such that m(qT1 ) 6 m0 and n(qT1 ) 6 n0, we have

T∑
t=1

p̂>t `t −
T∑
t=1

q>t `t 6
n0 ln d

η
+
m0

η

(
1 + ln min

{
d,
n0 T

m0

})
+
η

8
T +

m0

η
ln

1

α
+
T −m0 − 1

η
ln

1

1− α
.

As the factors e−γt cancel out in the numerator and denominator of the ratio in (3.11), there is a
straightforward implementation of the algorithm (not requiring the knowledge of T ) that needs to
maintain only d weights.

In contrast, the corresponding algorithm of Bousquet and Warmuth [32], using the updates p̂j,t =

(1 − α)vj,t + αS−1
t

∑
s6t−1(s − t)−1vj,s or p̂j,t = (1 − α)vj,t + αS−1

t maxs6t−1(s − t)−1vj,s, where
St denote normalization factors, needs to maintain O(dT ) weights with a naive implementation,
and O(d lnT ) weights with a more sophisticated one. In addition, the obtained bounds are slightly
worse than the one stated above in Corollary 3.11 as an additional factor of m0 ln(1 + lnT ) is
present in Bousquet and Warmuth [32, Corollary 9].

3.B.2. Proof of Theorem 3.9; illustration of the obtained bound

We first adapt Lemma 3.1.

Lemma 3.12. The forecaster based on the loss and shared updates (3.13) satisfies, for all t > 1

and for all qt ∈ ∆d,

(
p̂t − qt

)>
`t 6

d∑
i=1

qi,t

(
1

ηt−1
ln

1

p̂i,t
− 1

ηt
ln

1

vi,t+1

)
+

(
1

ηt
− 1

ηt−1

)
ln d+

ηt−1

8
,

whenever ηt 6 ηt−1.

Proof By Hoeffding’s inequality,

d∑
j=1

p̂j,t `j,t 6 −
1

ηt−1
ln

 d∑
j=1

p̂j,t e
−ηt−1 `j,t

+
ηt−1

8
.
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By Jensen’s inequality, since ηt 6 ηt−1 and thus x 7→ x
ηt−1
ηt is convex,

1

d

d∑
j=1

p̂j,t e
−ηt−1`j,t =

1

d

d∑
j=1

(
p̂

ηt
ηt−1

j,t e−ηt`j,t
)ηt−1

ηt

>

1

d

d∑
j=1

p̂

ηt
ηt−1

j,t e−ηt`j,t


ηt−1
ηt

.

Substituting in Hoeffding’s bound we get

p̂>t `t 6 −
1

ηt
ln

 d∑
j=1

p̂

ηt
ηt−1

j,t e−ηt`j,t

+

(
1

ηt
− 1

ηt−1

)
ln d+

ηt−1

8
.

Now, by definition of the loss update in (3.13), for all i ∈ {1, . . . , d},

d∑
j=1

p̂

ηt
ηt−1

j,t e−ηt`j,t =
1

vi,t+1
p̂

ηt
ηt−1

i,t e−ηt`i,t ,

which, after substitution in the previous bound leads to the inequality

p̂>t `t 6 `i,t +
1

ηt−1
ln

1

p̂i,t
− 1

ηt
ln

1

vi,t+1
+

(
1

ηt
− 1

ηt−1

)
ln d+

ηt−1

8
,

valid for all i ∈ {1, . . . , d}. The proof is concluded by taking a convex aggregation over i with
respect to qt. �

The proof of Theorem 3.9 follows the steps of the one of Theorem 3.3; we sketch it below.

Proof (of Theorem 3.9) Applying Lemma 3.12 with qt = ut/ ‖ut‖1, and multiplying by ‖ut‖1,
we get for all t > 1 and ut ∈ Rd+,

‖ut‖1 p̂
>
t `t − u>t `t 6

1

ηt−1

d∑
i=1

ui,t ln
1

p̂i,t
− 1

ηt

d∑
i=1

ui,t ln
1

vi,t+1

+ ‖ut‖1
(

1

ηt
− 1

ηt−1

)
ln d+

ηt−1

8
‖ut‖1 . (3.15)

We will sum these bounds over t > 1 to get the desired result but need to perform first some
additional boundings for t > 2; in particular, we examine

1

ηt−1

d∑
i=1

ui,t ln
1

p̂i,t
− 1

ηt

d∑
i=1

ui,t ln
1

vi,t+1

=
1

ηt−1

d∑
i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
+

d∑
i=1

(
ui,t−1

ηt−1
ln

1

vi,t
− ui,t

ηt
ln

1

vi,t+1

)
, (3.16)

where the first difference in the right-hand side can be bounded as in (3.8) by

d∑
i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
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6
∑

i :ui,t>ui,t−1

(
(ui,t − ui,t−1) ln

1

p̂i,t
+ ui,t−1 ln

vi,t
p̂i,t

)
+

∑
i :ui,t<ui,t−1

ui,t ln
vi,t
p̂i,t

6 DTV (ut,ut−1) ln
d

αt
+
(
‖ut‖1 −DTV (ut,ut−1)

)
ln

1

1− αt

6 DTV (ut,ut−1) ln
d(1− αT )

αT
+ ‖ut‖1 ln

1

1− αt
, (3.17)

where we used for the second inequality that the shared update in (3.13) is such that 1/p̂i,t 6 d/αt
and vi,t/p̂i,t 6 1/(1−αt), and for the third inequality, that αt > αT and x 7→ (1−x)/x is increasing
on (0, 1]. Summing (3.16) over t = 2, . . . , T using (3.17) and the fact that ηt > ηT , we get

T∑
t=2

(
1

ηt−1

d∑
i=1

ui,t ln
1

p̂i,t
− 1

ηt

d∑
i=1

ui,t ln
1

vi,t+1

)

6
m(uT1 )

ηT
ln
d(1− αT )

αT
+

T∑
t=2

‖ut‖1
ηt−1

ln
1

1− αt
+

d∑
i=1

(
ui,1
η1

ln
1

vi,2
−
ui,T
ηT

ln
1

vi,T+1︸ ︷︷ ︸
>0

)
.

An application of (3.15) —including for t = 1, for which we recall that p̂i,1 = 1/d and η1 = η0 by
convention— concludes the proof. �

We now instantiate the obtained bound to the case of, e.g., T–adaptive regret guarantees, when T
is unknown and/or can increase without bounds.

Corollary 3.13. The forecaster based on the updates discussed above with ηt =
√(

ln(dt)
)
/t

for t > 3 and η0 = η1 = η2 = η3 on the one hand, αt = 1/t on the other hand, is such that for all
T > 3 and for all sequences `1, . . . , `T of loss vectors `t ∈ [0, 1]d,

max
[r,s]⊂[1,T ]

{
s∑
t=r

p̂>t `t − min
q∈∆d

s∑
t=r

q>`t

}
6
√

2T ln(dT ) +
√

3 ln(3d) .

Proof The sequence n 7→ ln(n)/n is only non-increasing after round n > 3, so that the defined
sequences of (αt) and (ηt) are non-increasing, as desired. For a given pair (r, s) and a given q ∈ ∆d,
we consider the sequence νT1 defined in the proof of Corollary 3.5; it satisfies that m(uT1 ) 6 1 and
‖ut‖1 6 1 for all t > 1. Therefore, Theorem 3.9 ensures that

s∑
t=r

p̂>t `t − min
q∈∆d

s∑
t=r

q>`t 6
ln d

ηT
+

1

ηT
ln
d(1− αT )

αT︸ ︷︷ ︸
6dT

+
T∑
t=2

1

ηt−1
ln

1

1− αt︸ ︷︷ ︸
6(1/ηT )

∑T
t=2 ln(t/(t−1))=(lnT )/ηT

+
T∑
t=1

ηt−1

8
.

It only remains to substitute the proposed values of ηt and to note that

T∑
t=1

ηt−1 6 3η3 +

T−1∑
t=3

1√
t

√
ln(dT ) 6 3

√
ln(3d)

3
+ 2
√
T
√

ln(dT ) .

�
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3.B.3. Proof of Theorem 3.2

We recall that the forecaster at hand is the one described in Algorithm 5, with the shared update
p̂t+1 = ψt+1

(
Vt+1

)
for

ψt+1

(
Vt+1

)
∈ arg min

x∈∆α
d

K(x,vt+1) , where K(x,vt+1) =

d∑
i=1

xi ln
xi

vi,t+1
(3.18)

is the Kullback-Leibler divergence and ∆α
d = [α/d, 1]d ∩∆d is the simplex of convex vectors with

the constraint that each component be larger than α/d.

The proof of the performance bound starts with an extension of Lemma 3.1.

Lemma 3.14. For all t > 1 and for all qt ∈ ∆α
d , the generalized forecaster with the shared

update (3.18) satisfies

(p̂t − qt)>`t 6
1

η

d∑
i=1

qi,t ln
p̂i,t+1

p̂i,t
+
η

8
.

Proof We rewrite the bound of Lemma 3.1 in terms of Kullback-Leibler divergences,

(p̂t − qt)>`t 6
1

η

d∑
i=1

qi,t ln
vi,t+1

pi,t
+
η

8
=
K(qt, p̂t)−K(qt,vt+1)

η
+
η

8

6
K(qt, p̂t)−K(qt, p̂t+1)

η
+
η

8
=

1

η

d∑
i=1

qi,t ln
p̂i,t+1

p̂i,t
+
η

8
,

where the last inequality holds by applying a generalized Pythagorean theorem for Bregman di-
vergences (here, the Kullback-Leibler divergence) —see, e.g., Cesa-Bianchi and Lugosi [43, Lemma
11.3]. �

Proof Let qt =
α

d
+ (1− α)

ut
‖ut‖1

∈ ∆α
d . We have by rearranging the terms for all t,

(
‖ut‖1 p̂t − ut

)>
`t = ‖ut‖1 (p̂t − qt)> `t +

(α
d
‖ut‖1 − αut

)>
`t

6 ‖ut‖1 (p̂t − qt)> `t + α ‖ut‖1 .

Therefore, by applying Lemma 3.14 with qt ∈ ∆α
d , we further upper bound the quantity of interest

as

(
‖ut‖1 p̂t − ut

)>
`t 6

‖ut‖1
η

d∑
i=1

qi,t ln
p̂i,t+1

p̂i,t
+
η

8
‖ut‖1 + α ‖ut‖1 .

The upper bound is rewritten by summing over t and applying an Abel transform to its first term,

T∑
t=1

‖ut‖1
η

d∑
i=1

qi,t ln
p̂i,t+1

p̂i,t
+
η

8
‖ut‖1 + α ‖ut‖1
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=
‖u1‖1 ln d

η
+
‖uT ‖1
η

d∑
i=1

qi,T ln p̂i,T+1︸ ︷︷ ︸
60

+
1

η

T∑
t=2

d∑
i=1

(
‖ut‖1 qi,t − ‖ut−1‖ qi,t−1

)︸ ︷︷ ︸
=(1−α)(ui,t−ui,t−1)

ln
1

p̂i,t︸ ︷︷ ︸
06 · 6ln d

α

+
(η

8
+ α

) T∑
t=1

‖ut‖1

6
‖u1‖1 ln d

η
+

1− α
η

(
T∑
t=2

DTV(ut,ut−1)

)
ln
d

α
+
(η

8
+ α

) T∑
t=1

‖ut‖1 .
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4
Electricity load forecasting by aggregating experts; how to

design an efficient set of experts

Short-term electricity forecasting has been studied for years at EDF and different forecasting models
were developed from various fields of statistics or machine learning (functional data analysis, time
series, nonparametric regression, boosting, bagging). We are interested in the forecasting of France’s
daily electricity consumption based on these different approaches. We investigate in this empirical
study how to use them to improve prediction accuracy. First, we show how combining members of
the original set of forecasts can lead to a significant improvement. Second, we explore how to build
various and heterogeneous forecasts from these models and analyze how we can aggregate them to
get even better predictions.
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4.1. Introduction

Electricity consumption forecasting is a crucial matter for electricity providers like EDF to main-
tain the equilibrium between production and demand. Overestimating the consumption leads to
overproduction, which has a negative environmental impact and implies unnecessary loss of benefits
for the company. On the other hand, underestimating the consumption may cause a shortage of
energy and black outs. In the past years EDF R&D has therefore developed several competitive
forecasting models achieving around 1.4% error in mape (the average of percentage errors, see (4.3)
for a formal definition) at the daily horizon. However the electrical scene in France is constantly
evolving (nuclear power, electric cars, air conditioning are developing for instance) and the opening
of the electricity market induces potential customer losses. Therefore the historical models have to
be regularly reconsidered and challenged. As daily forecasts are the main inputs for optimizing the
production units we consider in this chapter the goal of improving short-term (daily) forecasting
of France’s electricity consumption.

As the historical French electricity provider, EDF has investigated the issue of load forecasting for
years and developed models from a wide range of statistical or machine learning methods. Among
many, we consider in this study three approaches presented below. They were chosen for two main
reasons. First, they have a good forecasting accuracy. Second, they are derived from quite different
statistical frameworks, which results in a sort of heterogeneity. The first model is a nonparametric
model based on regularized regression on spline basis (see Wood [147]). It will be referred to next
as the generalized additive model (GAM). This model has performed well on France’s electricity
consumption signal (see Pierrot and Goude [121]), on EDF portfolio data (see Wood et al. [148])
and was proven to be a good competitor on US data (see Nedellec et al. [117]). The second model
is based on curve linear regression (CLR) via dimension reduction. It is introduced and applied to
electricity consumption forecasting in Cho et al. [50, 51]. The third and last model, kernel wavelet
functional (KWF), is detailed in Antoniadis et al. [17, 18, 16]. It combines clustering functional
data and detection of similar patterns in functional processes based on a wavelet distance.

These three approaches are based on extremely different insights and we expect it can induce
different behaviors that an aggregation algorithm can take advantage of in some online fashion. The
GAM model captures non-linear relationships between electricity load and the different covariates
driving it (temperature, fare effects...) and provides smooth estimates of these transfer functions
without any transformation of the original data. The CLR model performs a data-driven dimension
reduction as well as a data transformation so that the relationship between the transformed data
is linear and can be captured by simple multivariate regression models. The KWF approach is
nonparametric and does not use any exogenous variable but the past consumption. It is particularly
robust to special days (bank holidays, holiday seasons) and meteorological forecasts errors. In the
GAM setting, observations (half-hourly electricity load and covariates) are considered as finite
dimensional whereas in the CLR and the KWF approaches, daily electricity load is the realization
of a functional process.

As we have at our disposal three forecasting models, a straightforward question is how to combine
them to produce accurate forecasts. The art of combining forecasts has been extensively studied
for the past four decades (see the review of Clemen [53]) and the empirical literature is voluminous.
However, few real-world empirical studies consider the framework of individual sequences to design
the aggregation rules. Some of them include for instance climate prediction (Monteleoni et al. [115]),
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air-quality prediction (Mallet [110], Mallet et al. [111]), quantile prediction of daily call volumes
entering call center (Biau and Patra [24]), or electricity consumption (Devaine et al. [60]). The
vast majority of these studies focuses however on the aggregation rules and how to weight the
experts. Little consideration goes into designing the set of experts to include in the combination.
In their technical report Aiolfi et al. [14] studied the construction of a varied enough set of experts
by considering the combination of linear autoregressive models with non-linear models (logistic
smooth transition autoregressive and neural networks). They however did not consider the same
aggregation rules as we do: because of the small length of their time series, none of their rules had
time to learn the weights and the best results were obtained using uniform aggregation scheme.

We now describe the methodology followed in this study. We aim first at designing a set of base
forecasting methods (henceforth referred to as experts) by using the three models described above.
We show how an aggregation rule that sequentially outputs forecasts of the electricity consumption
for the next instances can significantly improve upon these experts. The aggregation rules and the
framework of prediction with expert advice is detailed in Section 4.2. Then, we propose different
strategies to design a larger set of experts from the three initial experts and give a detailed analysis
of the corresponding combined forecasts.

4.2. Sequential aggregation of experts

The content of this section reviews the framework of sequential prediction with expert advice, a
setting which received considerable attention in the past twenty years (see the monograph by Cesa-
Bianchi and Lugosi [43]). It considers an online learning scenario in which a forecaster has to guess
element by element future values of an observed time series. To form its prediction it receives and
combines before each instance the opinions of a finite set of experts. This framework makes possible
to consider several stochastic models with extremely different assumptions in a single approach. To
do so, it adopts the deterministic and robust point of view of the literature of individual sequences.
It is thus particularly adapted to our application.

4.2.1. Mathematical context

We now present the mathematical setting of prediction with expert advice. We suppose that at each
time instance t = 1, ..., T the next outcome yt of a sequence of observations y1, . . . , yT , like half-
hourly electricity consumptions, is to be predicted. We assume that the observations are all bounded
by some positive constant B, so that yt ∈ [0, B]. Before each time instance t, a finite number K of
experts provide forecasts xt = (x1,t, . . . , xK,t) ∈ [0, B]K of the next observation yt. A forecaster is
then asked to form its own prediction with knowledge of the past observations yt−1

1 = y1, . . . , yt−1

and of the past expert advice xt1 = x1, . . . ,xt. Let denote by · the inner product in RK . Formally
the forecaster forms a mixture p̂t = (p̂1,t, . . . , p̂K,t) ∈ RK and predicts ŷt = p̂t · xt =

∑K
k=1 pk,txk,t

by linearly combining the predictions of the experts.

The accuracy of a prediction x proposed by an expert or by the aggregation rule at time instance t
for the outcome yt is measured through a convex loss function `t. In this chapter, we consider the
special case of the square loss `t(x) = (yt−x)2. The analysis can however be easily extended to any
convex loss function. On instance t, expert k suffers loss `t(xk,t) = (yt− xk,t)2 and the aggregation
rule incurs loss `t(ŷt) = (yt − ŷt)2. The goal of the forecaster is to design aggregation rules (that
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is, applications A : (xt1, y
t−1
1 ) 7→ p̂t) with small average error. The latter can be decomposed as

1

T

T∑
t=1

(yt − ŷt)2 def
= inf

q∈S

{
1

T

T∑
t=1

(yt − q · xt)2

}
+RT , (4.1)

where S is some closed and bounded subset of RK ; and this defines the regret RT . As we explain next
this decomposition highlights the well-known trade-off between approximation error and estimation
error. Because these two terms add up to the error incurred by the aggregation rule they act as
two opposing forces.

The first term in (4.1) is the error encountered by the best constant weight vector chosen in hindsight
in a closed and bounded set S ⊂ RK . This best mixture is called an oracle. Its performance is the
target that the aggregation rule intends to reach and is thus used as a benchmark value to be
compared to the performance of an aggregation rule. Several oracles can be defined according to
the set S the aggregation rule aims at competing with. We can list several oracles: the best expert
oracle suffers mink=1,...,K

∑T
t=1(yt − xk,t)2; the best convex weight vector corresponds to the best

element in S = ∆K
def
= {q ∈ RK+ :

∑
i qi = 1}; and finally the best linear oracle is defined by

S = BK(r) the ball of radius r in RK . The larger the set S we aim at competing with, the smaller
the first term in (4.1) is, but the harder it is for the aggregation rule to remain competitive. The
second term grows in general. This approximation error is closely related to the expert forecasts.
It decreases with increasing heterogeneity of the expert set.

The second term RT is the estimation error. It evaluates the ability of the aggregation rule to
retrieve online the oracle, i.e., the best possible mixture. If the aggregation rule is well designed,
RT will vanish to 0 as the length T of the experiment grows to infinity.

We assume in this chapter that we have an efficient aggregation rule and we focus on reducing
the approximation error; indeed many efficient aggregation rules are already well-known— see
Section 4.2.2, but the approximation error is often left out of the debate.

4.2.2. Aggregation rules

Experiments are performed by considering four different aggregation rules: the exponentially weighted
average forecaster (EWA), the fixed share forecaster (FS), the ridge regression forecaster (Ridge),
and the polynomially weighted average forecaster with multiple learning rates (ML-Poly). EWA,
FS, and Ridge are described in the book of Cesa-Bianchi and Lugosi [43] for constant values of
their learning parameters. Devaine et al. [60] already applied EWA and FS to short-term load
forecasting. They suggested in Section 2.4 an empirical tuning of the learning parameters which
comes with no theoretical guarantees but works empirically well. It consists of optimally choosing
the learning parameters on adaptive finite grids. Except for ML-Poly which already comes with its
own learning parameter calibration rule, the parameters are tuned online following the method of
Devaine et al. [60].

The exponentially weighted average forecaster (EWA) is an online convex aggregation rule in-
troduced in learning theory by Littlestone and Warmuth [107] and by Vovk [139]. At time instance t,
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it assigns to expert k the weight

p̂k,t =
e−η

∑t−1
s=1 `s(xk,s)∑K

i=1 e
−η
∑t−1
s=1 `s(xi,s)

,

which is exponentially small in the cumulative loss suffered so far by the expert. When the learning
parameter η is properly tuned, it has a small average regret RT = O

(
1/
√
T
)
with respect to the

best fixed expert oracle— see Cesa-Bianchi and Lugosi [43].

The fixed share forecaster (FS) is due to Herbster and Warmuth [92]. It has the property to
compete not only with the best fixed expert but with the best sequence of experts that may change a
small number of times. It is particularly interesting when dealing with non stationary environments,
in which the best expert should regularly be reconsidered. The fixed share forecaster considers a
learning parameter η as well as a mixing parameter α ∈ [0, 1] that evaluates the number of changes
in the oracle sequence of experts we are competing with.

We now provide a short mathematical description of the fixed share aggregation rule. The initial
weight distribution is uniform p̂1 = (1/K, . . . , 1/K). Then, at each instance t, the weights are
updated twice. First, a loss update takes into account the new loss incurred by each expert,

v̂k,t =
p̂k,t−1e

−η
∑t−1
s=1 `s(xk,s)∑K

i=1 p̂i,t−1e−η
∑t−1
s=1 `s(xi,s)

.

Second a mixing-update ensures that each expert gets a minimal weight α/K by assigning

p̂k,t = (1− α)v̂k,t + α/K .

This update captures the possibility that the best expert may have switched at time instance t.
The fixed share forecaster was proven to have nice theoretical properties and vanishing average
regret RT with respect to sequences of experts with few shifts. For more details about the fixed
share aggregation rule the reader is referred to Cesa-Bianchi and Lugosi [43, Section 5.2].

The polynomially weighted average forecaster with multiple learning rates (ML-Poly) is ob-
tained via a version of the polynomially weighted average forecaster detailed in Cesa-Bianchi and Lu-
gosi [42], see also Cesa-Bianchi and Lugosi [43, Section 2.1]. The multiple learning rate version was
introduced in Chapter 2 whose implementation is recalled in Algorithm 6. In Chapter 2 we proved
the regret bound RT = O

(
1/
√
T
)
with respect to the best fixed expert. ML-Poly is particularly

interesting since despite the theoretical tuning of the learning parameters, it achieves as good per-
formance as the other ones. It runs also much faster than the empirical tuning described by Devaine
et al. [60] and used for the other rules which needs to run as many times the aggregation rule as
the size of the parameter grid.

The ridge regression forecaster (Ridge) is presented in Algorithm 7. It was introduced in a
stochastic setting by Hoerl and Kennard [94]. It forms at each instance the linear combination of
experts minimizing a L2-regularized least-square criterion on past data. It was first studied in the
context of prediction with expert advice by Azoury and Warmuth [21] and Vovk [142] and was
proved to enjoy nice theoretical properties, namely a regret bound RT = o(1) as T → ∞ with
respect to the best linear oracle.
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Algorithm 6: The polynomially weighted average forecaster with multiple learning rates (ML-
Poly)

Initialization: p1 = (1/K, . . . , 1/K) and R0 = (0, . . . , 0)

For each instance t = 1, 2, . . . , T
0. pick the learning rates

ηk,t−1 =

(
1 +

t−1∑
s=1

(
`s(ŷs)− `s(xk,s)

)2)−1

1. form the mixture p̂t defined component-wise by

p̂k,t =
ηk,t−1 (Rk,t−1)+∑K
j=1 ηj,t−1 (Rj,t−1)+

where (x)+ = max{x, 0}.
2. output prediction ŷt = p̂t · xt
3. for each expert k update the regret

Rk,t = Rk,t−1 + `t(ŷt)− `t(xk,t)

Once again, the learning parameter λ of the ridge regression aggregation rule has to be calibrated
online. This tuning can be done using the methodology detailed in Devaine et al. [60, Section 2.4].

Ridge forms linear mixtures. The weights may be negative and not sum to one, while the other
three aggregation rules restrict themselves to convex combination of experts. In other words they
only propose weight vectors p̂t ∈ ∆K where ∆K = {x ∈ RK+ :

∑
i xi = 1}. While linear

aggregation rules might have more flexibility to detect correlation between experts and therefore
often reach better performance, convex aggregation offers easy interpretation and safe predictions.
Indeed convex weight vectors only assign nonnegative weights to experts and their predictions
always lie in the convex hull of experts predictions. Thus if all the experts are known to perform
well, the aggregation rule will do so as well.

The gradient trick. In the versions described above, EWA, FS, and ML-Poly compete only with
the best fixed expert oracle. In Equation (4.1) they cannot per se ensure vanishing average regret
RT with respect to the best fixed convex combination (i.e., S = ∆K). But it exists a standard
reduction from the problem of competing with the best convex combination oracle to the goal
of competing with the best fixed expert. This reduction is a well-known trick in the literature of
individual sequences and is known as the gradient trick. The theoretical proof of this reduction is
beyond the scope of this empirical research and is detailed in Cesa-Bianchi and Lugosi [43, Section
2.5].

We only provide a brief description of the gradient trick. For each time instance t, we denote by
ft : p ∈ ∆K 7→ `t(p·xt) ∈ R+ the function which evaluates the losses incurred by the weight vectors
at time instance t. When the loss functions `t are convex and (sub)differentiable, the functions ft
are convex and (sub)differentiable over ∆K . That is the case for instance for the square loss. We
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Algorithm 7: The ridge regression forecaster (Ridge)

Parameter : λ > 0
Initialization: p̂0 = (1/K, . . . , 1/K)

For each instance t = 1, 2, . . . , T
1. form the mixture p̂t defined by

p̂t = arg min
u∈RK

{
t−1∑
s=1

(ys − u · xs)2 + λ ‖u− p0‖22

}

2. output prediction ŷt = p̂t · xt

denote by ∇ft the (sub)gradient function of ft. The gradient trick relies then on not directly
running the aggregation rule with the loss functions `t but with modified gradient loss functions
f̃t : p ∈ ∆K 7→ ∇ft(p̂t) ·p. In other words, the aggregation rules are run the same way by replacing
the loss `t(ŷt) incurred by the algorithm by f̃t(p̂t) and the loss `t(xk,t) suffered by expert k by
f̃t(δk,t), where δk ∈ ∆K is the Dirac mass on k. Experiments of the next section are run using the
gradient trick.

4.3. Application to electricity load forecasting

We now describe the data we are dealing with and how we intend to build new experts from the three
forecasting models described in the introduction. We then report the results obtained by mixing
the different sets of experts as well as the performance of three reference oracles (best experts,
best convex combination, best linear combination). As explained in Section 4.2 the performance
of these oracles corresponds to the one aggregation rules hope to reach. Remember that the fixed
share aggregation rule does not only compete with the best fixed convex combination but has a
more ambitious goal. It aims at coming close to the performance of the best sequence of convex
combinations that vary slowly enough. The results obtained by this more complex oracle will
however not be reported in this research and we will only compare the performance of the fixed
share aggregation rule to the best fixed convex combination of experts.

4.3.1. Presentation of the data set

We consider an electricity forecasting data set which corresponds to an updated version of the one
analyzed by Devaine et al. [60]. It contains half-hourly measurements of the total electricity con-
sumption of the EDF market in France from January 1, 2008 to June 15, 2012, together with several
covariates, including temperature, cloud cover, wind, etc. Our goal is to forecast the consumption
every day at 12:00 for the next 24 hours; that is, for the next 48 time instances.

Atypical days are excluded from the data set. They correspond to public holidays as well as the
days before and after them. Besides, the data set is cut into two subsets. A training set of 1 452 days
from January 1, 2008 to August 31, 2011 is used to build the forecasting methods. The performance
of the methods is then measured using the testing set of 244 days between September 1, 2011 to
June 15, 2012. Prediction accuracy is measured in megawatts (MW) by the root mean squared
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Mon Tue Wed Thu Fri Sat Sun

Figure 4.1.: [left] The observed half-hourly electricity consumptions between January 1, 2008 to
June 15, 2012. An overall trend as well as a yearly seasonality can be pointed out in the
data. The electrical heating in winter has a major impact in France on the electricity
consumption. Approximately the last year is used to test the methods. [right] The
observed half-hourly electricity consumptions during a typical week. A weekly pattern
can be observed with a reduction of consumption during the week-end.

error (rmse) √√√√ 1

T

T∑
t=1

(yt − ŷt)2 (4.2)

and by the absolute percentage of error (mape)

1

T

T∑
t=1

|yt − ŷt|
yt

. (4.3)

Operational forecasting purposes require the predictions to be made simultaneously at 12:00 for
the next 24 hours (or equivalently for the next 48 half-hourly time instances). Aggregation rules
can be adapted to this constraint via a generic extension detailed in Devaine et al. [60, Section 5.3].

4.3.2. Combining the three initial models

From each of the three forecasting models described in the introduction, one expert is obtained:
one from the generalized additive model (GAM), one from the curve linear regression (CLR) and
a last one from the kernel approach based on wavelets (KWF). The experts are trained using the
total training set from January 1, 2008 to August 31, 2011 described in the previous section. We
calibrate the methods as presented in Antoniadis et al. [16], Cho et al. [50], Pierrot and Goude
[121]. This starting set of three experts is denoted in the rest of the chapter by E0.

Table 4.1 reports the performance obtained by mixing the three experts in E0. It describes also the
reference results of the corresponding benchmark oracles: the best expert in E0, the best convex
combination and the best linear combination. The best convex combination and the best linear
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combination obtain similar results with rmses of 629 MW. Due to confidentiality constraints,
we cannot provide detailed characteristics of the observed electricity consumptions. The relative
performance of the methods can be enjoyed by noting that mapes are around 1%. A significant
improvement in performance can be noted in comparison to the best expert which obtains 744 MW.
This motivates the necessity of mixing these models whose forecasts bring different information.

EWA, FS, and ML-Poly are designed to compete with the best convex combination of experts while
Ridge aims at approaching the performance of the best linear combination. The latter suffer rmses
between 624 MW and 638 MW, which corresponds to reductions of the rmse of approximatively
15% compared to the best expert rmse.

To quantify if our improvements are significant, we computed the dispersion of the errors among
time instances of the aggregation rules and of the oracles— see technical report from Gaillard et al.
[76, Section 1.2] for details. The dispersion is measured by the 95% standard error

ŝt =

√√√√√ 1
T

∑T
t=1

(
(yt − ŷt)2 − 1

T

∑T
t=1 (yt − ŷt)2

)2

4
T

∑T
t=1 (yt − ŷt)2

,

that is, the half-width of the 95% symmetric confidence interval of the error around the rmses
reported in Tables 4.1 to 4.6. The 95% standard error of the rmses are around ten megawatts
while the 95% standard error of the mape are approximatively 0.02%. Hence any reduction of the
rmse of more than 10 MW can be considered significant in the following.

Figure 4.2 reports the time evolution of the weights formed by ML-Poly and Ridge. The weight
vectors created by Ridge converge but that is not obvious with ML-Poly. Stability is beneficial in
an industrial context where weights have to be interpreted and understood by human beings. The
weights formed by EWA and FS behave similarly to the ones of ML-Poly and are thus not reported
here.

In the next section we will investigate how more experts can be designed based on these three
models in order to improve further the predictions.

4.3.3. Creating new experts

We aim now at reducing the approximation error in Equation (4.1), i.e., at improving the perfor-
mance of the oracles, by adding new experts to our initial set E0. If the new experts are not different
enough from the base ones, the approximation term will not decrease; and worse, the right-most
term in (4.1), the sequential estimation error, may increase, as the aggregation rule will have to
face more experts. Note that none of the newly constructed experts will significantly outperform
the performance of the best expert in E0, which achieves a rmse of 744 MW and a mape of 1.29%.
The benchmark performance of the best expert oracle thus remains the same for all considered
extended sets of experts in this study.

Bagging

The first method that we investigate is inspired from bagging, a machine learning method that
combines bootstrapping with aggregating. It was introduced by Breiman [34] in order to improve
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Figure 4.2.: Time evolution of the weight vectors formed by ML-Poly [top] and Ridge [bottom]. We
remark that the weights assigned by ML-Poly are always nonnegative and sum to 1.
Ridge can form negative weights.
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Figure 4.3.: Time evolution of cumulative residual of the three experts in E0 and of the considered
aggregation rules. The aggregation rules have smaller gradient in comparison to the
experts. Besides it can be noticed that Ridge behaves very differently when compared
to the other aggregation rules.

the stability and the accuracy of a forecasting model. As most averaging methods it is known to
reduce the variance and to avoid over-fitting. We aim at creating new experts by bootstrapping
and at averaging online the newly constructed set of experts by running the aggregation rules.

Given a forecasting model, a bootstrapped expert is obtained by estimating the model on a random
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Figure 4.4.: Hourly and monthly rmse of the first three experts and two aggregation rules described
in Table 4.6. Because they obtain similar results to the ML-Poly aggregation rule, the
EWA and the fixed share aggregation rules are not reported here.

training strict subset S′0 (that does not include the whole training set S0 of n = 1 452 days). The
training set S′0 is generated by sampling n days from S0 uniformly and with replacement. As the
sampling is performed with replacement, some days may be present multiple times in S′0. Breiman
[34] pointed out that it leaves out e−1 ≈ 37% of the days.

The bootstrap procedure is repeated 20 times using each of the three models at hand: GAM, CLR,
and KWF. We name E1 the set of 60 new experts, thus created. In our experiments we used 20

bootstrapped replicates of each model. This does not mean that more or fewer replicates would
have led to worse performance. We wanted to add enough replicates to get sufficient variety but
in the other hand we did not want to have too many bootstrapped experts in comparison to the
experts we will build in the following sections. We tested several values and 20 expert replicates
for each model seemed to be a reasonable trade off.

The performance of aggregation rules and oracles on E0 ∪ E1 is reported in Table 4.2. The best
linear combination oracle achieves a rmse of 571 MW, which is a slightly better performance than
the one of the best convex combination oracle, that equals 601 MW. This can be explained by
two facts. First, the new experts might be biased. As their weights do not need to sum to one,
linear mixtures correct better such bias. Second, as many experts are built using the same method,
there are important correlations between them that can be better modeled using negative weights.
However Ridge seems to have a hard time estimating the linear oracle and the performance is not
much improved compared to Table 4.1. The empirical gain is about 10 MW for all aggregation
rules. The improvement is thus not really significant.
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Table 4.1.: Performance of oracles and aggregation rules using the set of experts E0: GAM, CLR,
and KWF.

Oracles and aggregation rules rmse (MW) mape (%)

Best expert 744 1.29
Best convex combination 629 1.06
Best linear combination 629 1.06

EWA 624 1.07
FS 625 1.05
ML-Poly 626 1.05
Ridge 638 1.06

Table 4.2.: Performance of oracles and aggregation rules using the set of experts E0 ∪ E1: GAM,
CLR, KWF as well as the 60 bootstrapped experts.

Oracles and aggregation rules rmse (MW) mape (%)

Best convex combination 601 1.01
Best linear combination 571 0.99

EWA 614 1.01
FS 619 1.03
ML-Poly 612 1.02
Ridge 629 1.05

Table 4.3.: Performance of oracles and aggregation rules using the set of experts E0 ∪ E2: GAM,
CLR, KWF as well as the 24 specialized experts.

Oracles and aggregation rules rmse (MW) mape (%)

Best convex combination 604 1.02
Best linear combination 582 0.99

EWA 609 1.01
FS 610 1.02
ML-Poly 602 1.00
Ridge 613 1.01
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Specialization

We start this section with the intuition that we need variety in our set of experts. We try to reuse
the idea of bootstrapping to create new experts by modifying the training set. However, instead of
sampling days uniformly in the training set E0, we aim at assigning weights to training days with
the goal to maximize the variety among themselves. To do so, we choose weights according to the
values of the corresponding covariates (temperature, cloud cover, wind velocity, type of day, . . . ).
Specialized experts are created this way to some specific scenarios like heatwave, cold spell, sunny
days or cloudy days. Hopefully if we choose different enough scenarios, these experts may catch
different effects in the consumption that we might combine by aggregating them.

We now describe how to design such new experts. We suppose that we have at our disposal a
forecasting model such that, during the training of the model, we can assign different weights to
the elements of the training data. This is the case for GAM, CLR, and KWF for example. We
assume that we also have access to an exogenous variable Z ∈ [0, 1] like the temperature or the
cloudiness which was normalized in [0, 1]. Given this model and this exogenous variable Z, we build
two specialized experts: the first one by assigning to the day d the weight (1−Zd)2, the second one
with the choice Z2

d . We thus get one expert focusing on high values of Z, and another one focusing
on low values. The form of these weights was set empirically but we might want to replace it by
many other forms. For instance, we had first looked at weights in {0, 1} so as to select days according
to a threshold on Z. However this led to unstable experts and poor performance. We chose four
covariates all based on temperature scenarios: the average, maximum, and minimum temperature of
the day, and the variation of temperature with the previous day. We thus got 8 (= 4 scenarios× 2

experts: high and low) specialized experts by using each of the three models: GAM, CLR, and
KWF. We call E2 this set of 24 (= 8 experts× 3 methods) experts. The performance obtained by
mixing the experts in E0 ∪ E2 is reported in Table 4.3. We observe a better performance for all
aggregation rules with respect to bagging although we consider fewer additional experts.

Note that we showed the interest of specialized experts when they are combined with initial experts.
The individual performance of specialized experts is often poor. They do not necessarily perform
better than initial experts even when they are evaluated only on the data they should be specialized
to.

Temporal double-scale model

Now we study another way of constructing new experts by considering a temporal two-scale model.
We follow the methodology detailed in Nedellec et al. [117] of the team TOLOLO for the “Kaggle
Global Energy Forecasting Competition 2012: Load Forecasting”.

To forecast the short-term load with the canonical generalized additive model (GAM), the electricity
consumption is usually explained by a single model including all the covariates (meteorological, and
calendar ones) together with the recent consumption. The consumption Yt is here decomposed into
two parts: a medium-term part Y mt

t including meteorological and calendar effects and a short-
term part Y st

t containing what could not be captured in large temporal scales, Yt = Y mt
t + Y st

t .
The short-term part Y st

t basically consists of capturing local effects like extreme weather, network
reconfigurations and so on. The modeling approach is thus divided into two estimation steps. First,
we fit a mid-term generalized additive model including the meteorological and calendar covariates
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only. Second, we perform a residual analysis and we correct online the forecasts by using the
observed consumptions of the last 30 days. This short-term readjusting is done by fitting another
generalized additive model on the residuals.

The set containing this new expert is called E3 and the performance obtained by combining this new
expert with the three experts in E0 is reported in Table 4.4. We observe rmses around 600 MW for
all aggregation rules, which is a significant improvement considering that we add only one expert.
The extension to other methods, like CLR and KWF, of this new way of creating experts is left for
future work.

Boosting

In this section we investigate a final method to create new experts. We take now inspiration from
boosting methods, like the AdaBoost algorithm of Freund and Schapire [70], that aims at correcting
the mistakes of weak learners (or experts). The experts constructed in this section will be referred
to as boosted experts.

Suppose that we have an expert that at an instance t of the training data estimates the consumption
yt by xt. We want to build another expert predicting x′t. Then reminding that our final aim is to
aggregate well these predictions, it is irrelevant whether the second expert does not predict well yt
as soon as it counterbalances the error made by the original expert xt. Improving the performance
of the best convex combination should indeed only improve the prediction of the mixture. We can
thus try to build the second expert so that the constant mixture γxt + (1 − γ)x′t performs well
for some γ ∈ [0, 1]. This can be done by training the second experts not directly on the observed
consumption yt but on the modified one y′t = (yt−γxt)/(1−γ). We can create several new experts
by considering different values for γ ∈ [0, 1]. Small values might lead to experts too similar from
the original one, while larger values may create unstable experts.

We create 45 (= 5× 3× 3) new experts by using γ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, each of the three initial
experts in E0 are used as the original expert xt and each of the three models (GAM, CLR, and
KWF) are used to create the modified experts x′t. We denote by E4 the set of 45 experts thus
constructed.

We report in Table 4.5 the performance obtained by mixing experts in E0 ∪ E4. We did not
consider γ < 0.5 because the created experts were too similar to the original ones. Considering
all γ ∈ {0.1, . . . , 0.9} does not affect the results (neither improve nor worsen them). The step size
0.1 of the grid was chosen arbitrarily and the investigation of different values is left for future
research. The best convex combination oracle achieves a rmse of 528 MW and the best linear
combination oracle suffers a rmse of 543 MW. The performance of EWA and FS is not much
improved compared to previous experiments. They both incur rmses of 609 MW. But ML-Poly
and Ridge suffer rmses under 580 MW, which is a significant improvement.

Combining the full set of experts

Table 4.6 reports the performance obtained by mixing all the experts created in the previous
sections. We have now 133 experts at our disposal: 3 experts from in the starting set E0, 60

bootstrapped experts in E1, 24 specialized experts in E2, 45 boosted experts in E4 and 1 temporal
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Table 4.4.: Performance of oracles and aggregation rules using the set of experts E0∪E3: only four
experts.

Oracles and aggregation rules rmse (MW) mape (%)

Best convex combination 596 1.00
Best linear combination 595 1.00

EWA 601 1.01
FS 599 1.00
ML-Poly 605 1.01
Ridge 605 1.00

Table 4.5.: Performance of oracles and aggregation rules using the set of experts E0 ∪ E4: GAM,
CLR, KWF as well as the 45 boosted experts.

Oracles and aggregation rules rmse (MW) mape (%)

Best convex combination 543 0.93
Best linear combination 528 0.92

EWA 609 0.99
FS 609 0.99
ML-Poly 588 1.00
Ridge 578 0.98

Table 4.6.: Performance of oracles and aggregation rules using the full set of experts E0∪E1∪E2∪
E4 ∪ E3: all the 133 constructed experts.

Oracles and aggregation rules rmse (MW) mape (%)

Best convex combination 521 0.95
Best linear combination 479 0.84

EWA 578 0.95
FS 581 0.95
ML-Poly 565 0.95
Ridge 557 0.95
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two-scale model in E3. The best linear combination and the best convex combination perform
better. But at the same time it is harder to compete with them. Thus while the performance of
aggregation rules is improved, the gap between oracles and aggregation rules is increased as well.

Ridge suffers in Table 4.6 a rmse of 557 MW while it got 638 MW when mixing only the three
experts in E0 (see Table 4.1). The several refinement of the set of experts thus reduced its rmse
by approximatively 13%. Similarly, the errors of EWA and FS were improved by about 7% while
ML-Poly got a 10% reduction.
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Figure 4.5.: Evolution of the performance according to the number of aggregated experts with
ML-Poly [top] and Ridge [bottom].

Figure 4.5 provides the rmses according to the number of experts aggregated with ML-Poly and
Ridge. The experts included in the mixture were chosen by induction on the number of experts
by following a forward approach. The induction was initialized with the expert which performed
the best (744 MW). Suppose we had a set of K experts, the expert K + 1 was the one among
the remaining experts that got the best results when it was mixed with the K experts using the
considered rule. The procedure was stopped when all the 133 experts were used in the aggregation.
The symbols in the figures represent the category (bootstrapped, specialized, boosting, etc.) of the
last added expert.

Figure 4.5 shows the usual trade-off between having enough experts and over-fitting. If we could
select a good subset of experts to include in the mixture we could reduce the rmse under the
530 MW bar by using Ridge (and approximatively under 545 MW by using ML-Poly). A suitable
number of experts seems to lie between 15 to 90 experts. In future work, a pruning step, that would
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remove the less important experts before combining the forecasts of the remaining ones, might thus
be a good option. Eban et al. [65] investigated in the framework of prediction of individual sequences
a setting with many experts and few prediction instances. They remarked that trimming the worst
experts often improves performance and suggested a procedure to do so online.

Note that the weights formed by ML-Poly and Ridge were different enough in Figure 4.2. The
aggregation rules might thus capture different information and we may thus try to combine them
in a second layer. The simple uniform average of the forecasts of these two rules incurs a rmse of
541 MW, while using one of the fancier sequential aggregation rules for the second layer gets us
around 548 MW.
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Figure 4.6.: Hourly and monthly rmses of the three benchmark oracles and of ML-Poly and Ridge
described in Table 4.6.

Figure 4.6 plots the hourly and monthly rmses of the two best aggregation rules and the rmses of
the benchmark oracles described in Table 4.6. It shows that the aggregation rules always outperform
in average the best single expert at all 48 half-hours of the day and at all 10 months of the testing set.
In addition, we note a significant improvement of the performance at 12:30. This can be explained
by the update of the weights, which occurs at noon. The best expert oracle, which is built with
a version of GAM, does not favor any hour of the day. The figure with monthly averaged rmses
shows that aggregation rules do not only focus in improving forecasts when the task is easy. The
best expert oracle is indeed outperformed every month, including November or February, which are
month that are notoriously difficult to predict. Second, it illustrates that aggregation rules have a
short learning period. They indeed encounter almost no regret during September and October with
respect to all oracles although they just started to learn on September 1.
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4.4. Conclusion

We presented in this chapter an extensive application of aggregation rules from the literature of
individual sequences to short-term electrical consumption forecasting. We focused on building an
efficient set of experts from three initial ones, where the efficiency is viewed in terms of what these
new experts bring to the combined forecasts. In other terms, we assumed that we had an efficient
aggregation rule and focused more on reducing the approximation error, that is, the first term
in (4.1). We noticed that despite the vast literature on combining forecasts (including empirical
studies) rare papers dealt with this important topic. We proposed different strategies to generate
experts from the three initial approaches: KWF, GAM, and CLR. We then quantified the gains in
terms of forecast accuracy of the combined forecasts on the test set (about 10 month of half-hourly
data). A summary of our results is presented in Figure 4.7 for the two best aggregation rules:
ML-Poly and Ridge. Combining all the experts that we generated with 4 different strategies, we
achieved a 25% gain over the best expert (around 200 MW in RMSE), which is a significant gain
considering that the three original experts had already been refined and worked extremely well
(they are not week learners as in classical boosting). This gain can be decomposed into two parts:
roughly half of it comes from combining three heterogeneous initial experts, the other half is due
to the construction of new experts. Among the four proposed strategies, our boosting trick and
what we call specialized experts bring the most important improvements. We believe that these
strategies could be applied to other forecasting problems and there is still some work to derive
theoretical guarantees for these tricks. We also observe that aggregating rules are quite robust to
adding new experts, and it is clear in Figure 4.5 that combining forecasts does not suffer much from
over fitting. Nevertheless, these results suggest that there is a way for improving the aggregation
rules accuracy by adding a pruning step that could select the best set of experts in some online
fashion.
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Introduction

In this part we investigate nonparametric aggregation in the setting of sequential prediction of
arbitrary sequences. At each time step t = 1, . . . , T , after the player observes the vector of expert
advice xt = (x1,t, . . . , xK,t), he aims at forming forecast ŷt such that the cumulative regret

RT︸︷︷︸
regret

def
=

T∑
t=1

`
(
ŷt, yt

)
︸ ︷︷ ︸

performance of the player

− inf
f∈F

T∑
t=1

`
(
f(xt), yt

)
︸ ︷︷ ︸
approximation error

(R2)

is as small as possible, where ` is a nonnegative loss function and F is some class of functions.
In other words, the class of reference strategies the player is compared with consists of all fixed
functions in F .

In Chapter 5 the loss function ` is (mainly) the square loss. We design the first efficient strategy
that achieves the (almost) optimal rate of convergence for RT in the case of Hölder classes. The
strategy borrows ideas from the chaining technique and our regret bound is expressed in terms of
the metric entropy in the sup norm.

In Chapter 6 we focus on Lipschitz comparison classes with a convex loss function `. We construct
a fully data-driven calibrated strategy that uses ideas from CART regression trees while ensuring
robust finite time guarantees. Although the regret bounds are stated uniformly over all possible
data, the data-driven calibration of the parameters adapts well to the inherent difficulty of the
problem and yields a significant gain in performance. In the end, we justify our initial goal to
design strategies minimizing the cumulative regret (R2). We show that when the data is generated
by some underlying ergodic process, ensuring small cumulative regret yields asymptotic optimality.





5
A chaining algorithm for online nonparametric regression

We consider the problem of online nonparametric regression with arbitrary deterministic sequences.
Using ideas from the chaining technique, we design an algorithm that achieves a Dudley-type
regret bound similar to the one obtained in a non-constructive fashion by Rakhlin and Sridharan
[124]. Our regret bound is expressed in terms of the metric entropy in the sup norm, which yields
optimal guarantees when the metric and sequential entropies are of the same order of magnitude.
In particular our algorithm is the first one that achieves optimal rates for online regression over
Hölder balls. In addition we show for this example how to adapt our chaining algorithm to get a
reasonable computational efficiency with similar regret guarantees (up to a log factor).
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5.1. Introduction

We consider the setting of online nonparametric regression for arbitrary deterministic sequences,
which unfolds as follows. First, the environment chooses a sequence of observations (yt)t>1 in R
and a sequence of input vectors (xt)t>1 in X , both initially hidden from the forecaster. At each
time instant t ∈ N∗ = {1, 2, . . .}, the environment reveals the data xt ∈ X ; the forecaster then
gives a prediction ŷt ∈ R; the environment in turn reveals the observation yt ∈ R; and finally, the
forecaster incurs the square loss (yt − ŷt)2.

The term online nonparametric regression means that we are interested in forecasters whose regret

RegT (F)
def
=

T∑
t=1

(
yt − ŷt

)2 − inf
f∈F

T∑
t=1

(
yt − f(xt)

)2
over standard nonparametric function classes F ⊆ RX is as small as possible. In this chapter we
design and study an algorithm that achieves a regret bound of the form

RegT (F) 6 c1B
2
(
1 + logN∞(F , γ)

)
+ c2B

√
T

∫ γ

0

√
logN∞(F , ε) dε , (5.1)

for all γ ∈
(
B
T , B

)
, where B is an upper bound on max16t6T |yt| and where logN∞(F , ε) denotes

the metric entropy of the function set F in the sup norm at scale ε (cf. Section 5.1.4).

The integral on the right-hand side of (5.1) is very close to what is known in probability theory
as Dudley’s entropy integral, a useful tool to upper bound the expectation of a centered stochastic
process with subgaussian increments (see, e.g., Talagrand [134], Boucheron et al. [31]). In statistical
learning (with i.i.d. data), Dudley’s entropy integral is key to derive risk bounds on empirical risk
minimizers; see, e.g., Massart [113], Rakhlin et al. [125].

Very recently Rakhlin and Sridharan [124] showed that the same type of entropy integral appears
naturally in regret bounds for online nonparametric regression. The most part of their analysis is
non-constructive in the sense that their regret bounds are obtained without explicitly constructing
an algorithm. One of our main contributions is to provide an explicit algorithm that achieves the
regret bound (5.1). We note however that our regret bounds are in terms of a weaker notion of en-
tropy, namely, metric entropy instead of the smaller (and optimal) sequential entropy. Fortunately,
both notions are of the same order of magnitude for a reasonable number of examples, such as
the ones outlined just below. We leave the question of modifying our algorithm to get sequential
entropy regret bounds for future work.

The regret bound (5.1)—that we call Dudley-type regret bound thereafter—can be used to obtain
optimal regret bounds for several classical nonparametric function classes. Indeed, when F has a
metric entropy logN∞(F , ε) 6 Cpε−p with∗ p ∈ (0, 2), the bound (5.1) entails

RegT (F) 6 c1B
2 + c1B

2Cpγ
−p + c2B

√
CpT

∫ γ

0
ε−p/2 dε

= c1B
2 + c1B

2Cpγ
−p +

2 c2B

2− p
√
CpT γ

1−p/2 = O
(
T p/(p+2)

)
(5.2)

∗When p > 2, we can also derive Dudley-type regret bounds that lead to a regret of O
(
T−1/p

)
in the same spirit

as in Rakhlin and Sridharan [124]. We omitted this case to ease the presentation.
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for the choice of γ = Θ
(
T−1/(p+2)

)
. An example is given by Hölder classes F with regularity β > 1/2

(cf. Tsybakov [137, Def 1.2]). We know from Kolmogorov and Tikhomirov [102] or Lorentz [108,
Theorem 2] that they satisfy logN∞(F , ε) = O

(
ε−1/β

)
. Therefore, (5.2) entails a regret bound

RegT (F) = O
(
T 1/(2β+1)

)
, which is in a way optimal since it corresponds to the optimal (minimax)

quadratic risk T−2β/(2β+1) in statistical estimation with i.i.d. data.

5.1.1. Why a simple Exponentially Weighted Average forecaster is not sufficient

A natural approach (see Vovk [144]) to compete against a nonparametric class F relies on running
an Exponentially Weighted Average forecaster (EWA, see Cesa-Bianchi and Lugosi [43, p.14]) on
an ε-net F (ε) of F of finite size N∞(F , ε). This yields a regret bound of order εT + logN∞(F , ε).
The first term εT is due to the approximation of F by F (ε), while the second term is the regret
suffered by EWA on the finite class of experts F (ε). As noted by Rakhlin and Sridharan [124,
Remark 11], the above regret bound is suboptimal for large nonparametric classes F . Indeed, for a
metric entropy of order ε−p with p ∈ (0, 2), optimizing the above regret bound in ε entails a regret
of order O(T p/(p+1)) when (5.1) yields the better rate O(T p/(p+2)).

5.1.2. The chaining technique: a brief reminder

The idea of chaining was introduced by Dudley [64]. It provides a general method to bound the
supremum of stochastic processes. For the convenience of the reader, we recall the main ideas
underlying this technique; see, e.g., Boucheron et al. [31] for further details. We consider a centered
stochastic process (Xf )f∈F indexed by some finite metric space, say, (F , ‖·‖∞), with subgaussian
increments, which means that logEeλ(Xf−Xg) 6 1

2vλ
2‖f − g‖2∞ for all λ > 0 and all ∀f, g ∈ F . The

goal is to bound the quantity

E
[

sup
f∈F

Xf

]
= E

[
sup
f∈F

(Xf −Xf0)
]

for any f0 ∈ F .

Lemma 5.1. — Boucheron et al. [31]. Let Z1, . . . , ZK be subgaussian random variables with
parameter v > 0 (i.e., logE exp(λZi) 6 λ2v/2 for all λ ∈ R), then Emaxi=1,...,K Zi 6

√
2v logK .

Lemma 5.1 entails E
[

supf∈F (Xf − Xf0)
]
6 B

√
2v log (cardF) , where B = supf∈F ‖f − f0‖∞.

However, this bound is too crude since Xf and Xg are very correlated when f and g are very
close. The chaining technique takes this remark into account by approximating the maximal value
supf Xf by maxima over successive refining discretizations F (0), . . . ,F (K) of F . More formally, for
any f ∈ F , we consider a sequence of approximations π0(f) = f0 ∈ F (0), π1(f) ∈ F (1), . . . , πK(f) =

f ∈ F (K), where ‖f − πk(f)‖∞ 6 B/2k and cardF (k) = N∞(F , B/2k), so that:

E
[

sup
f∈F

(Xf −Xf0)
]

= E

[
sup
f∈F

K−1∑
k=0

(
Xπk+1(f) −Xπk(f)

)]

6
K−1∑
k=0

E

[
sup
f∈F

(
Xπk+1(f) −Xπk(f)

)]
,
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We apply Lemma 5.1 for each k ∈ {0, . . . ,K − 1}: since ‖πk+1(f)− πk(f)‖∞ 6 3B/2k+1 (by the
triangle inequality) and card{πk+1(f)− πk(f), f ∈ F} 6 N∞(F , B/2k+1)2, we get the well-known
Dudley entropy bound (note that ε 7→ N∞(F , ε) is nonincreasing):

E
[

sup
f∈F

(Xf −Xf0)
]
6 6

K−1∑
k=0

B2−k−1
√
v logN∞(F , B/2k+1)

6 12
√
v

∫ B/2

0

√
logN∞(F , ε) dε .

5.1.3. Turning the chaining technique into an online algorithm

We explained in Section 1.1 that using an Exponentially Weighted Average forecaster is not sufficient
to derive a Dudley-type regret bound (5.1). It turns out that the chaining technique can be used
for that purpose. Rakhlin and Sridharan [124] already used it in their analysis to obtain a non-
constructive Dudley-type regret bound. Next we briefly explain how to adapt the chaining principle
in order to build an algorithm. We approximate any function f ∈ F by a sequence of refining
approximations π0(f) ∈ F (0), π1(f) ∈ F (1), . . . , such that for all k > 0, supf ‖πk(f)− f‖∞ 6 γ/2k

and cardF (k) = N∞(F , γ/2k), so that:

inf
f∈F

T∑
t=1

(
yt − f(xt)

)2
= inf

f∈F

T∑
t=1

(
yt − π0(f)(xt)−

∞∑
k=0

[
πk+1(f)− πk(f)

]
(xt)︸ ︷︷ ︸

‖·‖∞63γ/2k+1

)2

.

We use the above decomposition in Algorithm 9 (Section 5.2.2) by performing two simultaneous
aggregation tasks at two different scales:

• high-scale aggregation: we run an Exponentially Weighted Average forecaster to be competitive
against every function π0(f) in the coarsest set F (0);

• low-scale aggregation: we run in parallel many instances of (an extension of) the Exponentiated
Gradient (EG) algorithm so as to be competitive against the increments πk+1(f)−πk(f). The
advantage of using EG is that even if the number N (k) of increments πk+1(f)− πk(f) is large
for small scales ε, the size of the gradients is very small, hence a manageable regret.

At the core of the algorithm lies the Multi-variable Exponentiated Gradient algorithm (Algorithm 8)
that makes it possible to perform low-scale aggregation at all scales ε < γ simultaneously.

Main contributions and outline of the chapter Our contributions are threefold: we first design
the Multi-variable Exponentiated Gradient algorithm (Section 5.2.1). We then present our main
algorithm and derive a Dudley-type regret bound as in (5.1) (Section 5.2.2). Finally, in Section 5.3
we address computational issues in the case of Hölder classes. Some proofs are postponed to the
appendix.

5.1.4. Some useful definitions

Let F ⊆ RX be a set of bounded functions endowed with the sup norm ‖f‖∞
def
= supx∈X |f(x)|. For

all ε > 0, we call proper ε-net any subset G ⊆ F such that ∀f ∈ F , ∃g ∈ G : ‖f − g‖∞ 6 ε. (If
G 6⊆ F , we call it non-proper.) The cardinality of the smallest proper ε-net is denoted by N∞(F , ε),
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and the logarithm logN∞(F , ε) is called the metric entropy of F at scale ε. When this quantity is
finite for all ε > 0, we say that

(
F , ‖ · ‖∞

)
is totally bounded.

5.2. The Chaining Exponentially Weighted Average Forecaster

In this section we design an online algorithm—the Chaining Exponentially Weighted Average fore-
caster—that achieves the Dudley-type regret bound (5.1). In Section 5.2.1 below, we first define a
subroutine that will prove crucial in our analysis, and whose applicability may extend beyond this
chapter.

5.2.1. Preliminary: the Multi-variable Exponentiated Gradient Algorithm

Let ∆N
def
=
{
u ∈ RN+ :

∑N
i=1 ui = 1

}
⊆ RN denotes the simplex in RN . In this subsection we define

and study a new extension of the Exponentiated Gradient algorithm [97, 41]. This extension is
meant to minimize a sequence of multi-variable loss functions

(
u(1), . . . ,u(K)

)
7→ `t

(
u(1), . . . ,u(K)

)
simultaneously over all the variables (u(1), . . . ,u(K)) ∈ ∆N1 × . . .×∆NK .

Our algorithm is described as Algorithm 8 below. We call it Multi-variable Exponentiated Gradient.
When K = 1, it boils down to the classical Exponentiated Gradient algorithm over the simplex
∆N1 . But when K > 2, it performs K simultaneous optimization updates (one for each direction
u(k)) that lead to a global optimum by joint convexity of the loss functions `t.

Algorithm 8: Multi-variable Exponentiated Gradient

input : optimization domain ∆N1 × . . . × ∆NK and tuning parameters
η(1), . . . , η(K) > 0.

initialization: set û(k)
1

def
=
(

1
Nk
, . . . , 1

Nk

)
∈ ∆Nk for all k = 1, . . . ,K.

for each round t = 1, 2, . . . do
• Output

(
û

(1)
t , . . . , û

(K)
t

)
∈ ∆N1×. . .×∆NK and observe the differentiable and jointly

convex loss function `t : ∆N1 × . . .×∆NK → R.
• Compute the new weight vectors

(
û

(1)
t+1, . . . , û

(K)
t+1

)
∈ ∆N1 × . . .×∆NK as follows:

û
(k)
t+1,i

def
=

exp

(
−η(k)

t∑
s=1

∂
û
(k)
s,i

`s

(
û(1)
s , . . . , û(K)

s

))
Z

(k)
t+1

, i ∈ {1, . . . , Nk},

where ∂
û
(k)
s,i

`s is the partial derivative of `s with respect to the i-th component of û(k)
s ,

and where the normalizing factor Z(k)
t+1 is defined by

Z
(k)
t+1

def
=

Nk∑
i=1

exp

(
−η(k)

t∑
s=1

∂
û
(k)
s,i

`s

(
û(1)
s , . . . , û(K)

s

))
.

end
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The Multi-variable Exponentiated Gradient algorithm satisfies the regret bound of Theorem 5.2
below. We first need some notations. We define the partial gradients

∇u(k)`t =
(
∂
u
(k)
1

`t, . . . , ∂u(k)Nk

`t

)
, 1 6 k 6 K ,

where ∂
u
(k)
i

`t denotes the partial derivative of `t with respect to the scalar variable u(k)
i . Note that

∇u(k)`t is a function that maps ∆N1 × . . .×∆NK to RNk . Next we also use the notation

‖ϕ‖∞
def
= sup
u(1),...,u(K)

max
16i6Nk

∣∣∣ϕi(u(1), . . . ,u(K)
)∣∣∣

for the sup norm of any vector-valued function ϕ : ∆N1 × . . .×∆NK → RNk , 1 6 k 6 K.

Theorem 5.2. Assume that the loss functions `t : ∆N1 × . . .×∆NK → R, t > 1, are differen-
tiable and jointly convex. Assume also the following upper bound on their partial gradients: for all
k ∈ {1, . . . ,K},

max
16t6T

‖∇u(k)`t‖∞ 6 G
(k) . (5.3)

Then, the Multi-variable Exponentiated Gradient algorithm (Algorithm 8) tuned with the parameters
η(k) =

√
2 log(Nk)/T /G

(k) has a regret bounded as follows:

T∑
t=1

`t

(
û

(1)
t , . . . , û

(K)
t

)
− min
u(1),...,u(K)

T∑
t=1

`t

(
u(1), . . . ,u(K)

)
6
√

2T

K∑
k=1

G(k)
√

logNk ,

where the minimum is taken over all
(
u(1), . . . ,u(K)

)
∈ ∆N1 × . . .×∆NK .

The proof of Theorem 5.2 is postponed to Appendix 5.C.1.

5.2.2. The Chaining Exponentially Weighted Average Forecaster

In this section we introduce our main algorithm: the Chaining Exponentially Weighted Average
forecaster. A precise definition will be given in Algorithm 9 below. For the sake of clarity, we first
describe the main ideas underlying this algorithm.

Recall that we aim at proving a regret bound of the form (5.1), whose right-hand side consists of
two main terms:

B2 logN∞(F , γ) and B
√
T

∫ γ

0

√
logN∞(F , ε) dε .

Our algorithm performs aggregation at two different levels: one level (at all scales ε ∈ (0, γ]) to get
the entropy integral above, and another level (at scale γ) to get the other term B2 logN∞(F , γ).
More precisely:

• for all k ∈ N, let F (k) be a proper γ/2k-net of (F , ‖·‖∞) of minimal cardinality† N∞
(
F , γ/2k

)
;

†We assume that (F , ‖·‖∞) is totally bounded.
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• for all k > 1, set G(k) def
= {πk(f)− πk−1(f) : f ∈ F}, where

∀f ∈ F , πk(f) ∈ arg min
h∈F(k)

‖f − h‖∞ .

We denote:

• the elements of F (0) by f (0)
1 , . . . , f

(0)
N0

with N0 = N∞
(
F , γ

)
;

• the elements of G(k) by g(k)
1 , . . . , g

(k)
Nk

; note that Nk 6 N∞
(
F , γ/2k

)
N∞

(
F , γ/2k−1

)
.

With the above definitions, our algorithm can be described as follows:

1. Low-scale aggregation: for every j ∈ {1, . . . , N0}, we use a Multi-variable Exponentiated
Gradient forecaster to mimic the best predictor in the neighborhood of f (0)

j : we set, at each
round t > 1,

f̂t,j
def
= f

(0)
j +

K∑
k=1

Nk∑
i=1

û
(j,k)
t,i g

(k)
i , (5.4)

where K def
=
⌈
log2(γT/B)

⌉
, so that the lowest scale is γ/2K ≈ B/T . The above weight vectors

û
(j,k)
t ∈ ∆Nk are defined in Equation (5.6) of Algorithm 9. They correspond exactly to the

weight vectors output by the Multi-variable Exponentiated Gradient forecaster (Algorithm 8)
applied to the loss functions `(j)t : ∆N1 × . . .×∆NK → R defined for all t > 1 (j is fixed) by

`
(j)
t

(
u(1), . . . ,u(K)

)
=

(
yt − f (0)

j (xt)−
K∑
k=1

Nk∑
i=1

u
(k)
i g

(k)
i (xt)

)2

. (5.5)

2. High-scale aggregation: we use a standard Exponentially Weighted Average forecaster to
aggregate all the f̂t,j , j = 1, . . . , N0, as follows:

f̂t =

N0∑
j=1

ŵt,j f̂t,j ,

where the weights ŵt,j are defined in Equation (5.7) of Algorithm 9. At time t, our algorithm
predicts yt with ŷt

def
= f̂t(xt).

Next we show that the Chaining Exponentially Weighted Average forecaster satisfies a Dudley-type
regret bound as in (5.1).

Theorem 5.3. Let B > 0, T > 1, and γ ∈
(
B
T , B

)
.

• Assume that max16t6T |yt| 6 B and that supf∈F ‖f‖∞ 6 B.
• Assume that (F , ‖·‖∞) is totally bounded and define F (0) =

{
f

(0)
1 , . . . , f

(0)
N0

}
and G(k) ={

g
(k)
1 , . . . , g

(k)
Nk

}
, k = 1, . . . ,K, as above.

Then, the Chaining Exponentially Weighted Average forecaster (Algorithm 9) tuned with the param-
eters η(0) = 1/(50B2) and η(k) =

√
2 log(Nk)/T 2k/(30Bγ) for all k = 1, . . . ,K satisfies:

RegT (F) 6 B2
(
5 + 50 logN∞(F , γ)

)
+ 120B

√
T

∫ γ/2

0

√
logN∞(F , ε) dε .
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Algorithm 9: Chaining Exponentially Weighted Average forecaster

input : maximal range B > 0, tuning parameters η(0), η(1), . . . , η(K) > 0,
high-scale functions f (0)

j : X → R for 1 6 j 6 N0,

low-scale functions g(k)
i : X → R for k ∈ {1, . . . ,K} and i ∈ {1, . . . , Nk}.

initialization: set ŵ1 =
(

1
N0
, . . . , 1

N0

)
∈ ∆N0 and

û
(j,k)
1

def
=
(

1
Nk
, . . . , 1

Nk

)
∈ ∆Nk for all j ∈ {1, . . . , N0} and k ∈ {1, . . . ,K}.

for each round t = 1, 2, . . . do

• Define the aggregated functions f̂t,j : X → R for all j ∈ {1, . . . , N0} by

f̂t,j
def
= f

(0)
j +

K∑
k=1

Nk∑
i=1

û
(j,k)
t,i g

(k)
i .

• Observe xt ∈ X , predict ŷt =

N0∑
j=1

ŵt,j f̂t,j(xt), and observe yt ∈ [−B,B].

• Low-scale update: compute the new weight vectors û(j,k)
t+1 =

(
û

(j,k)
t+1,i

)
16i6Nk

∈ ∆Nk

for all j ∈ {1, . . . , N0} and k ∈ {1, . . . ,K} as follows:

û
(j,k)
t+1,i

def
=

exp

(
−η(k)

t∑
s=1

−2
(
ys − f̂s,j(xs)

)
g

(k)
i (xs)

)
Nk∑
i′=1

exp

(
−η(k)

t∑
s=1

−2
(
ys − f̂s,j(xs)

)
g

(k)
i′ (xs)

) , i ∈ {1, . . . , Nk} . (5.6)

• High-scale update: compute the new weight vector ŵt+1 =
(
ŵt+1,j

)
16j6N0

∈ ∆N0 as
follows:

ŵt+1,j
def
=

exp

(
−η(0)

t∑
s=1

(
ys − f̂s,j(xs)

)2
)

N0∑
j′=1

exp

(
−η(0)

t∑
s=1

(
ys − f̂s,j′(xs)

)2
) , j ∈ {1, . . . , N0} . (5.7)

end

Remark 5.1. In Theorem 5.3 above, we assumed that the observations yt and the predictions
f(xt) are all bounded by B, and that B is known in advance by the forecaster. We can actually
remove this requirement by using adaptive techniques of Gerchinovitz and Yu [79], namely, adaptive
clipping of the intermediate predictions f̂t,j(xt) and adaptive Lipschitzification of the square loss
functions `(j)t . This modification enables us to derive the same regret bound (up to multiplicative
constant factors) with B = maxt |yt|, but without knowing B in advance, and without requiring
that supf∈F ‖f‖∞ is also upper bounded by B. Of course these adaptation techniques also make
it possible to tune all parameters without knowing T in advance.
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Remark 5.2. Even in the case when B is known by the forecaster, the clipping and Lipschitzi-
fication techniques of Gerchinovitz and Yu [79] can be useful to get smaller constants in the regret
bound. We could indeed replace the constants 50 and 120 with 8 and 48 respectively. (Moreover,
the regret bound would also hold true for γ > B.) We chose however not to use these refinements
in order to simplify the analysis.

Remark 5.3. We assumed that the performance of a forecast ŷt at round t > 1 is measured
through the square loss `t(ŷt) = (ŷt − yt)

2, which is 1/(50B2)-exp-concave on [−4B, 4B]. The
analysis can easily be extended to all η-exp-concave (and thus convex) loss functions `t on [−4B, 4B]

that also satisfy a self-bounding property of the form
∣∣d`t/dŷt∣∣ 6 C`rt (an example is given by

`t(ŷt) =
∣∣ŷt − yt

∣∣r with r > 2). The regret bound of Theorem 5.3 remains unchanged up to a
multiplicative factor depending on B, C, and r. If the loss functions `t are only convex (e.g., the
absolute loss `t(ŷt) = |ŷt − yt| or the pinball loss to perform quantile regression), the high-scale
aggregation step is more costly: the term of order logN∞(F , γ) is replaced with a term of order√
T logN∞(F , γ).

Proof (of Theorem 5.3) We split our proof into two parts—one for each aggregation level.

Part 1: low-scale aggregation.

In this part, we fix j ∈ {1, . . . , N0}. As explained right before (5.5), the tuple of weight vectors(
û

(j,1)
t , . . . , û

(j,K)
t

)
∈ ∆N1×. . .∆NK computed at all rounds t > 1 corresponds exactly to the output

of the Multi-variable Exponentiated Gradient forecaster when applied to the loss functions `(j)t ,
t > 1, defined in (5.5). We can therefore apply Theorem 5.2 after checking its assumptions:

• the loss functions `(j)t are indeed differentiable and jointly convex;
• the norms

∥∥∇
û
(j,k)
t

`
(j)
t

∥∥
∞ of the partial gradients are bounded by 30Bγ/2k for all 1 6 k 6 K.

Indeed, the i-th coordinate of ∇
û
(j,k)
t

`
(j)
t is equal to

∂
û
(j,k)
t,i

`
(j)
t = −2

(
yt − f̂t,j(xt)

)
g

(k)
i (xt), (5.8)

which can be upper bounded (in absolute value) by 2 × 5B × 3γ/2k. To see why this is true,
first note that

∣∣g(k)
i (xt)

∣∣ 6 ∥∥g(k)
i

∥∥
∞ =

∥∥πk(f) − πk−1(f)
∥∥
∞ for some f ∈ F (by definition of

G(k)), so that, by the triangle inequality and by definition of πk(f) and F (k):∣∣∣g(k)
i (xt)

∣∣∣ 6 ∥∥πk(f)− f
∥∥
∞ +

∥∥πk−1(f)− f
∥∥
∞ 6

γ

2k
+

γ

2k−1
=

3γ

2k
. (5.9)

Second, note that
∣∣yt−f̂t,j(xt)∣∣ 6 ∣∣yt∣∣+∣∣f̂t,j(xt)∣∣ 6 5B. Indeed, we have |yt| 6 B by assumption

and, by definition of f̂t,j in (5.4), we also have

∣∣f̂t,j(xt)∣∣ 6 wwwf (0)
j

www
∞

+
K∑
k=1

Nk∑
i=1

û
(j,k)
t,i

∣∣g(k)
i (xt)

∣∣ 6 B +
K∑
k=1

3γ

2k
6 B + 3γ 6 4B , (5.10)

where we used the inequalities
∥∥f (0)

j

∥∥
∞ 6 supf∈F ‖f‖∞ 6 B (by assumption), and where

we combined (5.9) with the fact that
∑Nk

i=1 û
(j,k)
t,i = 1. The last inequality above is obtained

from the assumption γ 6 B. Substituting the above various upper bounds in (5.8) entails that
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∥∥∇
û
(j,k)
t

`
(j)
t

∥∥
∞ 6 30Bγ/2k for all 1 6 k 6 K, as claimed earlier.

We are now in a position to apply Theorem 5.2. It yields:

T∑
t=1

(
yt − f̂t,j(xt)

)2
6 inf
g1,...,gK

T∑
t=1

(
yt −

(
f

(0)
j + g1 + . . .+ gK

)
(xt)

)2

+
√

2T

K∑
k=1

30Bγ/2k
√

logNk , (5.11)

where the infimum is over all functions g1 ∈ G(1), . . . , gK ∈ G(K) (we used the regret bound of
Theorem 5.2 with Dirac weight vectors u(k) = δik , ik = 1, . . . , Nk).

Now, using the fact that Nk 6 N∞
(
F , γ/2k

)
N∞

(
F , γ/2k−1

)
6
(
N∞

(
F , γ/2k

))2, we get

K∑
k=1

γ

2k

√
logNk 6 2

√
2

K∑
k=1

( γ
2k
− γ

2k+1

)√
logN∞

(
F , γ/2k

)
6 2
√

2
K∑
k=1

∫ γ/2k

γ/2k+1

√
logN∞

(
F , ε

)
dε 6 2

√
2

∫ γ/2

0

√
logN∞

(
F , ε

)
dε ,

where the inequality before last follows by monotonicity of ε 7→ N∞(F , ε) on every interval[
γ/2k+1, γ/2k

]
. Finally, substituting the above integral in (5.11) yields

T∑
t=1

(
yt − f̂t,j(xt)

)2
6 inf
g1,...,gK

T∑
t=1

(
yt −

(
f

(0)
j + g1 + . . .+ gK

)
(xt)

)2

+ 120B
√
T

∫ γ/2

0

√
logN∞

(
F , ε

)
dε . (5.12)

Part 2: high-scale aggregation.

The prediction ŷt = f̂t(xt) =
∑N0

j=1 ŵt,j f̂t,j(xt) at time t is a convex combination of the intermediate
predictions f̂t,j(xt), where the weights ŵt,j correspond exactly to those of the standard Exponen-
tially Weighted Average forecaster tuned with η(0) = 1/(50B2) = 1/

(
2(5B)2

)
. Since the intermedi-

ate predictions f̂t,j(xt) lie in [−4B, 4B] (by (5.10) above), and since the square loss z 7→ (yt − z)2

is η(0)-exp-concave on [−4B, 4B] for any yt ∈ [−B,B], we get from Proposition 3.1 and Page 46 of
Cesa-Bianchi and Lugosi [43] that

T∑
t=1

(yt − ŷt)2 6 min
16j6N0

T∑
t=1

(
yt − f̂t,j(xt)

)2
+

logN0

η(0)

6 inf
f0,g1,...,gK

T∑
t=1

(
yt − (f0 + g1 + . . .+ gK) (xt)

)2
+ 120B

√
T

∫ γ/2

0

√
logN∞

(
F , ε

)
dε+ 50B2 logN∞

(
F , γ

)
, (5.13)

where the infimum is over all functions f0 ∈ F (0), g1 ∈ G(1), . . . , gK ∈ G(K). The last inequality
above was a consequence of (5.12). Next we apply the chaining idea: by definition of the function
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sets F (0) ⊇ {π0(f) : f ∈ F} and G(k) = {πk(f)− πk−1(f) : f ∈ F}, we have

inf
f0,g1,...,gK

T∑
t=1

(
yt −

(
f0 + g1 + . . .+ gK

)
(xt)

)2
6 inf

f∈F

T∑
t=1

(
yt −

(
π0(f) +

[
π1(f)− π0(f)

]
+ . . .+

[
πK(f)− πK−1(f)

])
(xt)

)2

= inf
f∈F

T∑
t=1

(
yt − πK(f)(xt)

)2
6 inf

f∈F

T∑
t=1

[(
yt − f(xt)

)2
+ 2 · 2B ‖πK(f)− f‖∞ + ‖πK(f)− f‖2∞

]
(5.14)

6 inf
f∈F

T∑
t=1

(
yt − f(xt)

)2
+ 4B2 +

B2

T
, (5.15)

where (5.14) is obtained by expanding the square
(
yt − πK(f)(xt)

)2
=
(
yt − f(xt) + f(xt) −

πK(f)(xt)
)2, and where (5.15) follows from the fact that ‖πK(f)− f‖∞ 6 γ/2K 6 B/T by defini-

tion of πK(f) and K =
⌈
log2(γT/B)

⌉
. Combining (5.13) and (5.15) concludes the proof. �

5.3. An efficient chaining algorithm for Hölder classes

The Chaining Exponentially Weighted Average forecaster of the previous section is quite natural
since it explicitly exploits the ε-nets that appear in the Dudley-type regret bound (5.1). However
its time and space computational complexities are prohibitively large (exponential in T ) since it
is necessary to update exponentially many weights at every round t. It actually turns out that,
fortunately, most standard function classes have a sufficiently nice structure. This enables us to
adapt the previous chaining technique on (quasi-optimal) ε-nets that are much easier to exploit
from an algorithmic viewpoint. We describe below the particular case of Lipschitz classes; the more
general case of Hölder classes is postponed to the appendix.

In all the sequel, F denotes the set of functions from [0, 1] to [−B,B] that are 1-Lipschitz. Recall
from the introduction that logN∞(F , ε) = Θ(ε−1), so that, by Theorem 5.3 and (5.2), the Chaining
Exponentially Weighted Average forecaster guarantees a regret of O

(
T 1/3

)
. We explain below how

to modify this algorithm with ε-nets of
(
F , ‖ · ‖∞

)
that are easier to manage from a computational

viewpoint. This leads to a quasi-optimal regret of O
(
T 1/3 log T

)
; see Theorem 5.4.

5.3.1. Constructing computationally-manageable ε-nets via a dyadic discretization

Let γ ∈
(
B
T , B

)
be a fixed real number that will play the same role as in Theorem 5.3. Using the fact

that all functions in F are 1-Lipschitz, we can approximate F with piecewise-constant functions
as follows. We partition the x-axis [0, 1] into 1/γ subintervals Ia

def
=
[
(a − 1)γ, aγ

)
, a = 1, . . . , 1/γ

(the last interval is closed at x = 1). We also use a discretization of length γ on the y-axis [−B,B],
by considering values of the form c(0) = −B + jγ, j = 0, . . . , 2B/γ. (For the sake of simplicity, we
assume that both 1/γ and 2B/γ are integers.) We then define the set F (0) of piecewise-constant
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functions f (0) : [0, 1]→ [−B,B] of the form

f (0)(x) =

1/γ∑
a=1

c(0)
a 1x∈Ia , c

(0)
1 , . . . , c

(0)
1/γ ∈ C

(0) def
=

{
−B + jγ : j = 0, . . . ,

2B

γ

}
. (5.16)

Using the fact that all functions in F are 1-Lipschitz, it is quite straightforward to see that F (0)

is a γ-net‡ of
(
F , ‖ · ‖∞

)
. (To see why this is true, we can choose c(0)

a ∈ arg minc∈C(0)

∣∣f(xa) − c
∣∣,

where xa is the center of the subinterval Ia. See Lemma 5.9 in the appendix for further details.)

Refinement via a dyadic discretization Next we construct γ/2m-nets that are refinements of the
γ-net F (0). We need to define a dyadic discretization for each subinterval Ia as follows: for any level
m > 1, we partition Ia into 2m subintervals I(m,n)

a , n = 1, . . . , 2m, of equal size γ/2m. Note that the
subintervals I(m,n)

a , a = 1, . . . , 1/γ and n = 1, . . . , 2m, form a partition of [0, 1]. We call it the level-
m partition. We enrich the set F (0) by looking at all the functions of the form f (0) +

∑M
m=1 g

(m),
where f (0) ∈ F (0) and where every function g(m) is piecewise-constant on the level-m partition,
with values c(m,n)

a ∈
[
−γ/2m−1, γ/2m−1

]
that are small when m is large. In other words, we define

the level-M approximation set F (M) as the set of all functions fc : [0, 1]→ R of the form

fc(x) =

1/γ∑
a=1

c(0)
a 1x∈Ia︸ ︷︷ ︸

f (0)(x)

+
M∑
m=1

1/γ∑
a=1

2m∑
n=1

c(m,n)
a 1

x∈I(m,n)a︸ ︷︷ ︸
g(m)(x)

, (5.17)

where c(0)
a ∈ C(0) and c(m,n)

a ∈
[
−γ/2m−1, γ/2m−1

]
. An example of function fc = f (0) +

∑M
m=1 g

(m)

is plotted on Figure 5.1 in the case when M = 2 (the plot is restricted to the interval Ia).

Since all functions in F are 1-Lipschitz, the set F (M) of all functions fc is a γ/2M+1-net of (F , ‖·‖∞);
see Lemma 5.9 in the appendix for a proof. Note that F (M) is infinite (the c(m,n)

a are continuously
valued); fortunately this is not a problem since the c(m,n)

a can be rewritten as convex combinations
c

(m,n)
a = u

(m,n)
1 (−γ/2m−1) + u

(m,n)
2 (γ/2m−1) of only two values; cf. (5.18) below.

5.3.2. A chaining algorithm using this dyadic discretization

Next we design an algorithm which, as in Section 5.2.2, is able to be competitive against any
function fc = f (0) +

∑M
m=1 g

(m). However, instead of maintaining exponentially many weights as
in Algorithm 9, we use the dyadic discretization in a crucial way. More precisely:

We run 1/γ instances of the same algorithm A in parallel; the a-th instance Aa, a = 1, . . . , 1/γ,
corresponds to the subinterval Ia and it is updated only at rounds t such that xt ∈ Ia.

Next we focus on subalgorithm Aa. As in Algorithm 9, we use a combination of the EWA and the
Multi-variable EG forecasters to perform high-scale and low-scale aggregation simultaneously:

Low-scale aggregation: we run 2B/γ + 1 instances Ba,j , j = 0, . . . , 2B/γ, of the Adaptive Multi-
variable Exponentiated Gradient algorithm (Algorithm 10 in the appendix) simultaneously. Each
instance Ba,j corresponds to a particular constant c(0) = −B + jγ ∈ C(0) and is run (similarly

‡This γ-net is not proper since F (0) 6⊆ F .
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+

+
+

+

+

+

Figure 5.1.: An example of function f (0) +
∑M

m=1 g
(m) for M = 2, plotted on the subinterval Ia.

This function corresponds to the dotted line (level 2).

to (5.5)) with the loss function `t defined for all weight vectors u(m,n) =
(
u

(m,n)
1 , u

(m,n)
2

)
∈ ∆2 by

`t

(
u(m,n), m = 1, . . . ,M, n = 1, . . . , 2m

)
=

(
yt − (−B + jγ)−

M∑
m=1

2m∑
n=1

(
u

(m,n)
1

−γ
2m−1

+ u
(m,n)
2

γ

2m−1

)
1
xt∈I(m,n)a

)2

. (5.18)

The above convex combinations u(m,n)
1 (−γ/2m−1) + u

(m,n)
2 (γ/2m−1) ensure that subalgorithm Ba,j

is competitive against the best constants c(m,n)
a ∈

[
−γ/2m−1, γ/2m−1

]
for all m and n.

The weight vectors output by subalgorithm Ba,j (when xt ∈ Ia) are denoted by û(m,n)
t,a,j , and we set

f̂t,a,j(x)
def
=−B + jγ +

M∑
m=1

2m∑
n=1

(
û

(m,n)
t,a,j,1

−γ
2m−1

+ û
(m,n)
t,a,j,2

γ

2m−1

)
1
x∈I(m,n)a

for all j = 0, . . . , 2B/γ.

High-scale aggregation: we aggregate the 2B/γ+1 forecasters above with a standard Exponentially
Weighted Average forecaster (tuned, e.g., with the parameter η = 1/(2(4B)2) = 1/(32B2)):

f̂t,a =

2B/γ∑
j=0

ŵt,a,j f̂t,a,j . (5.19)

Putting all things together : at every time t > 1, we make the prediction

f̂t(xt)
def
=

1/γ∑
a=1

f̂t,a(xt)1xt∈Ia .



128 CHAPTER 5. A CHAINING ALGORITHM FOR ONLINE NONPARAMETRIC REGRESSION

We call this algorithm the Dyadic Chaining Algorithm.

Theorem 5.4. Let B > 0, T > 2, and F be the set of all 1-Lipschitz functions from [0, 1]

to [−B,B]. Assume that max16t6T |yt| 6 B. Then, the Dyadic Chaining Algorithm defined above
and tuned with the parameters γ = BT−1/3 and M =

⌈
log2(γT/B)

⌉
satisfies, for some absolute

constant c > 0,
RegT (F) 6 cmax{B,B2}T 1/3 log T .

The proof is postponed to the appendix. Note that the Dyadic Chaining Algorithm is computa-
tionally tractable: at every round t, the point xt only falls into one subinterval I(m,n)

a for each level
m = 1, . . . ,M , so that we only need to update O

(
2B/γ ×M

)
= O

(
T 1/3 log T

)
weights at every

round. For the same reason, the per-round space complexity is O(T ×2B/γ×M) = O
(
T 4/3 log T

)
.

Appendices for Chapter 5

5.A. Adaptive Multi-variable Exponentiated Gradient

In this subsection, we provide an adaptive version of Algorithm 8 when the time horizon T is not
known in advance. We adopt the notations of Section 5.2.1. Basically, the fixed tuning parameters
η(1), . . . , η(k) are replaced with time-varying learning rates η(1)

t , . . . , η
(k)
t .

The Adaptive Multi-variable Exponentiated Gradient algorithm satisfies the regret bound of The-
orem 5.5 below.

Theorem 5.5. Assume that the loss functions `t : ∆N1 × . . .×∆NK → R, t > 1, are differen-
tiable and jointly convex. Assume also the following upper bound on their partial gradients: for all
k ∈ {1, . . . ,K},

max
16t6T

‖∇u(k)`t‖∞ 6 G
(k) . (5.20)

Then, the Multi-variable Exponentiated Gradient algorithm (Algorithm 10) has a regret bounded as
follows:

T∑
t=1

`t

(
û

(1)
t , . . . , û

(K)
t

)
− min
u(1),...,u(K)

T∑
t=1

`t

(
u(1), . . . ,u(K)

)
6 2

K∑
k=1

G(k)
√
T (k) logNk ,

where T (k) =
∑T

t=1 1‖∇
u(k)`t‖∞>0 and where the minimum is taken over all

(
u(1), . . . ,u(K)

)
∈

∆N1 × . . .×∆NK .
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Algorithm 10: Adaptive Multi-variable Exponentiated Gradient

input : optimization domain ∆N1 × . . . × ∆NK (where N1, . . . , NK are positive
integers).

initialization: set û(k)
1

def
=
(

1
Nk
, . . . , 1

Nk

)
∈ ∆Nk for all k = 1, . . . ,K.

for each round t = 1, 2, . . . do
• Output

(
û

(1)
t , . . . , û

(K)
t

)
∈ ∆N1×. . .×∆NK and observe the differentiable and jointly

convex loss function `t : ∆N1 × . . .×∆NK → R.
• Update the tuning parameters, η(k)

t for all k = 1, . . . ,K as follows:

η
(k)
t+1 =

1

G(k)

√√√√ logN (k)

1 +
∑t

s=1 1‖∇
u(k)`s‖∞>0

• Compute the new weight vectors
(
û

(1)
t+1, . . . , û

(K)
t+1

)
∈ ∆N1 × . . .×∆NK as follows:

û
(k)
t+1,i

def
=

exp

(
−η(k)

t+1

t∑
s=1

∂
û
(k)
s,i

`s

(
û(1)
s , . . . , û(K)

s

))
Z

(k)
t+1

, i ∈ {1, . . . , Nk},

where ∂
û
(k)
s,i

`s denotes the partial derivative of `s with respect to i-th component of

the vector variable û(k)
s , and where the normalization factor Z(k)

t+1 is defined by

Z
(k)
t+1

def
=

Nk∑
i=1

exp

(
−η(k)

t+1

t∑
s=1

∂
û
(k)
s,i

`s

(
û(1)
s , . . . , û(K)

s

))
.

end

Proof (of Theorem 5.5) The proof starts as the one of Theorem 5.2. From (5.31), we can see
that

T∑
t=1

`t

(
û

(1)
t , . . . , û

(K)
t

)
− min
u(1),...,u(K)

T∑
t=1

`t

(
u(1), . . . ,u(K)

)
=

K∑
k=1

(
T∑
t=1

g
(k)
t · û

(k)
t − min

16i6Nk

T∑
t=1

g
(k)
t,i

)

=

K∑
k=1

 ∑
t∈T (k)

g
(k)
t · û

(k)
t − min

16i6Nk

∑
t∈T (k)

g
(k)
t,i

 , (5.21)

where g(k)
t

def
= ∇

û
(k)
t
`t(û

(1)
t , . . . , û

(K)
t ) and where T (k) =

{
t = 1, . . . , T, ‖ · ‖∇[u

(k)`t]∞ > 0
}
.

Note that the right-hand side of (5.31) is the sum of K regrets. Let k ∈ {1, . . . ,K}. By definition
of the Adaptive Multi-variable Exponentiated Gradient algorithm, the sequence of weight vectors(
û

(k)
t

)
t>1

corresponds exactly to the weight vectors output by the Exponentially Weighted Average
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forecaster with time-varying parameter (see Page 50 of Gerchinovitz [78]) applied to Nk experts
associated with the loss vectors g(k)

t ∈ RNk , t ∈ T (k). We can therefore use the well-known corre-
sponding regret bound available, e.g., in Proposition 2.1 of Gerchinovitz [78]. Noting that the loss
vectors g(k)

t lie in
[
−G(k), G(k)

]Nk by Assumption (5.20), and setting T (k) = card T (k), we thus get
that ∑

t∈T (k)

g
(k)
t · û

(k)
t − min

16i6Nk

∑
t∈T (k)

g
(k)
t,i 6 2G(k)

√
T (k) logNk .

Note that the additional term G(k)
√

logNk in the upper-bound of Gerchinovitz [78] is actually not
needed, since we can assume that η(k)

T+1 = η
(k)
T because η(k)

T+1 is not used by the algorithm at rounds
t 6 T . Substituting the last upper bound in the right-hand side of (5.21) concludes the proof. �

5.B. An efficient chaining algorithm for Hölder classes

In this appendix, we extend the analysis of Section 5.3 to Hölder function classes. In the sequel
F denotes the set of functions on [0, 1] whose q first derivatives (q ∈ N) exist and are all bounded in
supremum norm by a constant B, and whose qth derivative is Hölder continuous of order α ∈ (0, 1]

with coefficient λ > 0. In other words, any function f ∈ F satisfies

∀x, y ∈ [0, 1],
∣∣f (q)(x)− f (q)(y)

∣∣ 6 λ|x− y|α , (5.22)

and ‖f (k)‖∞ 6 B for all k ∈ {0, . . . , q}. We denote by β = q + α the coefficient of regular-
ity of F . Recall from the introduction that logN∞(F , ε) = O(ε−1/β), so that, by Theorem 5.3
and (5.2), if β > 1/2, the Chaining Exponentially Weighted Average forecaster guarantees a regret
of O

(
T 1/(2β+1)

)
, which is optimal. We explain below how to modify this algorithm with non-proper

ε-nets of (F , ‖·‖∞) that are easier to manage from a computational viewpoint. This leads to a
quasi-optimal regret of O

(
T 1/(2β+1)(log T )3/2

)
.

The analysis follows the one of Section 5.3 which dealt with the special case of 1-Lipschitz func-
tions. The main difference consists in replacing piecewise-constant approximations with piecewise-
polynomial approximations.

5.B.1. Constructing computationally-manageable ε-nets via exponentially nested
discretization

Let γ ∈
(
B
T , B

)
be a fixed real number that will play the same role as in Theorem 5.3. Using the

fact that all functions in F are Hölder, we can approximate F with piecewise-polynomial functions
as follows.

Let δx > 0 and δy > 0 be two discretization widths that will be fixed later by the analysis. We
partition the x-axis [0, 1] into 1/δx subintervals Ia

def
=
[
(a − 1)δx, aδx

)
, a = 1, . . . , 1/δx (the last

interval is closed at x = 1). We also use a discretization of length δy on the y-axis [−B,B], by
considering the set

Y(0) def
=
{
−B + jδy : j = 0, . . . , 2B/δy

}
.

For the sake of simplicity, we assume that both 1/δx and 2B/δy are integers. Otherwise, it suffices
to consider d1/δxe and d2B/δye, which only impacts the constants of the final Theorem 5.7. We
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then define the sets of clipped polynomial functions for every a ∈ {1, . . . , 1/δx}

P(0)
a

def
=

{
x 7→

[
a0 +

a1

1!
(x− xa)2 + · · ·+ aq

q!
(x− xa)q

]
B

: a0, . . . , aq ∈ Y(0)

}
.

Here, [·]B is the clipping operator defined by [x]B
def
= min

{
B,max{−B, x}

}
and xa is the center of

Ia. Now, we define the set F (0) of piecewise-clipped polynomial functions f (0) : [0, 1]→ [−B,B] of
the form

f (0)(x) =

1/δx∑
a=1

P (0)
a (x)1x∈Ia , ∀a ∈ {1, . . . , 1/δx} P (0)

a ∈ P(0)
a . (5.23)

Remark that the above definition is similar to (5.16), where the constants c(0)
a have been substi-

tuted with clipped polynomials. Using the fact that all functions in F are Hölder, we can see (cf.
Lemma 5.6) that for δx = 2(q!γ/(2λ))1/β and δy = γ/e, the set F (0) is a γ-net§ of

(
F , ‖ · ‖∞

)
.

Refinement via an exponentially nested discretization Next we construct γ/2m-nets that are
refinements of the γ-net F (0). We need to define an exponentially nested discretization for each
subinterval Ia as follows: for any level m > 1, we partition Ia into 4m subintervals I(m,n)

a , n =

1, . . . , 4m, of equal size δx/4m. Note that the subintervals I
(m,n)
a , a = 1, . . . , 1/δx and n = 1, . . . , 4m,

form a partition of [0, 1]. We call it the level-m partition.

Now, we design the sets of clipped polynomial functions Q(m,n)
a that will refine the approximation of

F on each interval I(m,n)
a . To do so, for every m > 1 we set successive dyadic refining discretizations

of the coefficients space [−B,B]:

Y(m) def
=
{
−B + jδy/2

m : j = 0, . . . , 2m+1B/δy

}
, (5.24)

and we define the corresponding sets of clipped polynomial functions for all a ∈ {1, . . . , 1/δx}, all
m ∈ {1, . . . ,M}, and n ∈ {1, . . . , 4m}

P(m,n)
a

def
=

{
x 7→

[
a0 +

a1

1!

(
x− x(m,n)

a

)2
+ · · ·+ aq

q!

(
x− x(m,n)

a

)q ]
B

: a0, . . . , aq ∈ Y(m)

}
,

(5.25)
where x(m,n)

a is the center of the interval I(m,n)
a . Then, we define the sets of differences between

clipped polynomial functions of two consecutive levels

Q(m,n)
a =

{[
P (m) − P (m−1)

]
3γ/2m

: P (m) ∈ P(m,n)
a and P (m−1) ∈ P(m−1,nm−1)

a

}
where nm−1 denotes the unique integer n′ such that I(m,n)

a ⊂ I
(m−1,n′)
a . (For m = 1, P(m−1,nm−1)

a

is replaced with P(0)
a in the definition of Q(m,n)

a ). The functions in Q(m,n)
a will play the same role

as the constants c(m,n)
a for the Lipschitz case to refine the approximation from the level-(m − 1)

partition to the level-m partition. Note that each Q(m,n)
a ∈ Q(m,n)

a takes values in [−3γ/2m, 3γ/2m].

Then, we enrich the set F (0) by looking at all the functions of the form f (0) +
∑M

m=1 g
(m), where

f (0) ∈ F (0) and where every function g(m) is the difference of a piecewise-clipped polynomial on

§This γ-net is not proper since F (0) 6⊆ F .
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the level-m partition and a piecewise-clipped polynomial on the previous level m− 1, with values
Q

(m,n)
a ∈ Q(m,n)

a .

In other words, we define the level-M approximation set F (M) as the set of all functions fc : [0, 1]→
R of the form

fc(x) =

1/δx∑
a=1

P (0)
a (x)1x∈Ia︸ ︷︷ ︸
f (0)(x)

+

M∑
m=1

1/δx∑
a=1

4m∑
n=1

Q(m,n)
a (x)1

x∈I(m,n)a︸ ︷︷ ︸
g(m)(x)

, (5.26)

where P (0)
a ∈ P(0)

a and Q(m,n)
a ∈ Q(m,n)

a . Once again, see (5.26) as an extension of (5.17), where the
constants c(m,n)

a have been replaced with Q(m,n)
a .

Using again the fact that all functions in F are Hölder, we can show that the set F (M) of all
functions fc is a γ/2M -net of (F , ‖ · ‖∞); see Lemma 5.6 below (whose proof is postponed to
Appendix 5.C.3) for further details.

Lemma 5.6. Let F be the set of Hölder functions defined in (5.22). Assume that β def
= q+α >

1/2. Let δx = 2(q!γ/(2λ))1/β and δy = γ/e. Then:

• the set F (0) defined in (5.23) is a γ-net of
(
F , ‖ · ‖∞

)
;

• for all M > 1, the set F (M) defined in (5.26) is a γ/2M -net of
(
F , ‖ · ‖∞

)
.

5.B.2. A chaining algorithm using this exponentially nested refining discretization

Next we design an algorithm which, as in Section 5.3, is able to be competitive against any function
fc = f (0) +

∑M
m=1 g

(m) and is computationally tractable. More precisely:

We run 1/δx instances of the same algorithm A in parallel; the a-th instance corresponds to the
subinterval Ia and it is updated only at rounds t such that xt ∈ Ia.

Next we focus on the a-th instance of the algorithm A, whose local time is only incremented when
a new xt falls into Ia. As in Algorithm 9, we use a combination of the EWA and the Multi-variable
EG forecasters to perform high-scale and low-scale aggregation simultaneously:

Low-scale aggregation: we run cardP(0)
a 6 (2B/δy + 1)(q+1) instances Ba,j , j = 1, . . . , cardP(0)

a

of the Adaptive Multi-variable Exponentiated Gradient algorithm (Algorithm 10 in the appendix)
simultaneously. Each instance Ba,j corresponds to a particular polynomial P (0)

a,j ∈ P
(0)
a and is run

(similarly to (5.5)) with the loss function `t defined for all weight vectors u(m,n) ∈ ∆
cardQ(m,n)

a
by

`t

(
u(m,n), m = 1, . . . ,M, n = 1, . . . , 4m

)
=

yt − P (0)
a,j (xt)−

M∑
m=1

4m∑
n=1

cardQ(m,n)
a∑

k=1

u
(m,n)
k Q

(m,n)
a,k (xt)1xt∈I(m,n)a

2

. (5.27)
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Here, Q(m,n)
a,1 , Q

(m,n)
a,2 , . . . denote the elements of Q(m,n)

a that have been ordered. The above con-

vex combinations
∑

k u
(m,n)
k Q

(m,n)
a,k ensure that subalgorithm Ba,j is competitive against the best

elements in Q(m,n)
a on subintervals I(m,n)

a for all m and n. The weight vectors formed by this
subalgorithm Ba,j (when xt ∈ Ia) are denoted by û(m,n)

t,a,j , and we set for all j = 1, . . . , cardP(0)
a

f̂t,a,j(x)
def
= P

(0)
a,j (x) +

M∑
m=1

4m∑
n=1

cardQ(m,n)
a∑

k=1

û
(m,n)
t,a,j,k Q

(m,n)
a,k (x)1

x∈I(m,n)a
,

where P (0)
a,j is the jth element of P(0)

a .

High-scale aggregation: we aggregate the forecasters above f̂t,a,j for j ∈
{

1, . . . , cardP(0)
a

}
with a

standard Exponentially Weighted Average forecaster (tuned, e.g., with the parameter η = 1/(2(5B)2) =

1/(50B2)):

f̂t,a =

cardP(0)
a∑

j=1

ŵt,a,j f̂t,a,j . (5.28)

Putting all things together : at every time t > 1, we make the prediction

f̂t(xt)
def
=

1/δx∑
a=1

f̂t,a(xt)1xt∈Ia .

We call this algorithm the Nested Chaining Algorithm for Hölder functions.

Theorem 5.7. Let B > 0, T > 2, and F be the set of Hölder functions defined in (5.22).

Assume that β def
= q + α > 1/2 and that max16t6T |yt| 6 B. Then, the Nested Chaining Algorithm

for Hölder functions defined above and tuned with the parameters δx = 2(q!γ/(2λ))1/β, δy = γ/e,
γ = BT−β/(2β+1) and M =

⌈
log2(γT/B)

⌉
satisfies, for some constant c > 0 depending only on q

and λ,
RegT (F) 6 cmax{B2−1/β, B2}T

1
2β+1 (log T )3/2 .

The proof is postponed to Appendix 5.C.5. The logarithmic factor (log T )3/2 can be reduced to
log T , by partitioning Ia into 2m/β subintervals I(m,n)

a instead of 4m subintervals. However, the
partition at level m > 2 is then not necessarily nested in the partitions of lower levels, which makes
the proof slightly more difficult.

Note that the Nested Chaining Algorithm for Hölder functions is computationally tractable as
shown by the following lemma, whose proof is deferred to Appendix 5.C.6.

Lemma 5.8. Under the assumptions of Theorem 5.7, the complexity of the Nested Chaining
Algorithm for Hölder functions defined above satisfies:

• Storage complexity: O
(
T

2q+4+
β(q−1)+1

2β+1 log T
)
;

• Time complexity: O
(
T

(q+1)
(

2+ β
2β+1

)
log T

)
.
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5.C. Omitted proofs

In this appendix, we provide the proofs which were omitted in the main body of the chapter.

5.C.1. Proof of Theorem 5.2

As is the case for the classical Exponentiated Gradient algorithm, the proof relies on a linearization
argument. Let

(
u(1), . . . ,u(K)

)
∈ ∆N1 × . . . × ∆NK . By differentiability and joint convexity of `t

for all t = 1, . . . , T , we have that

T∑
t=1

`t

(
û

(1)
t , . . . , û

(K)
t

)
−

T∑
t=1

`t

(
u(1), . . . ,u(K)

)
6

T∑
t=1

∇`t
(
û

(1)
t , . . . , û

(K)
t

)
·
(
û

(1)
t − u(1), . . . , û

(K)
t − u(K)

)
(5.29)

=

T∑
t=1

K∑
k=1

∇
û
(k)
t
`t

(
û

(1)
t , . . . , û

(K)
t

)
·
(
û

(k)
t − u(k)

)
, (5.30)

where ∇`t in (5.29) denotes the usual (joint) gradient of `t (with
∑K

k=1Nk components), and
where (5.30) follows from splitting the gradient intoK partial gradients:∇`t =

(
∇
û
(1)
t
`t, . . . ,∇û(K)

t
`t

)
.

As a consequence, setting g(k)
t

def
= ∇

û
(k)
t
`t

(
û

(1)
t , . . . , û

(K)
t

)
∈ RNk , and taking the maximum of the

last inequality over all
(
u(1), . . . ,u(K)

)
∈ ∆N1 × . . .×∆NK , we can see that

T∑
t=1

`t

(
û

(1)
t , . . . , û

(K)
t

)
− min
u(1),...,u(K)

T∑
t=1

`t

(
u(1), . . . ,u(K)

)
6

K∑
k=1

max
u(k)∈∆Nk

T∑
t=1

g
(k)
t ·

(
û

(k)
t − u(k)

)
=

K∑
k=1

(
T∑
t=1

g
(k)
t · û

(k)
t − min

16i6Nk

T∑
t=1

g
(k)
t,i

)
, (5.31)

where the last inequality follows from the fact that the function u(k) 7→
∑T

t=1 g
(k)
t · u(k) is linear

over the polytope ∆Nk , so that its minimum is achieved on at least one of the Nk vertices of ∆Nk .

Note that the right-hand side of (5.31) is the sum of K regrets. Let k ∈ {1, . . . ,K}. By definition
of the Multi-variable Exponentiated Gradient algorithm, the sequence of weight vectors

(
û

(k)
t

)
t>1

corresponds exactly to the weight vectors output by the Exponentially Weighted Average forecaster
(see Page 14 of Cesa-Bianchi and Lugosi [43]) applied to Nk experts associated with the loss vectors
g

(k)
t ∈ RNk , t > 1. We can therefore use the well-known corresponding regret bound available, e.g.,

in Theorem 2.2 of Cesa-Bianchi and Lugosi [43] or in Theorem 2.1 of Gerchinovitz [78]. Noting that
the loss vectors g(k)

t lie in
[
−G(k), G(k)

]Nk by Assumption (5.3), we thus get that

T∑
t=1

g
(k)
t · û

(k)
t − min

16i6Nk

T∑
t=1

g
(k)
t,i 6 G

(k)
√

2T logNk .
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substituting the last upper bound in the right-hand side of (5.31) concludes the proof.

5.C.2. An efficient γ-net for Lipschitz classes

Lemma 5.9. Let F be the set of functions from [0, 1] to [−B,B] that are 1-Lipschitz. Then:

• the set F (0) defined in (5.16) is a γ-net of
(
F , ‖ · ‖∞

)
;

• for all M > 1, the set F (M) defined in (5.17) is a γ/2M+1-net of
(
F , ‖ · ‖∞

)
.

Proof (of Lemma 5.9)
First claim: F (0) is a γ-net of

(
F , ‖ · ‖∞

)
.

Let f ∈ F . We explain why there exist c(0)
1 , . . . , c

(0)
1/γ ∈ C

(0) such that

f (0)(x) =

1/γ∑
a=1

c(0)
a 1x∈Ia

satisfies
∣∣f(x)− f (0)(x)

∣∣ 6 γ for all x ∈ [0, 1]. We can choose c(0)
a ∈ arg minc∈C(0)

∣∣f(xa)− c
∣∣, where

xa is the center of the subinterval Ia. Indeed, since we can approximate f(xa) with precision γ/2
(the y-axis discretization is of width γ), and since f is 1-Lipschitz on Ia, we have that, for all
a ∈ {1, . . . , 1/γ} and all x ∈ Ia,∣∣f(x)− c(0)

a

∣∣ 6 ∣∣f(x)− f(xa)
∣∣+
∣∣f(xa)− c(0)

a

∣∣ 6 γ

2
+
γ

2
= γ .

Since the subintervals Ia, a 6 1/γ, form a partition of [0, 1], we just showed that ‖f − f (0)‖∞ 6 γ.

Second claim: F (M) is a γ/2M+1-net of
(
F , ‖ · ‖∞

)
.

Let f ∈ F . We explain why there exist constants c(0)
a ∈ C(0) and c(m,n)

a ∈
[
−γ/2m−1, γ/2m−1

]
such

that

fc(x) =

1/γ∑
a=1

c(0)
a 1x∈Ia +

M∑
m=1

1/γ∑
a=1

2m∑
n=1

c(m,n)
a 1

x∈I(m,n)a

satisfies
∣∣f(x)− fc(x)

∣∣ 6 γ/2M+1 for all x ∈ [0, 1]. We argue below that it suffices to:

• choose the constants c(0)
a ∈ arg minc∈C(0)

∣∣f(xa)− c
∣∣ exactly as for F (0) above;

• choose the constants c(m,n)
a in such a way that, for all levels m ∈ {1, . . . ,M}, and for all

positions a ∈ {1, . . . , 1/γ} and n ∈ {1, . . . , 2m},

f
(
x(m,n)
a

)
= c(0)

a +

m∑
m′=1

c
(m′,nm′ )
a , (5.32)

where x(m,n)
a denotes the center of the subinterval I(m,n)

a , and where nm′ is the unique integer
n′ such that I(m,n)

a ⊆ I(m′,n′)
a . Such a choice can be done in a recursive way (induction on m).

It is feasible since the functions in F are 1-Lipschitz (see Figure 5.1 for an illustration).

To conclude, it is now sufficient to use (5.32) with m = M . Note indeed from (5.17) that, on each
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level-M subinterval I(M,n)
a , the function fc is equal to

fc(x) = c(0)
a +

M∑
m=1

c(m,nm)
a ,

where nm is the unique integer n′ such that I(M,n)
a ⊆ I

(m,n′)
a . Thus, by (5.32), we can see that

fc
(
x

(M,n)
a

)
= f

(
x

(M,n)
a

)
for all points x(M,n)

a , a ∈ {1, . . . , 1/γ} and n ∈ {1, . . . , 2M}.

Now, if x ∈ I(M,n)
a is any point in I(M,n)

a , then it is at most at a distance of γ/2M+1 of the middle
point x(M,n)

a . Therefore, by 1-Lipschitzity of f , we have
∣∣f(x) − f

(
x

(M,n)
a

)∣∣ 6 γ/2M+1. Using the
equality fc

(
x

(M,n)
a

)
= f

(
x

(M,n)
a

)
proved above and the fact that fc is constant on I(M,n)

a , we get
that

∀a ∈ {1, . . . , 1/γ}, ∀n ∈ {1, . . . , 2M}, ∀x ∈ I(M,n)
a ,

∣∣f(x)− fc(x)
∣∣ 6 γ/2M+1 .

Since the level-M subintervals I(M,n)
a , a ∈ {1, . . . , 1/γ} and n ∈ {1, . . . , 2M}, form a partition of

[0, 1], we just showed that ‖f − fc‖∞ 6 γ/2M+1, which concludes the proof. �

5.C.3. An efficient γ-net for Hölder classes (proof of Lemma 5.6)

First claim: F (0) is a γ-net of
(
F , ‖ · ‖∞

)
.

Let f ∈ F . We explain why there exist P (0)
a ∈ P(0)

a for all a ∈ {1, . . . , 1/δx} such that

f (0)(x) =

1/δx∑
a=1

P (0)
a (x)1x∈Ia

satisfies
∣∣f(x)− f (0)(x)

∣∣ 6 γ for all x ∈ [0, 1]. Fix a ∈ {1, . . . , 1/δx} and let xa be the center of the
subinterval Ia. By Taylor’s formula for all x ∈ Ia there exist ξ ∈ Ia such that

f(x) = f(xa) + f ′(xa)(x− xa) +
f ′′(xa)

2!
(x− xa)2 + · · ·+ f (q)(xa)

q!
(x− xa)q

+
1

q!

(
f (q)(ξ)− f (q)(xa)

)
(x− xa)q . (5.33)

Thus, the function f can be written as the sum of a polynomial and a term (the last one) that will
be proven to be small by the Hölder property (5.22). Now, for every derivative i ∈ {0, . . . , q} we
can choose bi ∈ Y(0) such that

|f (i)(xa)− bi| 6 δy/2 . (5.34)

Indeed, the y-axis discretization Y(0) of [−B,B] is of width δy and |f (i)(xa)| 6 B by definition of
F . Thus, setting

P (0)
a (x) = b0 +

b1
1

(x− xa) +
b2
2!

(x− xa)2 + · · ·+ bq
q!

(x− xa)q ,
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the polynomial P (0)
a satisfies by (5.33) for all x ∈ Ia

∣∣f(x)− P (0)
a (x)

∣∣ 6 q∑
i=0

∣∣f (i)(xa)− bi
∣∣

i!
|x− xa|i +

1

q!

∣∣∣f (q)(ξ)− f (q)(xa)
∣∣∣ |x− xa|q

6
q∑
i=0

δy
2i!
|x− xa|i︸ ︷︷ ︸
61

+
λ

q!
|ξ − xa|α |x− xa|q ,

where the second inequality is by (5.34) and because f (q) is α-Hölder with coefficient λ. Now, since
|ξ − xa| and |x− xa| are bounded by δx/2, it yields

∣∣f(x)− P (0)
a (x)

∣∣ 6 q∑
i=0

δy
2i!

+
λ

q!

(
δx
2

)q+α
6
e

2
δy +

λ

q!

(
δx
2

)β
.

The choices δx = 2(q!γ/(2λ))1/β and δy = γ/e finally entail∣∣∣f(x)−
[
P (0)
a (x)

]
B

∣∣∣ 6 ∣∣f(x)− P (0)
a (x)

∣∣ 6 γ

2
+
γ

2
= γ .

This concludes the first part of the proof.

Second claim: F (M) is a γ/2M -net of
(
F , ‖ · ‖∞

)
.

Let f ∈ F . We explain why there exist clipped-polynomials P (0)
a ∈ P(0) and Q(m,n)

a ∈ Q(m,n)
a such

that

fc(x) =

1/δx∑
a=1

P (0)
a (x)1x∈Ia +

M∑
m=1

1/δx∑
a=1

4m∑
n=1

Q(m,n)
a (x)1

x∈I(m,n)a

satisfies
∣∣f(x) − fc(x)

∣∣ 6 γ/2M for all x ∈ [0, 1]. To do so, we show first that there exist clipped
polynomials P (0)

a ∈ P(0) and P (m,n)
a ∈ P(m,n)

a such that

f̃c(x) =

1/δx∑
a=1

P (0)
a (x)1x∈Ia +

4∑
n=1

1/δx∑
a=1

(
P (1,n)
a − P (0)

a

)
(x)1

x∈I(1,n)a

+

M∑
m=2

1/δx∑
a=1

4m∑
n=1

(
P (m,n)
a − P (m−1,nm−1)

a

)
(x)1

x∈I(m,n)a

satisfies
∣∣f(x)− f̃c(x)

∣∣ 6 γ/2M for all x ∈ [0, 1]. We recall that nm−1 denotes the unique integer n′

such that I(m,n)
a ⊂ I

(m−1,n′)
a . First we remark that the function f̃c defined above equals P (M,n)

a on
each level-M subinterval I(M,n)

a .

Thus, it suffices to design clipped polynomials P (m,n)
a ∈ P(m,n)

a , such that
∣∣f(x)−P (m,n)

a (x)
∣∣ 6 γ/2m

for all x ∈ I(m,n)
a . To do so, we reproduce the same proof as for F (0) above. Because diam I

(m,n)
a =

δx/4
m 6 δx/2

m/β (recall that β > 1/2), for every position a ∈ {1, . . . , 1/δx}, every level m ∈
{1, . . . ,M}, and every n ∈ {1, . . . , 4m}, we can define as for F (0) above a polynomial

P̃ (m,n)
a (x) = b0 +

b1
1

(
x− x(m,n)

a

)
+
b2
2!

(
x− x(m,n)

a

)2
+ · · ·+ bq

q!

(
x− x(m,n)

a

)q
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(recall that x(m,n)
a is the center of I(m,n)

a ) such that all coefficients bj have the form −B + zjδy2
−m

for some zj ∈ {0, . . . , 2m+1B/δy} and∣∣∣f(x)−
[
P̃ (m,n)
a (x)

]
B

∣∣∣ 6 γ/2m (5.35)

for all x ∈ I(m,n)
a . To conclude, we choose the clipped polynomials P (m,n)

a =
[
P̃

(m,n)
a

]
B
.

To conclude the proof, we see that for all x ∈ I(m,n)
a , by the triangle inequality∣∣∣P (m,n)

a (x)− P (m−1,nm−1)
a (x)

∣∣∣ 6 γ

2m
+

γ

2m−1
=

3γ

2m
,

so that fc = f̃c for the choices Q(m,n)
a =

[
P

(m,n)
a (x)− P (m−1,nm−1)

a (x)
]

3γ/2m
.

5.C.4. Proof of Theorem 5.4

We split our proof into two main parts. First, we explain why each functions f̂t,a incurs small
cumulative regret inside each subinterval Ia. Second, we sum the previous regret bounds over all
positions a ∈ {1, . . . , 1/γ}.

Part 1: focus on a subinterval Ia. In this part, we fix some a ∈ {1, . . . , 1/γ} and we consider the
a-th instance of the algorithm A, whose local time is only incremented when a new xt falls into
Ia. As in Algorithm 9, our instance of algorithm A uses a combination of the EWA and the Multi-
variable EG forecasters to perform high-scale and low-scale aggregation simultaneously. Thus, the
proof closely follows the path of the one of Theorem 5.3. We split again the proof into two subparts:
one for each level of aggregation.

Subpart 1: low-scale aggregation.

In this subpart, we fix j ∈ {0, . . . , 2B/γ}. The proof starts as the one of Theorem 5.3 except that A
applies the adaptive version of the Multi-variable Exponentiated Gradient forecaster (Algorithm 10,
Appendix 5.A) with the loss function `t defined in (5.18). We will thus apply Theorem 5.5 (available
in Appendix 5.A) instead of Theorem 5.2. After checking its assumptions exactly as in the proof of
Theorem 5.3, we can apply Theorem 5.5. The norms of the loss gradients

∥∥∇
û
(m,n)
t

`t
∥∥
∞ are bounded

by 16Bγ/2m if xt falls in I
(m,n)
a and by 0 otherwise. Setting T (m,n)

a =
∑T

t=1 1xt∈I(m,n)a
, Theorem 5.5

yields as in (5.11):

T∑
t=1

(
yt−f̂t,a,j(xt)

)2
1xt∈Ia (5.36)

6 inf
c
(m,n)
a , ∀(m,n)

T∑
t=1

(
yt −

(
−B + jγ +

M∑
m=1

2m∑
n=1

c(m,n)
a 1

xt∈I(m,n)a

))2

1xt∈Ia

+ 2

M∑
m=1

2m∑
n=1

16Bγ/2m
√
T

(m,n)
a log 2 , (5.37)

where the infimum is over all constants c(m,n)
a ∈ [−γ/2m−1, γ/2m−1] for every m = 1, . . . ,M and

n = 1, . . . , 2m. But, for each level m = 1, . . . ,M , the point xt only falls into one interval I(m,n)
a .
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Thus, ∑2m

n=1 T
(m,n)
a = Ta ,

where Ta =
∑T

t=1 1xt∈Ia is the final local time of the a-th instance of A. Therefore, using the
concavity of the square root and applying Jensen’s inequality, (5.37) entails

T∑
t=1

(
yt−f̂t,a,j(xt)

)2
1xt∈Ia

6 inf
c
(m,n)
a , ∀(m,n)

T∑
t=1

yt − (−B + jγ +
∑

(m,n)

c(m,n)
a 1

xt∈I(m,n)a

)2

1xt∈Ia

+ 32Bγ
M∑
m=1

2−m
√
Ta2m log 2

6 inf
c
(m,n)
a , ∀(m,n)

T∑
t=1

yt − (−B + jγ +
∑

(m,n)

c(m,n)
a 1

xt∈I(m,n)a

)2

1xt∈Ia

+ 32Bγ(1 +
√

2)
√
Ta log 2 . (5.38)

The second inequality is because
∑∞

m=1 2−m/2 = 1 +
√

2.

Subpart 2: high-scale aggregation.
Following the proof of Theorem 5.3, we apply EWA to the experts f̂t,a,j for j ∈ {0, . . . , 2B/γ} with
tuning parameter η = 1/(2(4B)2) because f̂t,a,j ∈ [−B−2γ,B+2γ] ⊂ [−3B, 3B] and yt ∈ [−B,B].
We get from Proposition 3.1 and Page 46 of Cesa-Bianchi and Lugosi [43] that

T∑
t=1

(
yt − f̂t,a(xt)

)2
1xt∈Ia

6 min
06j62B/γ

T∑
t=1

(
yt − f̂t,a,j(xt)

)2
1xt∈Ia +

log
(
2B/γ + 1

)
η

6 min
06j62B/γ

inf
c
(m,n)
a , ∀(m,n)

T∑
t=1

yt − (−B + jγ +
∑

(m,n)

c(m,n)
a 1

x∈I(m,n)a

)2

1xt∈Ia

+ 32B
(
1 +
√

2
)
γ
√
Ta log 2 + 32B2 log (2B/γ + 1) , (5.39)

where the infima are over all j ∈ {0, . . . , 2B/γ} and all constants c(m,n)
a ∈ [−γ/2m−1, γ/2m−1], and

where the second inequality follows from (5.38) and from η = 1/(32B2).

Part 2: we sum the regrets over all subintervals Ia By definition of f̂t, we have

T∑
t=1

(
yt − f̂t(xt)

)2
=

T∑
t=1

(
yt −

1/γ∑
a=1

f̂t,a(xt)1xt∈Ia

)2

=

1/γ∑
a=1

T∑
t=1

(
yt − f̂t,a(xt)

)2

1xt∈Ia
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Now, by definition of F (M), summing (5.39) over all a = 1, . . . , 1/γ leads to

T∑
t=1

(
yt − f̂t(xt)

)2
6 inf

f∈F(M)

T∑
t=1

(
yt − f(xt)

)2
+

32B2

γ
log (2B/γ + 1)

+ 32B
(
1 +
√

2
)
γ
√

log 2

1/γ∑
a=1

√
Ta

 . (5.40)

Then, using that
∑1/γ

a=1 Ta = T , since at every round t, the point xt only falls into one subinterval
Ia, and applying Jensen’s inequality to the square root, we can see that

1/γ∑
a=1

√
Ta 6

√
T

γ
.

Therefore, substituting in (5.40), we obtain

T∑
t=1

(
yt − f̂t(xt)

)2
6 inf

f∈F(M)

T∑
t=1

(
yt − f(xt)

)2
+

32B2

γ
log (2B/γ + 1)

+ 32B
(
1 +
√

2
)√

γT log 2 . (5.41)

But, F (M) is by Lemma 5.9 a γ/2M+1-net of F . Using that M = dlog2(γT/B)e and following the
proof of (5.15), it entails

inf
f∈F(M)

T∑
t=1

(
yt − f(xt)

)2
6 inf

f∈F

T∑
t=1

(
yt − f(xt)

)2
+ 2B2 +

B2

4T
.

Finally, from (5.41) we have

T∑
t=1

(
yt − f̂t(xt)

)2
6 inf

f∈F

T∑
t=1

(
yt − f(xt)

)2
+

32B2

γ
log (2B/γ + 1)

+ 32B
(
1 +
√

2
)√

γT log 2 + 2B2 +
B2

4T
. (5.42)

The above regret bound grows roughly as (we omit logarithmic factors and small additive terms):

γ−1 +
√
γT .

Optimizing in γ would yield γ ≈ T−1/3 and a regret roughly of the order of T 1/3. More rigorously,
taking γ = BT−1/3 and substituting it in (5.42) concludes the proof.

5.C.5. Proof of Theorem 5.7

The proof closely follows the one of Theorem 5.4. It is split into two main parts. First, we explain
why each function f̂t,a incurs a small cumulative regret inside each subinterval Ia. Second, we sum
the previous regret bounds over all positions a = 1, . . . , 1/δx.



5.3. AN EFFICIENT CHAINING ALGORITHM FOR HÖLDER CLASSES 141

Part 1: focus on a subinterval Ia In this part, we fix some a ∈ {1, . . . , 1/δx} and we consider
the a-th instance of the algorithm A, denoted Aa, whose local time is only incremented when a
new xt falls into Ia. As in Algorithm 9, Aa uses a combination of the EWA and the Multi-variable
EG forecasters to perform high-scale and low-scale aggregation simultaneously. We split again the
proof into two subparts: one for each level of aggregation.

Subpart 1: low-scale aggregation.

In this subpart, we fix j ∈ {1, . . . , cardP(0)
a }. Similarly to the proof of Theorem 5.4, we start by

applying Theorem 5.5. Since the elements in Q(m,n)
a are bounded in supremum norm by 3γ/2m,

and since the elements in P(0)
a are bounded by B, the norms of the gradients of the loss function

(defined in (5.27)) are bounded by 0 if xt /∈ I(m,n)
a and as follows otherwise:∥∥∇

û
(m,n)
t,a,j

`t
∥∥
∞ 6 2

(
|yt|+

∥∥f̂t,a,j∥∥∞)∥∥∥Q(m,n)
a,k

∥∥∥
∞
6 2(B + 4B)3γ/2m = 30Bγ/2m .

Here, we used that∣∣f̂t,a,j(x)
∣∣ 6 ∥∥P (0)

a,j

∥∥
∞ +

M∑
m=1

4m∑
n=1

cardQ(m,n)
a∑

k=1

û
(m,n)
t,a,j,k

∣∣∣Q(m,n)
a,k (x)

∣∣∣1
x∈I(m,n)a

6 B +

M∑
m=1

3γ

2m
6 4B . (5.43)

Thus, setting T (m,n)
a =

∑T
t=1 1xt∈I(m,n)a

, Theorem 5.5 yields:

T∑
t=1

(
yt − f̂t,a,j(xt)

)2
1xt∈Ia

6 inf
Q

(m,n)
a , ∀(m,n)

T∑
t=1

(
yt −

(
P

(0)
a,j +

M∑
m=1

4m∑
n=1

Q(m,n)
a 1

xt∈I(m,n)a

)
(xt)

)2

1xt∈Ia

+ 2
M∑
m=1

4m∑
n=1

30Bγ/2m
√
T

(m,n)
a log

(
cardQ(m,n)

a

)
, (5.44)

where the infimum is over all polynomial functions Q(m,n)
a ∈ Q(m,n)

a for every m = 1, . . . ,M and
n = 1, . . . , 4m. But, for each level m = 1, . . . ,M , the point xt only falls into one interval I(m,n)

a .
Thus,

∑4m

n=1 T
(m,n)
a = Ta, where Ta =

∑T
t=1 1xt∈Ia is the final local time of the a-th instance of A.

Therefore, using the concavity of the square root and applying Jensen’s inequality, (5.44) entails

T∑
t=1

(
yt − f̂t,a,j(xt)

)2
1xt∈Ia (5.45)

6 inf
Q

(m,n)
a , ∀(m,n)

T∑
t=1

yt −
P (0)

a,j +
∑

(m,n)

Q(m,n)
a 1

xt∈I(m,n)a

 (xt)

2

1xt∈Ia

+ 60Bγ
M∑
m=1

2−m
√
Ta4m log

(
cardQ(m,n)

a

)
. (5.46)

Now, by the definitions of Q(m,n)
a , P(m,n)

a , and Y(m) (see Equations (5.24) and (5.25)), we get
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cardQ(m,n)
a 6 card

(
P(m,n)
a

)2
6
(

cardY(m)
)2(q+1)

=

(
2m+1B

δy
+ 1

)2(q+1)

=

(
2m+1e

B

γ
+ 1

)2(q+1)

,

which yields

M∑
m=1

2−m
√

4m log
(

cardQ(m,n)
a

)
6

M∑
m=1

√
2(q + 1) log

(
2m+1eB/γ + 1

)
6M

√
2(q + 1) log (2M+1eB/γ + 1) .

Thus, using M = dlog2(γT/B)e, so that 2Mγ−1 6 2T/B and combining the above inequality with
(5.46), we have

T∑
t=1

(
yt − f̂t,a,j(xt)

)2
1xt∈Ia (5.47)

6 inf
Q

(m,n)
a , ∀(m,n)

T∑
t=1

yt −
P (0)

a,j +
∑

(m,n)

Q(m,n)
a 1

xt∈I(m,n)a

 (xt)

2

1xt∈Ia

+ 60Bγdlog2(γT/B)e
√

2(q + 1)Ta log(4eT + 1) . (5.48)

Subpart 2: high-scale aggregation.

Following the proof of Theorem 5.4, we apply EWA to the experts f̂t,a,j for j ∈
{

1, . . . , cardP(0)
a

}
with tuning parameter η = 1/(2(5B)2) = 1/(50B2) because f̂t,a,j ∈ [−4B, 4B] (see (5.43)). From
(5.48) and using cardP(0)

a 6 (2B/δy + 1)q+1 = (2eB/γ + 1)q+1, we have

T∑
t=1

(
yt − f̂t,a(xt)

)2
1xt∈Ia

6 min
16j6cardP(0)

a

T∑
t=1

(
yt − f̂t,a,j(xt)

)2
1xt∈Ia +

log
(

cardP(0)
a

)
η

6 inf
P

(0)
a ∈P

(0)
a

inf
Q

(m,n)
a , ∀(m,n)

T∑
t=1

yt −
P (0)

a +
∑

(m,n)

Q(m,n)
a 1

xt∈I(m,n)a

 (xt)

2

1xt∈Ia

+ 60Bγdlog2(γT/B)e
√

2(q + 1)Ta log(4eT + 1)

+ 50B2(q + 1) log (2eB/γ + 1) , (5.49)

where the infimum is over all functions P (0) ∈ P(0)
a and Q

(m,n)
a ∈ Q(m,n)

a , and where the second
inequality follows from η = 1/(50B2).

Part 2: we sum the regrets over all subintervals Ia By definition of f̂t, we have

T∑
t=1

(
yt − f̂t(xt)

)2
=

T∑
t=1

(
yt −

1/δx∑
a=1

f̂t,a(xt)1xt∈Ia

)2

=

1/δx∑
a=1

T∑
t=1

(
yt − f̂t,a(xt)

)2

1xt∈Ia
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Now, by definition of F (M), summing (5.49) over all a = 1, . . . , 1/δx leads to

T∑
t=1

(
yt − f̂t(xt)

)2
6 inf

f∈F(M)

T∑
t=1

(
yt − f(xt)

)2
+ 50B2(q + 1) log(2eB/γ + 1)δ−1

x

+ 60Bγdlog2(γT/B)e
√

2(q + 1) log(4eT + 1)

1/δx∑
a=1

√
Ta

 . (5.50)

Then, using that
∑1/δx

a=1 Ta = T , since at every round t, the point xt only falls into one subinterval
Ia, and applying Jensen’s inequality to the square root, we can see that

1/δx∑
a=1

√
Ta 6

√
T/δx .

Therefore, substituting in (5.50) and because δx = 2(q!γ/(2λ))1/β , we have

T∑
t=1

(
yt − f̂t(xt)

)2
6 inf

f∈F(M)

T∑
t=1

(
yt − f(xt)

)2
+ 25B2(q + 1) log(2eB/γ + 1)

(
q!γ/(2λ)

)−1/β

+ 60Bγdlog2(γT/B)e
√

(q + 1) log(4eT + 1)T
(
q!γ/(2λ)

)−1/β
.

But, F (M) is by Lemma 5.6 a γ/2M -net of F . Using that M = dlog2(γT/B)e and following the
proof of (5.15), it entails

inf
f∈F(M)

T∑
t=1

(
yt − f(xt)

)2
6 inf

f∈F

T∑
t=1

(
yt − f(xt)

)2
+ 4B2 +

B2

T
.

Finally, we have

T∑
t=1

(
yt − f̂t(xt)

)2
6 inf

f∈F

T∑
t=1

(
yt − f(xt)

)2
+ 25B2(q + 1) log(2eB/γ + 1)

(
q!γ/(2λ)

)−1/β
+ 4B2 +

B2

T

+ 60Bγdlog2(γT/B)e
√

(q + 1) log(4eT + 1)T
(
q!γ/(2λ)

)−1/β
. (5.51)

The above regret bound grows roughly as (we omit logarithmic factors and small additive terms):

γ−1/β + γ1−1/(2β)
√
T .

Optimizing in γ would yield γ ≈ T−β/(2β+1) and a regret roughly of order O
(
T 1/(2β+1)

)
. More

rigorously, taking γ = BT−β/(2β+1) and substituting it in (5.51) concludes the proof.
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5.C.6. Proof of Lemma 5.8

Storage complexity. Fix a position a ∈ {1, . . . , 1/δx}. At round t > 1, the Nested Chaining
Algorithm for Hölder functions needs to store:

• the high-level weights ŵt,a,j for every j ∈
{

1, . . . , cardP(0)
a

}
;

• the low-level weights û(m,n)
t,a,j,k for every j ∈

{
1, . . . , cardP(0)

a

}
, every m ∈ {1, . . . ,M}, every

n ∈ {1, . . . , 4m}, and every k ∈
{

1, . . . , cardQ(m,n)
a

}
.

The complexity of the ath instance of A is thus of order

cardP(0)
a ×M × 4M × cardQ(M,n)

a .

Now, we bound each of these terms separately. First for γ = BT−β/(2β+1), we have

cardP(0)
a 6 (2B/δy + 1)q+1 = (2eB/γ + 1)q+1 =

(
2eT β/(2β+1) + 1

)q+1

= O
(
T β(q+1)/(2β+1)) ,

because δy = e/γ. Second using M = dlog2(γT/B)e, we can see that

4M =
(
2M
)2
6 (2γT/B)2 =

(
2T 1−β/(2β+1)

)2
= O

(
T 2−2β/(2β+1)

)
,

and that
cardQ(M,n)

a 6
(
2M+1eB/γ + 1

)2(q+1)
6 (4eT + 1)2(q+1) = O

(
T 2(q+1)

)
.

Putting all things together the space-complexity of the ath instance of A is of order

O
(
T 2q+4+β(q−1)/(2β+1) log T

)
.

The whole storage complexity of the algorithm is thus of order

O
(
T 2q+4+β(q−1)/(2β+1)/δx

)
= O

(
T 2q+4+(β(q−1)+1)/(2β+1) log T

)
,

where we used that δx = 2(q!γ/(2λ))1/β = O
(
T−1/(2β+1)

)
Time complexity. At round t > 1, xt only falls into one subinterval Ia and one subinterval I(m,n)

a

for each level m = 1, . . . ,M . It thus needs to update

• the weights ŵt,a,j for a single position a and for every j ∈
{

1, . . . , cardP(0)
a

}
,

• for every level m = 1, . . . ,M the weights û(m,n)
t,a,j,k for a single position a and a single n, but for

all j ∈
{

1, . . . , cardP(0)
a

}
and all k ∈

{
1, . . . , cardQ(m,n)

a

}
.

The time-complexity is thus bounded by

O
(

cardP(0)
a ×M × cardQ(M,n)

a

)
= O

(
T (q+1)(2+β/(2β+1)) log T

)
.



6
A consistent deterministic regression tree for nonparametric

prediction of time series

We study online prediction of bounded stationary ergodic processes. To do so, we consider the set-
ting of prediction of individual sequences and propose a deterministic regression tree that performs
asymptotically as well as the best L-Lipschitz predictor. Then, we show why the obtained regret
bound entails the asymptotic optimality with respect to the class of bounded stationary ergodic
processes.
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6.1. Introduction

Consider that at each time step t = 1, 2, . . . , a learner is asked to form a prediction Ŷt of the
next outcome Yt ∈ [0, 1] of a bounded stationary ergodic process (Yt)t=−∞,...,∞ with knowledge of
the past observations Y1, . . . , Yt−1. To evaluate the performance, a convex and M -Lipschitz (with
respect to its first argument) loss function ` : [0, 1]2 → [0, 1] is considered. But, for any bounded and
continuous loss functions `, Algoet [15] proved the following fundamental limit. For any prediction
strategy, almost surely

lim inf
T→∞

{
1

T

T∑
t=1

`
(
Ŷt, Yt

)}
> L? ,

where
L? = E

[
inf
f∈B∞

E
[
`
(
f(Y −1

−∞), Y0

)∣∣Y −1
−∞

]]
is the expected minimal loss over all possible Borel estimations of the outcome Y0 based on the
infinite past (B∞ denotes the set of Borel functions from [0, 1]∞ to [0, 1]). One may thus try to
design consistent strategies that achieve the lower bound, that is,

lim sup
T→∞

{
1

T

∑
t

`
(
Ŷt, Yt

)}
6 L? . (6.1)

Our approach. To do so, we partition the analysis and the design into two separate layers: the
setting of individual sequences and the one of stochastic time series. In Sections 6.2 and 6.3, we
adopt first the point of view of individual sequences, where no stochastic assumption about the
underlying process that generates the data is made, see the monograph of Cesa-Bianchi and Lugosi
[43]. Only Section 6.4 assumes that the data comes from a stationary ergodic process and states
that any strategy that satisfies some deterministic regret bound is consistent. Sections 6.2, 6.3,
and 6.4 can be read independently.

Formally, our framework(s) is (are) the following. The setting of individual sequences (Section 6.2)
assumes that a sequence (xt, yt) ∈ X ×Y is observed step by step, where X ⊂ [0, 1]d is the covariate
space and Y ⊂ [0, 1] a convex observation space∗. The learner is asked at each time step t to predict
the next observation yt with knowledge of the past observations y1, . . . , yt−1 and of the past and
present exogenous variables x1, . . . ,xt. The accuracy of a prediction is measured by a loss function
` : X ×Y → [0, 1] that we assume to be convex and M -Lipschitz in its first argument (typically the
square loss, the pinball loss, . . . ). Given a d-dimensional input space X , the goal of the forecaster
is to minimize its cumulative regret against the classes LdL of L-Lipschitz functions with respect to
the `2-norm (for all fixed L > 0†) from [0, 1]d to [0, 1],

R̂L,T =
T∑
t=1

`(ŷt, yt)− inf
f∈LdL

T∑
t=1

`
(
f(xt), yt

)
,

∗In Section 6.3, xt will be replaced by yt−1
t−d = yt−d, . . . , yt−1, then, the deterministic elements yt will be replaced

by random variables Yt in Section 6.4.
†The strategy of the forecaster is independent of the Lipschitz constant L, which is not known.
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that is, to ensure

∀L > 0 , lim sup
T→∞

{
sup

(x1,y1),...,(xT ,yT )

R̂L,T
T

}
6 0 .

Section 6.4 addresses actually the more challenging goal of competing against all Borel functions.

Section 6.2 designs such a strategy. The nested EG strategy (Algorithm 12) follows the spirit of
binary regression trees like CART (see Breiman et al. [36]), by performing a data-driven partition
of the covariate space. Theorem 6.3 guarantees that the nested EG strategy satisfies for all T > 1

and all L > 0,
R̂L,T 6M(L+ 3)

(√
T + 2(3d)

d
2(d+2)T

d+1
d+2

)
, (6.2)

in the worst case, that is, for all possible values of (x1, y1), . . . , (xT , yT ).

In Section 6.3, we switch to an autoregressive setting: previous responses yt−1
t−d = (yt−d, . . . , yt−1)

are used as covariates to predict yt. Basically, xt is replaced by yt−1
t−d. The number d of previous

responses is the order of the autoregressive model. For each order d > 1, Inequality (6.2) remains
valid. The challenge of Section 6.3 is to obtain the result simultaneously for all orders d > 1. This is
done (Algorithm 13) by combining an increasing number of fixed order-d nested EG. Theorem 6.6
upper-bounds the regret of Algorithm 13 for all d 6 T , and for all y1, . . . , yT ∈ [0, 1],

T∑
t=d+1

`(ŷt, yt) 6 inf
f∈LdL

T∑
t=d+1

`
(
f
(
yt−1
t−d
)
, yt

)
+
√

(T + 1) log(T + 1)

+M(L+ 3)
(√

T + 2(3d)
d

2(d+2)T
d+1
d+2

)
.

Consequently, for all d > 0 and all L > 0, and for all y1, . . . , yT ∈ [0, 1],

lim sup
T→∞

{
1

T

T∑
t=d+1

`
(
ŷt, yt

)}
6 lim sup

T→∞

{
inf
f∈LdL

1

T

T∑
t=d+1

`
(
f(yt−1

t−d), yt

)}
. (6.3)

Finally, we assume in Section 6.4 that the sequence of observations y1, . . . , yT actually comes from
a stationary ergodic process (Yt): yt is replaced by Yt. Our main result is Theorem 6.7 which states
that any strategy achieving (6.3) is actually consistent, i.e., satisfies (6.1).

Literature review. Many consistent forecasting strategies have been designed to achieve (6.1).
The vast majority of these strategies are based on statistical techniques used for time-series predic-
tion, ranging from parametric models like autoregressive models (see Brockwell and Davis [38]) to
nonparametric methods (see the surveys of Györfi et al. [84], Bosq [30], Merhav and Feder [114]).
In recent years, another collection of algorithms resolving related problems have been designed in
Györfi et al. [85], Györfi and Ottucsák [83], Biau et al. [25], Biau and Patra [24]. At their cores, all
these algorithms use some machine learning nonparametric prediction scheme (like histogram, ker-
nel, or nearest neighbor estimation). These algorithms rely on two parameters: a window parameter
h taking values in a discrete countable set H (e.g., the number of the bins of the uniform histograms
or the number of neighbors), and the order d of the autoregressive model to consider. Then, they
output predictions by mixing the countably infinite set of experts indexed by (h, d) ∈ H × N?

corresponding to strategies with fixed values of these two parameters. To do so, a prior distribution
π on this infinite set of experts H×N has to be considered. All these studies only perform asymp-
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totic analysis and thus only require that the prior π assign positive weight to each expert (h, d)

without taking into account the complexity of the experts. The practical choice of π is however left
to the user and not calibrated online. No finite-time analysis is performed. Besides, computational
purposes require to consider nothing but finite grids in numerical experiments, which results in
practice in approximation of the algorithm studied theoretically. In all these studies, assumption
are made from the beginning about the underlying process generating the sequence of observations.
In our method, consistency only comes as an additional feature of the algorithm via Theorem 6.7
in the special case of stochastic time series.

In contrast to statistics, little research has been devoted to online nonparametric prediction in the
setting of individual sequences. Recently, Rakhlin and Sridharan [124] provided the first optimal
rates for the square loss for arbitrary classes of regression functions. Surprisingly, these rates match
the ones for statistical learning with square loss. However, the algorithm provided is generally not
computationally feasible. Vovk [143, 144] considered vast classes of regression function (such as
Besov space) and proposed two approaches: defensive forecasting that uses the convexity of the
functional space and perform directly a method of defensive forecasting (such as gradient descent),
and another one based on aggregating a set of basis functions, that approximates well the space.
However, Vovk does not explains how to build efficiently the set of basis functions to aggregate,
and how to calibrate the precision of approximation. Our method nested EG can be seen as a
data-driven procedure to do so in the particular case where the comparison class are Lipschitz
functions. Theorem 6.7 provides the first link between this literature, and the statistical goal of
getting consistent strategies that achieve (6.1).

Contributions. First, we clean up the standard analysis of prediction of ergodic processes by
carrying out the aforementioned separation in two layers: first we perform a worst-case deterministic
analysis, then in the particular case where data comes from stationary ergodic process, consistency
is obtained as a direct consequence via Theorem 6.7. Our second main contribution is to build
an efficient data-driven and fully automatic procedure (nested EG) to compete against Lipschitz
functions. Our forecaster comes with robust (worst-case) finite-time guarantees. In Section 6.2.3, we
consider two simulation studies which confirm that nested EG performs much better than simpler
methods like uniform histograms. Our algorithm, which is purely sequential (unlike nearest neighbor
estimation for instance), is computationally efficient in contrast to the one of Rakhlin and Sridharan
[124]. Its time complexity can indeed be chosen arbitrarily close to linear in the number of time
steps. A last benefit of our approach is to be valid for a general class of loss functions when previous
papers to our knowledge only treat particular cases like the square loss or the pinball loss.

6.2. A strategy that competes against Lipschitz functions

The nested EG strategy (Algorithm 12) incrementally builds an estimate of the best Lipschitz
function (denoted by f?) with respect to the `2-norm. The core idea is to estimate f? precisely in
areas of the covariate space X with many occurrences of covariates xt, while estimating it loosely
in other parts of the space. To implement this idea, Algorithm 12 maintains a deterministic binary
tree whose nodes are associated with regions of the covariate space, such that the regions with
nodes deeper in the tree represent increasingly smaller subsets of X (see Figure 6.1).

In the sequel, we assume for simplicity that X = [0, 1]d and Y = [0, 1] and that the loss function `
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is from [0, 1]2 to [0, 1]. The case of unknown bounded sets X ⊂ Rd and Y ⊂ R will be treated later
in remarks.

This section is divided into three subsections. Section 6.2.2 is the core of the algorithm. It explains
how to partition the space of covariates xt in a clever data-driven fashion. Inside each region of
the space, the algorithm estimates the best constant prediction by running a defensive forecasting.
Section 6.2.1 and Section 6.2.1 control the error suffered by the defensive algorithm inside each
region: Section 6.2.1 bounds the approximation error of a Lipschitz function by a constant, and
Section 6.2.1 controls the estimation error of learning this best constant online.

6.2.1. Performing almost as well as the best constant

Approximation error of the best constant

If the number of observations such that xt belong to a subset X node ⊂ X is small enough, one
does not need to estimate f? precisely over X node. Lemma 6.1 formalizes this idea by controlling
the approximation error suffered by approximating f? by the best constant in [0, 1]. The control is
expressed in terms of the number of observations T node and of the size of the set X node, which is
measured by its diameter defined as diam

(
X node

)
= maxx,x′∈Xnode ‖x− x′‖2 .

Lemma 6.1. — Approximation error. Let T node > 1 and suppose that ` is M -Lipschitz in its
first argument. Then, for all (x1, y1), . . . , (xTnode , yTnode) ∈ [0, 1]2 and all L > 0, the cumulative
loss of the best constant is upper bounded as

inf
y∈[0,1]

Tnode∑
t=1

`(y, yt) 6 inf
f∈LdL

Tnode∑
t=1

`
(
f(xt), yt

)
+MLT node diam

(
X node

)
,

where X node ⊂ [0, 1]d is such that xt ∈ X node for all t = 1, . . . , T node.

Proof Let t > 1. Using that ` is M -Lipschitz and f is L-Lipschitz with respect to the `2 norm,
we get

`
(
f(x1), yt

)
− `
(
f(xt), yt

)
6M

∣∣f(x1)− f(xt)
∣∣

6ML
∥∥x1 − xt

∥∥
2

6MLdiam
(
X node

)
.

Summing over t and noting that infy
∑

t `(y, yt) 6
∑

t `
(
f(x1), yt

)
concludes. �

Estimation error of the best constant online

Lemma 6.1 implies that considering constant predictions is not bad when either the covariate region
is small, or the number of observations is small. The next step consists thus in estimating online
the best constant prediction in [0, 1].

To do so, among many existing methods, we consider the well-known gradient-based exponentially
weighted average forecaster (EG), introduced by Kivinen and Warmuth [97]. In the setting of pre-
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Algorithm 11: The gradient-based exponentially weighted average forecaster (EG) with two con-
stant experts that predict respectively 0 and 1.

Parameter: M > 0

For time step t = 1, 2, . . .
1. Define the learning parameter ηt = M−1

√
(log 2)/t

2. Predict

ŷt =
exp
(
−ηt

∑t−1
s=1 `

′(ŷs, ys)
)

1 + exp
(
−ηt

∑t−1
s=1 `

′(ŷs, ys)
) ∈ [0, 1] ,

where `′ denotes the (sub)gradient of ` with respect to its first argument
3. Observe yt

diction of individual sequences with expert advice—see the monograph by Cesa-Bianchi and Lugosi
[43], EG competes with the best fixed convex combination of experts. In the case where two experts
predict constant predictions respectively 0 and 1 at all time steps, EG ensures vanishing average
regret with respect to any constant prediction in [0, 1]. Algorithm 11 implements this particular
case of EG and Lemma 6.2 provides the associated regret bound. Lemma 6.2 is a particular case of
the standard regret bound of EG, whose proof is available for instance in Cesa-Bianchi and Lugosi
[43].

Lemma 6.2. — Estimation error. Let T node > 1. We assume that the loss function ` is convex
and M -Lipschitz in its first argument. Then, for all y1, . . . yTnode ∈ [0, 1], the cumulative loss of
Algorithm 11 is upper bounded as follows:

Tnode∑
t=1

`(ŷt, yt) 6 inf
y∈[0,1]

Tnode∑
t=1

`(y, yt) + 2M
√
T node log 2 .

Unknown value of M . Note that Algorithm 11 needs to know in advance a uniform bound M
on `′. This is the case if one considers (as we do) a bounded observation space [0, 1] with the
absolute loss function, defined for all y, y′ ∈ [0, 1] by `(y′, y) = |y − y′|; the pinball loss, defined by
`α(y′, y) = (α− 1{y>x})(y − y′); or the square loss, defined by `(y′, y) = (y − y′)2. However, in the
case of an unknown observation space Y the bound on the gradient of the square loss is unknown
and needs to be calibrated online at the small cost of the additional term 2M(2 + 4(log 2)/3) in
the regret bound, see de Rooij et al. [58].

6.2.2. Performing almost as well as the best Lipschitz function: the nested EG
strategy

The nested EG strategy (Algorithm 12) implements the idea of Lemma 6.1 and Lemma 6.2. It
maintains a binary tree whose nodes are associated with regions of the covariate space [0, 1]d. The
nodes in the tree are indexed by pairs of integers (h, i); where the first index h > 0 denotes the
distance of the node to the root (also referred to as the depth of the node) and the second index
i belongs to {1, . . . , 2h}. The root is thus denoted by (0, 1). By convention, (h + 1, 2i − 1) and
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(h + 1, 2i) are used to refer to the two children of node (h, i). Let X (h,i) ⊂ [0, 1]d be the region
associated with node (h, i). By construction, these regions are hyper-rectangles and satisfy the
constraints

X (0,1) = [0, 1]d and X (h,i) = X (h+1,2i−1) t X (h+1,2i) ,

where t denotes the disjoint union. The set of regions associated with terminal nodes (or leaves)
thus forms a partition of [0, 1]d.

At time step t, when a new covariate xt is observed, Algorithm 12 first selects the associated leaf
(ht, it) such that xt ∈ X (ht,it) (Step 2). The leaf (ht, it) then predicts the next observation yt by
updating a local version of Algorithm 11 (Step 3). Namely, for node (ht, it), Algorithm 12 runs
Algorithm 11 on the sub-sequence of past observations (xs, ys) such that the associated leaf is
(ht, it), that is, E(ht,it) def

= {1 6 s 6 t− 1 : (hs, is) = (ht, it)}; then it forms the prediction (Step 3)
and finally updates the set of observations predicted by node (ht, it): E(ht,it) = E(ht,it)∪{t} (Step 4).
When the number of observations T (ht,it) def

= #E(ht,it) received and predicted by leaf (ht, it) becomes
too large compared to the size of the region X (ht,it) (Step 5), the tree is updated. To do so, the
region X (ht,it) is divided in two sub-regions of equal volume by cutting along one given coordinate.

The coordinate rt + 1 to be split is chosen in a deterministic order, where rt = (ht mod d) and
mod denotes the modulo operation. Thus, at the root node (0, 1) the first coordinate is split, then
by going down in the tree we split the second one, then the third one and so on until we reach
the depth d, in which case we split the first coordinate for the second time. Each sub-region is
associated with a child of node (ht, it). Consequently, (ht, it) becomes an inner node and is thus no
longer used to form predictions.

To facilitate the formal study of the algorithm, we will need some additional notation. In partic-
ular, we will introduce time-indexed versions of several quantities. Tt denotes the tree stored by
Algorithm 12 at the beginning of time step t. The initial tree is thus the root T0 = {(0, 1)} and it
is expanded when the splitting condition (Step 5) holds, as

Tt+1 = Tt ∪
{

(ht + 1, 2it − 1), (ht + 1, 2it)
}

(Step 5.2.3) and remains unchanged otherwise. We denote by Nt the number of nodes of Tt and
by Ht the height of Tt, that is, the maximal depth of the leaves of Tt. A performance bound for
Algorithm 12 is provided below.

Theorem 6.3. Let T > 1 and d > 1. Then, the cumulative regret R̂L,T of Algorithm 12 is

(0, 1)

(1, 1)

(2, 1) (2, 2)

(1, 2)

(2, 3) (2, 4)

Figure 6.1.: Representation of the binary tree in dimension d = 2. In this case, the regions associated
to nodes (0, 1) is X (0,1) = [0, 1]2 and to node (2, 3) is X (2,3) = [0.5, 1]× [0, 0.5].
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Algorithm 12: Sequential prediction of function via Nested EG

Initialization:
- T =

{
(0, 1)

}
a tree (for now reduced at a root node)

- Define the bin X (0,1) = [0, 1]d and the corresponding set of points E(0,1) = ∅.
For t = 1, . . . , T
1. Observe xt ∈ [0, 1]d

2. Select the leaf (ht, it) such that xt ∈ X (ht,it)

3. Predict

ŷt =
exp
(
−η(ht,it)

∑
s∈E(ht,it) `

′(ŷs, ys)
)

1 + exp
(
−η(ht,it)

∑
s∈E(ht,it) `

′(ŷs, ys)
) ∈ [0, 1] ,

where η(ht,it) =
√

(log 2)/
(
#E(ht,it) + 1

)
.

4. Update the set of observations predicted by node (ht, it)
E(ht,it) ←

{
1 6 s 6 t, (hs, is) = (ht, it)

}
5. If the splitting condition #E(ht,it) + 1 >

(
diam

(
X (ht,it)

))−2
holds then extend the binary

tree T as follows:
5.1. Compute the decomposition ht = ktd+ rt with rt ∈ {0, . . . , d− 1}
5.2. Split coordinate rt + 1 for node (ht, it)

5.2.1. Define the splitting threshold τ =
(
x− + x+

)
/2 , where

x− = infx∈X (ht,it){xrt+1} and x+ = supx∈X (ht,it){xrt+1}.
5.2.2. Define two children leaves for node (ht, it):

- the left leaf (ht + 1, 2it − 1) with corresponding bin

X (ht+1,2it−1) = {x ∈ X (ht,it) : xrt+1 ∈ [x−, τ [}

- the right leaf (ht + 1, 2it) with corresponding bin

X (ht+1,2it−1) =

{
x ∈ X (ht,it) :

xrt+1 ∈ [τ, x+[ if x+ < 1
xrt+1 ∈ [τ, 1] if x+ = 1

}
5.2.3. Initialize their sets of observations

E(ht+1,2it−1) = E(ht+1,2it−1) = ∅.
5.2.3. Update T ← T ∪

{
(ht + 1, 2it − 1), (ht + 1, 2it)

}

upper bounded as

T∑
t=1

`(ŷt, yt)− inf
f∈LdL

T∑
t=1

`
(
f(xt), yt

)
6M (L+ 3)

√
NTT

6M(L+ 3)
(√

T + 2(3d)
d

2(d+2)T
d+1
d+2

)
.

The proof of Theorem 6.3 is deferred to Section 6.A.1.2.

Time and storage complexity. The following lemma, whose proof is postponed to Section 6.A.1.1,
provides time and storage complexity guarantees for Algorithm 12. It upper bounds the maximal
size of TT , that is, its number of nodes NT and its depth HT , which yields in particular the regret
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bound of order O
(
T (d+1)/(d+2)

)
stated in Theorem 6.3.

Lemma 6.4. Let T > 1 and d > 1. Then the depth HT and the number of nodes NT of the
binary tree TT stored by Algorithm 12 after T time steps are upper bounded as follows:

HT 6 1 +
d

2
log2(4dT ) and NT 6 1 + 8 (dT )

d
d+2 .

Indeed, Algorithm 12 needs to store a constant number of parameters at each node of the tree. Thus
the space complexity is of order O(NT ) = O

(
T d/(d+2)

)
. Besides at each time step t, Algorithm 12

needs to perform O(Ht) = O(log t) binary test operations in order to select the leaf (ht, it). It then
only needs constant time to update both the local version of Algorithm 11 associated with node
(ht, it) and the tree T . Thus the per-round time complexity of Algorithm 12 is of order O(log t)

and the global time complexity is of order O(T log T ). Therefore, we can summarize:

Storage complexity: O
(
T d/(d+2)

)
, Time complexity: O

(
T log T

)
.

Unknown bounded sets X ⊂ Rd and Y ⊂ R. As we mentioned in the end of Section 6.2.1, the
generalization of Algorithm 11 and thus of Algorithm 12 to an unknown set Y ⊂ R can be obtained
by using standard tools of individual sequences—see for instance de Rooij et al. [58]. To adapt
Algorithm 12 to any unknown compact set X ⊂ Rd, one can first divide the covariate space Rd in
hyper-rectangle subregions of the form [n1, n1 + 1] × · · · × [nd, nd + 1] and then run independent
versions of Algorithm 12 on all of these subregions. If diam(X ) 6

√
dB with an unknown value of

B > 0, then the number of initial subregions is upper-bounded by dBed and by Jensen’s inequality,
this adaptation would lead to a multiplicative cost of dBed/(d+2) in the upper-bound of Theorem 6.3.

Comparison with other methods. One may want to obtain similar guarantees by considering
other strategies like uniform histograms, kernel regression, or nearest neighbors, which were studied
in the context of stationary ergodic processes by Györfi et al. [85], Györfi and Ottucsák [83], Biau
et al. [25], Biau and Patra [24]. We were unfortunately unable to provide any finite-time and
worst-case analysis neither for kernel regression nor for nearest neighbors estimation.

The regret bound of Theorem 6.3 can however be obtained in an easier manner with uniform
histograms. To do so, one can consider the class of uniform histograms HN . We divide the covariate
space [0, 1]d in a partition (Ij)j=1,...,N of N hyper-rectangle subregions of equal size. HN is the set
of functions that takes constant values in [0, 1] in each subregion Ij . We consider the class of 2N

prediction strategies that predict the constant values 0 or 1 in each bin of the partition. Competing
with this class of 2N functions by resorting for instance to EG gives the regret bound

T∑
t=1

`
(
ŷt, yt

)
6 min

h∈HN

T∑
t=1

`

(
h(xt), yt

)
+ 2M

√
TN log 2 .

Now, considering the approximation of HN to capture LdL and optimizing the number N of bins in
hindsight setting N ≈ (dT )

d
d+2 (or by resorting to the doubling trick, see Cesa-Bianchi and Lugosi

[43]) provides a regret bound similar to the one of Theorem 6.3 of order dd/(4d+4)T (d+1)/(d+2) against
any Lipschitz function. The details are provided in the appendix.
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In the worst case the nested EG strategy provides no better guarantee. Such worst case occurs
for large number NT of nodes, which happens in particular when the trees are height-balanced,
that is, when the covariates xt are uniformly distributed in [0, 1]d. But the nested EG strategy
adapts better to data as it is depicted in the simulation studies below. If the covariates xt are
non-uniformly allocated (with regions of the space [0, 1]d associated with much more observations
than in other regions of similar size), the resulting tree TT will be un-balanced, leading to a smaller
number of nodes. In the best case, NT = O(HT ), which yields a regret of order O(

√
T log T ).

By improving the definition of Algorithm 12, one can even obtain the optimal and expected O(
√
T )

regret if (xt) is constant. To do so, it only needs to compute online the effective range of the data
that belongs to each node (h, i),

δ
(h,i)
t = diam {xs, 0 6 s 6 t and (hs, is) = (h, i)}

and substitute the diameter diamX (h,i) by δ(h,i)
t+1 in the splitting condition of the algorithm (Step 5).

6.2.3. Simulation studies

We consider in this section two simulated data sets so as to compare the performance obtained by
three procedures:

• histEG corresponds to run Algorithm 11 on uniform histograms, whose size is theoretically
calibrated by doubling trick with approximatively T 1/3 bins (this follows from the theoretical
tuning of the previous section with d = 1);

• nestedEG is Algorithm 12;
• nestedEG(+) corresponds to Algorithm 12 where the splitting condition (Step 5) is replaced

by the condition:

2 min
c∈[0,1]

 ∑
s∈E(ht,it)

(ys − c)2

 >
∑

s∈E(ht,it)

(ys − ŷs)2

which can be rephrased as: “the approximation error of the best constant in the local region
is larger than the estimation error”. This condition is better than the one suggested in Algo-
rithm 12 since it adapts not only to the structure of covariates (xt) but also to the structure
of the objective variable (yt). In particular, it adapts to easy areas of the space where the
link function g between xt and yt does not vary much. We conjecture that the theoretical
guarantees can be retrieved, the proof is however left for future research.

We performed two simulations studies. In the first one, the data are independent and identically
distributed, while in the second one the data are distributed from an Hidden Markov Model (HMM),
see the monograph of Cappé et al. [40]. In both studies, we sampled sequences {(Xt, Yt)}t=1,...,1000

of T = 1000 observations.

Experiment 1: I.I.D. data. (Xt) is independent and identically distributed from a mixture of two
Gaussian distribution restricted to [0, 1]. Its density is proportional to

1

2

(
N(0,0.1)(t) +N(0.7,0.1)(t)

)
1t∈[0,1] ,
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where N(µ,σ) is the density function of the normal distribution of mean µ and standard deviation σ.
(Yt) is independent and identically distributed and follows the normal distribution N

(
g(Xt), 0.1

)
restricted to [0, 1], where g(x) = (cos(10x) + sin(15x) + cos(20x) + sin(25x) + cos(30x) + 2)/6. The
data are represented in Figure 6.3. The choices of the distribution of X and Y are quite arbitrary.
The goal was to obtain X not uniformly distributed over [0, 1] and to have a function g with large
variations in some areas and small variations in others.

Experiment 2: HMM. (Xt, Yt) follows a 2-states HMM with transition probabilities a11 = a22 =

0.9 and a12 = a21 = 0.1 and uniform initial distribution. For each t > 1, Xt ∼ Beta(2, 5) for state 1

and Xt ∼ Beta(0.7, 0.3) for state 2. Besides, for state i ∈ {1, 2}, Yt ∼ N
(
gi(Xt), 0.1

)
restricted to

[0, 1], where g1(x) = x and g2(x) =
∣∣ cos(2πx)

∣∣.
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Figure 6.2.: Plots of the observations (Xt, Yt) of Experiment 1 [left] and Experiment 2 [right]. In
Experiment 2, gray points corresponds to state 1 and black points to state 2.

The data are depicted in Figure 6.2. Figure 6.3 displays the boxplots (over 100 independent runs
of the experiments) of the root mean square errors (RMSEs) obtained by the three forecasting
procedures. We observe much better performance of the data-driven calibration procedures in
comparison to uniform histograms with theoretical calibration of the number of bins. We could
observe that in area with large variations of the link function and many data, the bins of nested
EG are significantly smaller than in areas with few points and low variation of the link function g.
Our method however suffers from the non-smoothness of histogram procedures. The extension of
our deterministic analysis to smoother strategies (such as nearest neighbors, or kernel regression)
is left for future research.

6.3. Autoregressive framework

We present in this section a technical result that will be useful for later purposes. Here, the forecaster
still sequentially observes from time t = 1 an arbitrary bounded sequence (yt)t=−∞,...,+∞. However,
at time step t, it is asked to forecast the next outcome yt ∈ [0, 1] with knowledge of the past
observations yt−1

1 = y1, . . . , yt−1 only.

We are interested in a strategy that performs asymptotically as well as the best model that considers
the last d observations to form the predictions, and does this simultaneously for all values of d > 1.
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Figure 6.3.: Boxplots of the RMSEs suffered by the three forecasting procedures over 100 indepen-
dent replications of Experiment 1 [left] and Experiment 2 [right].

More formally, we denote

R̂dL,T
def
=

T∑
t=d+1

`(ŷt, yt)− inf
f∈LdL

T∑
t=d+1

`
(
f(yt−1

t−d), yt
)
,

and we want that for all d, the average regrets R̂dL,T /T vanish as T →∞. We show how it can be
obtained via a meta-algorithm (Algorithm 13) that combines an increasing sequence of orders d of
autoregressive nested EG forecasters.

Fixed order d. For each order d > 0, let Ad denote the autoregressive forecaster of order d
that forms prediction for t > d + 1 by performing nested EG (Algorithm 12) on the sequence{(
yt, y

t−1
t−d
)}

t>d+1
. We denote by fd,t the prediction provided by Ad at time step t > d + 1. By

substituting xt = yt−1
t−d in Theorem 6.3, Ad satisfies the following regret bound

T∑
t=d+1

`(fd,t, yt) − inf
f∈LdL

T∑
t=d+1

`
(
f(yt−1

t−d), yt
)

6M(L+ 3)
(√

T + 2(3d)
d

2(d+2)T
d+1
d+2

)
, (6.4)

which is valid for all T > 1, all L > 0 and for all y1, . . . , yT ∈ [0, 1].

All orders d. Now, we show how to obtain the above regret bound simultaneously for all orders
d > 1. To do so, Algorithm 13 combines via EG the predictions formed by all forecasters Ad
for d > 0. Note that at time step t, only the t first forecasters A0, . . . ,At−1 suggest predictions.
Lemma 6.5 controls the cumulative loss of Algorithm 13 by the cumulative loss of the best strategy
Ad.

Lemma 6.5. Let T > 1. Then, Algorithm 13 satisfies for all d ∈ 1, . . . , T , for all L > 0, and
for all y1, . . . , yT ∈ [0, 1],

T∑
t=d+1

`(ŷt, yt)− `(fd,t, yt) 6
√

(T + 1) log(T + 1) .
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Algorithm 13: Extension of the Algorithm 12 to unknown order d of autoregressive model.

Parameter:
• (Ad)d>1 a sequence of forecasters such that Ad forms predictions for time steps t > d+ 1

For t = 1, . . . , T
1. For each d = 0, . . . , t− 1, denote by fd,t the prediction formed by Ad
2. predict ŷt =

∑t−1
d=0 p̂d,tfd,t

3. initialize the weight of the new forecaster: pt,t+1 = 1/(t+ 1)
4. observe Yt and perform exponential weight update component-wise for d = 0, . . . , t− 1 as

p̂d,t+1 =
t

t+ 1

p̂
ηt+1/ηt
d,t e−ηt+1`(fd,t,yt)∑t

k=1 p̂
ηt+1/ηt
k,t e−ηt+1`(fk,t,yt)

,

where ηt = 2
√

(log t)/t for all t > 1.

The proof of Lemma 6.5 follows the standard one of the exponentially weighted average forecaster.
It is postponed to Section 6.A.2. It could also be recovered by noting that our setting with starting
experts is a particular case of the setting of sleeping experts introduced in Freund et al. [71].

Theorem 6.6. Let T > 1, L > 0. Then, for all d ∈ {0, . . . , T − 1}, Algorithm 13 run with the
sequence of forecasters (Ad) satisfies for all L > 0 and for all y1, . . . , yT ∈ [0, 1],

R̂dL,T =
T∑

t=d+1

`(ŷt, yt)− inf
f∈LdL

T∑
t=d+1

`(f(yt−1
t−d), yt)

6
√

(T + 1) log(T + 1) +M(L+ 3)
(√

T + 2(3d)
d

2(d+2)T
d+1
d+2

)
.

Consequently, for all d > 1, lim supT→∞

(
R̂dL,T /T

)
6 0.

Proof The regret bound is by combining (6.4) and Lemma 6.5. The second part is obtained by
dividing by T and letting T grow to infinity. �

6.4. From individual sequences to ergodic processes: convergence
to L?

In this section, we present our main result by deriving from Theorem 6.6 similar results obtained in
a stochastic setting by Györfi et al. [85], Györfi and Ottucsák [83], Biau et al. [25], Biau and Patra
[24].

We leave here the setting of individual sequences of the previous sections and we assume that the
sequence of observations y1, . . . , yT is now generated by some stationary ergodic process. More for-
mally, we assume that a stationary bounded ergodic process (Yt)t=−∞,...,∞ is sequentially observed.
At time step t, the learner is asked to form a prediction Ŷt of the next outcome Yt ∈ [0, 1] of the
sequence with knowledge of the past observations Y t−1

1 = Y1, . . . , Yt−1. The nested EG strategy, as
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a consequence of the deterministic regret bound of Theorem 6.3, will be shown to be consistent,
i.e., satisfies Equation (6.1).

Theorem 6.7 shows that any strategy that achieves a deterministic regret bound for individual
sequences as in Theorem 6.6 predicts asymptotically as well as the best strategy defined by a Borel
function.

Theorem 6.7. Let (Yt)t=−∞,...,∞ be a stationary bounded ergodic process. We assume that for
all t, Yt ∈ [0, 1] almost surely and that for all d > 1 the law of Y −1

−d = (Y−d, . . . , Y−1) is regular.
Let ` : [0, 1]2 → [0, 1] be a loss function M -Lipschitz in its first argument. Assume that a prediction
strategy satisfies for all d > 1, almost surely,

∀L > 0 lim sup
T→∞

(
1

T

T∑
t=1

`
(
Ŷt, Yt

))
6 lim sup

T→∞

(
inf
f∈LdL

1

T

T∑
t=1

`
(
f(Y t−1

t−d ), Yt

))
,

then, almost surely,

lim sup
T→∞

(
1

T

T∑
t=1

`
(
Ŷt, Yt

))
6 L? .

By Theorem 6.6, Algorithm 13 satisfies the assumption of Theorem 6.7 (by replacing the deter-
ministic terms yt by the random variables Yt). Our deterministic strategy is thus asymptotically
optimal for any stationary bounded ergodic process satisfying the assumptions of Theorem 6.7.
Here we only give the main ideas in the proof of Theorem 3. The complete argument is given in
Section 6.A.3.2.

Proof (sketch) Basically, the proof of Theorem 6.7 consists first in applying Breiman’s generalized
ergodic theorem‡ (see Breiman [33]), so that

lim sup
T→∞

(
1

T

T∑
t=1

`
(
f(Y t−1

t−d ), Yt

))
= E

[
`
(
f(Y −1

−d ), Y0

)]
.

Then, by exchanging lim sup and inf in the right-term of the assumption and by letting L → ∞,
we can compete against any Lipschitz function:

lim sup
T→∞

(
1

T

T∑
t=1

`
(
Ŷt, Yt

))
6 inf

f∈LdL
E
[
`
(
f(Y −1

−d ), Y0

)]
.

The proof is then completed by approximating the best Borel function by the best Lipschitz function
(see Lemma 6.8 below). �

Lemma 6.8. Let X be a convex and compact subset of a normed space. Let ` : [0, 1]2 → [0, 1] be
a loss function M -Lipschitz in its first argument. Let X be a random variable on X with a regular
law PX and let Y be a random variable on [0, 1]. Then,

inf
f∈LX

E
[
`
(
f(X), Y

)]
= inf

f∈BX
E
[
`
(
f(X), Y

)]
,

‡Here, we use the assumption that (Yt) is a stationary ergodic process.
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where LX denotes the set of Lipschitz functions from X to R and BX the one of Borel functions
from X to R.

The proof of Lemma 6.8 is postponed to Section 6.A.3.1. It follows from the Stone-Weierstrass
theorem, used to approximate continuous functions, and from Lusin’s theorem, to approximate
Borel functions.

The assumptions. Theorem 6.7 makes two main assumptions on the ergodic sequence to be
predicted. First, the sequence is supposed to lie in [0, 1]. As earlier, this assumption can be easily
relaxed to any bounded subset of R—see remarks of Sections 6.2.1 and 6.2.2. The generalization
to unbounded sequence is left to future work and should follow from the same techniques as in
Györfi and Ottucsák [83]. Second, Theorem 6.7 assumes that for all d > 1 the law of Y −1

−d is
regular, that is, for any Borel set S ⊂ [0, 1]d and for any ε > 0, one can find a compact set K and
an open set V such that

K ⊂ S ⊂ V, and PY −1
−d

(V \K) 6 ε .

This second assumption is considerably weaker than the assumptions required by Biau and Patra
[24] for quantile prediction. The authors indeed imposed that the random variables ‖Y −1

−d −s‖ have
continuous distribution functions for all s ∈ Rd and the conditional distribution function FY0|Y −1

−∞
to

be increasing. One can however argue that their assumptions are thus hardly comparable with ours
because they consider unbounded ergodic processes. We aim at obtaining in the future minimal
assumptions for any generic convex loss function ` in the case of unbounded ergodic process,
see Morvai and Weiss [116].

Computational efficiency. The space complexity of Algorithm 13 is O
(
T 2
)
. Previous algorithms

of Györfi et al. [85], Györfi and Ottucsák [83], Biau et al. [25], Biau and Patra [24] exhibit consistent
strategies as well. However, in practice, these algorithms involve choices of parameters somewhere in
their design (by choosing the a priori weight of the infinite set of experts). Then, the consideration
of an infinite set of experts makes the exact algorithm computationally inefficient. For practical
purpose, it needs to be approximated. This can be obtained by MCMC or for instance by restricting
the set of experts to some finite subset at the cost, however, of loosing theoretical guarantees, see
Biau and Patra [24].

Generic loss function. Theorem 6.7 assumes ` to be bounded, convex, and M -Lipschitz in its
first argument. In contrast, the results of Györfi et al. [85], Györfi and Ottucsák [83], Biau et al.
[25], Rakhlin and Sridharan [124] only hold for the square loss (while Biau and Patra [24] extend
them to the pinball-loss).
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Appendices for Chapter 6

6.A. Technical proofs

We gather in this section the proofs, which were omitted from the previous sections.

6.A.1. Proofs of Section 2

The proofs of Theorem 6.3 and Lemma 6.4 are based on the following lemma, which controls the
size of the regions associated with nodes located at depth h in the tree TT .

Lemma 6.9. Let h > 0. Then, for all indices i = 1, . . . , 2h, the diameter of the region X (h,i)

associated with node (h, i) in Algorithm 12 is upper bounded as

diam
(
X (h,i)

)
6
√

2d2−h/d .

Proof Basically, the proof of Lemma 6.9 consists of an induction on the depth h. It suffices to
prove that for all h > 0, for all indexes i ∈ {1, . . . , 2h} and all coordinates j ∈ {1, . . . , d}, the ranges
δ

(h,i)
j

def
= maxx,x′∈X (h,i)

∣∣xj − x′j∣∣ satisfies
δ

(h,i)
j =

{
2−(k+1) if j 6 r
2−k otherwise

, (6.5)

where h = kd+ r is the decomposition with r ∈ {0, . . . , d− 1}. Indeed, we then have

diam
(
X (h,i)

)
= max
x,x′∈X (h,i)

∥∥x− x′∥∥
2
6

√√√√ d∑
j=1

(
δ

(h,i)
j

)2
.

But by (6.5), for r coordinates j ∈ {1, . . . , r} among the d coordinates δ(h,i)
j equals 2−(k+1) while

the d−r remaining coordinates j ∈ {r+1, . . . , d} satisfy δ(h,i)
j = 2−k. Thus, by routine calculations

diam
(
X (h,i)

)
6
√
r
(
2−(k+1)

)2
+ (d− r) (2−k)

2

= 2−k
√
r

4
+ d− r

=
√
d2−k

√
1− 3r

4d

=
√
d
(

21/d
)−(dk+r)

2r/d
√

1− 3r

4d
.
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But,

2r/d
√

1− 3r

4d
6 max

06u61

{
2u
√

1− 3u

4

}
≈ 1.12 6

√
2 .

The proof is concluded by substituting in the previous bound.

Now, we prove (6.5) by induction on the depth h. This is true for h = 0 as the bin of the root
node X (0,1) equals [0, 1]d by definition. Besides, let h > 0 and i ∈ {1, . . . , 2h}. We compute the
decomposition h = kd + r with r ∈ {0, . . . , d − 1}. We have by Step 5.4 of Algorithm 12 that the
range of each coordinate j 6= r + 1 of the bin of the child node (h+ 1, 2i) remains the same

δ
(h+1,2i)
j = δ

(h,i)
j =

{
2−(k+1) if j 6 r
2−k if j > r + 2

, (6.6)

and the range of coordinate r + 1 is divided by 2,

δ
(h+1,2i)
r+1 = δ

(h,i)
r+1 /2 = 2−(k+1) . (6.7)

Equations (6.6) and (6.7) are also true for the second child (h+ 1, 2i− 1), and this concludes the
induction. �

6.A.1.1. Proof of Lemma 6.4

Upper bound for NT . For each node (h, i), we recall that T (h,i) =
∑T

t=1 1{(ht,it)=(h,i)} denotes
the number of observations predicted by using the local version of Algorithm 11 associated with
the sequence of observations E(h,i). The total number of observations T is the sum of T (h,i) over
all nodes (h, i). That is,

T =

HT∑
h=0

2h∑
i=1

T (h,i)1{(h,i)∈TT } >
HT∑
h=0

2h∑
i=1

T (h,i) 1{(h,i) is an inner node in TT} .

Now we use the fact that each inner node (h, i) has reached its splitting condition (Step 5 of
Algorithm 12), that is,

T (h,i) + 1 >
(
diam

(
X (h,i)

))−2
.

Using that diam
(
X (h,i)

)
6
√

2d2−h/d by Lemma 6.9, we get

T >
HT∑
h=0

2h∑
i=1

[
−1 +

(
diam

(
X (h,i)

))−2
]
1{(h,i) is an inner node }

>
HT∑
h=0

(
−1 +

22h/d

2d

)
︸ ︷︷ ︸

g(h)

2h∑
i=1

1{(h,i) is an inner node }︸ ︷︷ ︸
nh

. (6.8)

Because g : R+ → R is convex in h, by Jensen’s inequality

T > N in
T g

(
1

N in
T

HT∑
h=0

hnh

)
,
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where N in
T =

∑
h nh is the total number of inner nodes. Now, by Lemma 6.10 available in Sec-

tion 6.A.1.3, because TT is a binary tree with NT nodes in total, it has exactly N in
T = (NT − 1)/2

inner nodes and the average depth of its inner nodes is lower-bounded as

1

N in
T

HT∑
h=0

hnh > log2

(
NT − 1

8

)
.

Substituting in the previous bound, it implies

T >
NT − 1

2
g

(
log2

(NT − 1

8

))
=

NT − 1

2

(
−1 +

1

2d
2

2
d

log2

(
(NT−1)/8

))
= −NT − 1

2
+
NT − 1

4d

(
NT − 1

8

)2/d

> −NT − 1

2︸ ︷︷ ︸
>−T/2

+
2

d

(
NT − 1

8

)1+2/d

.

By reorganizing the terms, it entails dT > (3/4)dT >
(
(NT − 1)/8

)1+2/d. Thus, (NT − 1)/8 6
(dT )d/(d+2), which yields the desired bound for NT .

Upper bound for HT . We start from (6.8) and we use the fact that for all h = 0, . . . ,HT − 1,
there exists at least one inner node of depth h in T . Thus,

T >
HT−1∑
h=0

(
−1 +

22h/d

2d

)
= −HT +

1

2d

22HT /d − 1

22/d − 1
> −HT +

22(HT−1)/d

2d

where the last inequality is because (a − 1)/(b − 1) > a/b for all numbers a > b > 1. Therefore,
by upper-bounding T > HT , we get 4T > 22(HT−1)/d/d and thus 2(HT − 1)/d 6 log2(4dT ) which
concludes the proof.

6.A.1.2. Proof of Theorem 6.3

The cumulative regret suffered by Algorithm 12 is controlled by the sum of all cumulative regrets
incurred by all local versions of Algorithm 11, each associated with a subsequence of observations
E(h,i). That is,

R̂L,T 6
∑

(h,i)∈TT

 ∑
t∈E(h,i)

`
(
ŷt, yt

)
− inf
f∈LdL

∑
t∈E(h,i)

`
(
f(xt), yt

) ,
where E(h,i) =

{
1 6 t 6 T : (ht, it) = (h, i)

}
is the set of time steps assigned to node (h, i). Now,

by Lemma 6.2, the cumulative loss incurred by nested EG associated with node (h, i) satisfies∑
t∈S(h,i)

`
(
ŷt, yt

)
6 inf

y∈[0,1]

∑
t∈S(h,i)

`
(
y, yt

)
+M

√
T (h,i) log 2

6 inf
f∈LdL

∑
t∈S(h,i)

`
(
f(xt), yt

)
+ML diam

(
X (h,i)

)
︸ ︷︷ ︸

61/
√
T (h,i) by Step 5 of Algorithm 12

T (h,i) + 2M

√
T (h,i) log 2
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where the second inequality is by Lemma 6.1. Thus,

R̂L,T 6M
(
L+ 2

√
log 2︸ ︷︷ ︸
63

) ∑
(h,i)∈TT

√
T (h,i) .

Then, by Jensen’s inequality,

1

NT

∑
(h,i)∈TT

√
T (h,i) 6

√√√√ 1

NT

∑
(h,i)

T (h,i) =

√
T

NT
,

which concludes the first statement of the theorem. The second statement follows from Lemma 6.4
and because for all a, b > 0,

√
a+ b 6

√
a+
√
b,

M(L+ 3)
√
NTT 6M(L+ 3)

√(
1 + 4(3dT )d/(d+2)

)
T

6M(L+ 3)
(√

T +
√

4(3dT )d/(d+2)T
)

= M(L+ 3)
(√

T + 2(3d)
d

2(d+2)T
d+1
d+2

)
.

6.A.1.3. Lemma 6.10 and its proof

Lemma 6.10. Let N > 1 be an odd integer. Let T be a binary tree with N nodes. Then,

• its number of inner-nodes equals N in = (N − 1)/2.
• the average depth (i.e., distance to the root) of its inner nodes is lower-bounded as

1

N in

∞∑
h=0

h #{inner nodes in T of depth h} > log2

(
N − 1

8

)
.

Proof First statement. We proceed by induction. If N = 1, there is only one binary tree with one
node, the lone leaf, so that N in = 0. Now, if T is a binary tree with N > 3 nodes, select an inner
node n which is parent of two leaf nodes. Then, replaces the subtree rooted at n by a leaf node.
The resulting subtree T ′ of T has N − 2 nodes, so that by induction hypothesis T ′ has (N − 3)/2

inner nodes. But, T ′ has also N in − 1 inner nodes. Therefore N in = (N − 1)/2.

Second statement. We note that the average depth is minimized for the equilibrated binary trees,
that are such that

• all depths h ∈ {0, . . . , blog2N
inc} have exactly 2h inner nodes;

• no inner nodes has depth h > dlog2N
ine.

Therefore,

1

N in

∞∑
h=0

h #{inner nodes in T of depth h} > 1

N in

blog2N inc∑
h=0

h2h

Now, we use that
∑n−1

i=0 i2
i = 2n(n − 2) + 2 for all n > 1, which implies because blog2N

inc >



164CHAPTER 6. A DETERMINISTIC REGRESSION TREE FOR SEQUENTIAL NONPARAMETRIC PREDICTION

log2N
in − 1 and by substituting in the previous bound,

1

N in

∞∑
h=0

h #{inner nodes in T of depth h} > 2log2N
in

N in︸ ︷︷ ︸
=1

(
log2N

in − 2
)

+
2

N in︸︷︷︸
>0

.

This concludes the proof by substituting N in = (N − 1)/2. �

6.A.2. Proofs of Section 6.3

The proof of Lemma 6.5 follows from a simple adaptation of the proof of the regret bound of
the exponentially weighted average forecaster—see for instance Cesa-Bianchi and Lugosi [43]. By
convexity of ` and by Hoeffding’s inequality, we have at each time step t

`(ŷt, yt) 6
t−1∑
d=0

p̂d,t`(fd,t, yt) 6 −
1

ηt
log

t−1∑
d=0

p̂d,te
−ηt`(fd,t,yt) +

ηt
8

By Jensen’s inequality, since ηt+1 6 ηt and thus x 7→ xηt/ηt+1 is convex

1

t

t−1∑
d=0

p̂d,te
−ηt`(fd,t,yt) =

1

t

t−1∑
d=0

(
p̂

ηt+1
ηt

d,t e−ηt+1`(fd,t,yt)

) ηt
ηt+1

>

(
1

t

t−1∑
d=1

p̂

ηt+1
ηt

d,t e−ηt+1`(fd,t,yt)

) ηt
ηt+1

Substituting in Hoeffding’s bound we get

`(ŷt, yt) 6

(
1

ηt+1
− 1

ηt

)
log t− 1

ηt+1
log

(
t−1∑
d=0

p̂

ηt+1
ηt

d,t e−ηt+1`(fd,t,yt)

)
+
ηt
8

Now, by definition of the loss update in Step 3 of Algorithm 13, for all d = 0, . . . , t− 1

t−1∑
k=0

p̂

ηt+1
ηt

k,t e−ηt+1`(fk,t,yt) =
t

t+ 1

p̂

ηt+1
ηt

d,t e−ηt+1`(fd,t,yt)

p̂d,t+1

which after substitution in the previous bound leads to the inequality

`(ŷt, yt) 6 `(fd,t, yt) +
1

ηt+1
log
(
(t+ 1) p̂d,t+1

)
− 1

ηt
log(t p̂d,t) +

ηt
8
.

By summing over t = d+ 1, . . . , T , the sum telescopes; using that p̂d,d+1 = 1/(d+ 1) by Step 3.1.

T∑
t=d+1

`(ŷt, yt)−
T∑

t=d+1

`(fd,t, yt)

6
1

ηT+1
log
(
(T + 1) p̂d,T+1︸ ︷︷ ︸

61

)
− 1

ηt
log
(

(d+ 1) p̂d,d+1︸ ︷︷ ︸
=1

)
+

1

8

T∑
t=d+1

ηt
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6
1

ηT+1
log
(
T + 1

)
+

1

8

T∑
t=d+1

ηt .

Finally, by routine calculation

T∑
t=d+1

ηt 6 2
T∑
t=1

√
log t

t
6 2
√

log T
T∑
t=1

1√
t

= 2
√

log T

(
1 +

T∑
t=2

1√
t

)

6 2
√

log T

(
1 +

∫ T

1

1√
t

dt

)
6 4
√
T (log T ) ,

which concludes the proof.

6.A.3. Proofs of Section 6.4

6.A.3.1. Proof of Lemma 6.8

The proof is performed in two steps.

Step 1: Lipschitz → Continuous. The set L of Lipschitz functions, from a compact metric space
X to R, is a subalgebra of the set C of continuous functions. Besides, L contains the constant
functions and separates the points of X . Therefore, the Stone-Weierstrass theorem, recalled in
Theorem 6.11, entails that any continuous function f : X → R is the uniform limit of Lipschitz
functions. Thus, the dominated convergence theorem yields

inf
f∈L

E
[
`
(
f(X), Y

)]
= inf

f∈C
E
[
`
(
f(X), Y

)]
.

.

Step 2: Continuous → Borel. Second, by the version of Lusin’s theorem stated in Theorem 6.12,
we can approximate any measurable function by continuous functions (this is where regularity is
used).

Let δ, ε > 0 and f : X → [0, 1] be a Borel function. By Theorem 6.12, there exists a continuous
function g : X → [0, 1] such that

PX
{
|f − g| > δ

}
6 ε .

Then by Jensen’s inequality, and since

∆
def
=

∣∣∣∣E[`(f(X), Y
)]
− E

[
`
(
g(X), Y

)]∣∣∣∣ 6 E
[∣∣∣`(f(X), Y

)
− `
(
g(X), Y

)∣∣∣]
6 PX

{
|f − g| > δ

}
︸ ︷︷ ︸

6ε

+ E
[
M
∣∣f(X)− g(X)

∣∣ 1{|f(X)−g(X)|6δ}

]
︸ ︷︷ ︸

6Mδ

,

where the second inequality is because ` takes values in [0, 1] and isM -Lipschitz in its first argument.
Thus ∆ 6 ε+Mδ, which concludes the proof since this is true for arbitrary small values of ε and δ.
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Theorem 6.11. — Stone-Weierstrass. Let C(X,R) be the ring of continuous function on a
compact X with the topology of uniform convergence i.e. the topology generated by the norm∥∥f∥∥ = max

x∈X

∣∣f(x)
∣∣ f ∈ C(X,R) .

Let A ⊆ C(X,R) be a subring containing all constant functions and separating the points of X, that
is for any two different points x1, x2 ∈ X, there exists a function f ∈ A for which f(x1) 6= f(x2).
Then A is dense in C(X,R): every continuous function on X is the limit of a uniformly converging
sequence of functions in A.

Proof The proof is carried out in several references, for instance Rudin [130] �

Theorem 6.12. — Lusin. If X is a convex and compact subset of a normed space, equipped
with a regular probability measure µ, then for every measurable function f : X → [0, 1] and for
every δ, ε > 0, there exists a continuous function g : X → [0, 1] such that

µ
{∣∣f − g∣∣ > δ} 6 ε .

Proof The proof of Theorem 6.12 can be easily derived from the proof of Stoltz and Lugosi [133,
Proposition 25]. �

6.A.3.2. Proof of Theorem 6.7

In this proof, apart from the use of Breiman’s generalized ergodic theorem in the beginning and the
martingale convergence theorem in the end (as exhibited in Györfi et al. [85], Györfi and Ottucsák
[83], Biau et al. [25], Biau and Patra [24]), we resort to new arguments.

Let d > 1 and L > 0. Then, by assumption and by exchanging lim sup and inf,

lim sup
T→∞

1

T

(
T∑
t=1

`
(
Ŷt, Yt

))
6 inf

f∈LdL
lim sup
T→∞

(
1

T

T∑
t=1

`
(
f(Y t−1

t−d ), Yt
))

.

Because ` is bounded over [0, 1]2 and thus integrable, Breiman’s generalized ergodic theorem (see
Breiman [33]) entails that the right-term converges: almost surely,

lim
T→∞

(
1

T

T∑
t=1

`
(
f(Y t−1

t−d ), Yt
))

= E
[
`
(
f(Y −1

−d ), Y0

)]
and thus,

lim sup
T→∞

(
1

T

T∑
t=1

`
(
Ŷt, Yt

))
6 inf

f∈LdL
E
[
`
(
f(Y −1

−d ), Y0

)]
.

By letting L→∞ in the inequality above, we get

lim sup
T→∞

(
1

T

T∑
t=1

`
(
Ŷt, Yt

))
6 inf

f∈Ld
E
[
`
(
f(Y −1

−d ), Y0

)]
.

By Lemma 6.8 the infimum over all continuous functions equals the infimum over the set Bd of
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Borel functions. Therefore,

lim sup
T→∞

(
1

T

T∑
t=1

`
(
Ŷt, Yt

))
6 inf

f∈Bd
E
[
`
(
f(Y −1

−d ), Y0

)]
6 E

[
inf
f∈Bd

E
[
`
(
f(Y −1

−d ), Y0

)∣∣∣Y −1
−d

]
︸ ︷︷ ︸

def
= Zd

]
,

where the second inequality is by the measurable selection theorem—see Theorem 8 in Appendix I of
Algoet [15]. Now, we remark that

(
Zd
)
is a bounded super-martingale with respect to the family of

sigma algebras
(
σ(Y −1

−d )
)
d>1

. Indeed, the function inff∈Bd+1(.) is concave, thus conditional Jensen’s
inequality

E
[
Zd+1

∣∣Y −1
−d
]
6 inf

f∈Bd+1
E
[
E
[
`
(
f
(
Y −1
−(d+1)

)
, Y0

)∣∣∣Y −1
−(d+1)

]∣∣∣∣Y −1
−d

]
= inf

f∈Bd+1
E
[
`
(
f
(
Y −1
−(d+1)

)
, Y0

)∣∣∣∣Y −1
−d

]
Now, we note that

inf
f∈Bd+1

E
[
`
(
f
(
Y −1
−(d+1)

)
, Y0

)∣∣∣Y −1
−d

]
6 inf

f ′∈Bd
E
[
`
(
f ′
(
Y −1
−d
)
, Y0

)∣∣∣Y −1
−d

]
= Zd ,

which yields E
[
Zd+1

∣∣Y −1
−d
]
6 Zd. Thus, the martingale convergence theorem (see e.g. Chow [52])

implies that Zd converges almost surely and in L1. Thus,

lim
d→∞

E
[
Zd
]

= E
[

inf
f∈B∞

E
[
`
(
f(Y −1

−∞), Y0

)∣∣∣Y −1
−∞

]]
= L? ,

which yields the stated result lim supT
∑T

t=1 `
(
Ŷt, Yt

)
/T = L?.

6.B. Uniform histograms

We detail in this appendix the performance bound obtained by competing against uniform his-
tograms over the input space X = [0, 1]d. We denote by HN the class of uniform histograms with
N hyper-rectangle subregions of equal size. Note that this class exists for N ∈ {id, such that i > 1}.

Approximation error. First, we bound the approximation error made by the best uniform his-
togram in HN to approximate the unknown best L-Lipschitz objective function f? : [0, 1]d → [0, 1].
The diameter diam(HN ) with respect to the `2-norm of the bins of a uniform histogram in HN
equals

diam(HN )
def
= max

{∥∥xi − xj‖2 : xi,xj ∈ [0, 1]d , ∀h ∈ HN h(xi) = h(xj)
}

=
√
d N−1/d .

Therefore, by applying Lemma 6.1 on each bin and summing over all N bins, the cumulative ap-
proximation error of HN satisfies for all L > 0
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inf
h∈HN

T∑
t=1

`
(
h(xt), yt

)
6 inf

f∈LdL

T∑
t=1

`
(
f(xt), yt

)
+MLT diam

(
HN

)
= inf

f∈LdL

T∑
t=1

`
(
f(xt), yt

)
+MLT

√
d N−1/d . (6.9)

Estimation error. Now, we bound the additional error obtained by estimating the best histogram
in HN online. To do so, we resort to EG on the set of 2N functions that predict the constant values
0 or 1 in each bin of the partition of HN , we obtain the upper-bound

T∑
t=1

`
(
ŷt, yt

)
6 inf

h∈HN

T∑
t=1

`

(
h(xt), yt

)
+ 2M

√
T log

(
2N ) . (6.10)

Total error. By summing the approximation error (6.9) and the estimation error (6.10), we finally
get the regret bound

T∑
t=1

`
(
ŷt, yt

)
6 inf

f∈LdL

T∑
t=1

`
(
f(xt), yt

)
+ MLT

√
d N−1/d︸ ︷︷ ︸

Approximation

+ 2M
√
TN log 2︸ ︷︷ ︸

Estimation

. (6.11)

The optimal number of bins N that balances the approximation and the estimation errors need to
be optimized. Solving the equality

MLT
√
d N−1/d = 2M

√
TN log 2 ,

in N yields the optimal value

N =

(
L

2

) 2d
d+2

(
dT

log 2

) d
d+2

.

Substituting in (6.11), we get

T∑
t=1

`
(
ŷt, yt

)
6 inf

f∈LdL

T∑
t=1

`
(
f(xt), yt

)
+ 2(4L log 2)

d
d+2︸ ︷︷ ︸

66L

Md
d

2(d+2)T
d+1
d+2 .

Online calibration of N . To achieve the above regret bound, the forecaster need to know the
Lipschitz constant L and the time horizon T in advance. We could not find a solution for the
calibration of the Lipschitz constant. Therefore, we assumed the constant to be L = 1 which resulted
in the suboptimal linear dependency on L instead of L

d
d+2 . However, we can avoid the assumption

that T is known in advance at the cost of a constant factor by resorting to the well-known doubling
trick, see Cesa-Bianchi and Lugosi [43]. The idea is to restart the algorithm whenever we reach a
time step t such that t is a power of 2. At each restart, we forget all the information gained in the
past and we set N ≈ (dt)

d
d+2 §.

§We recall that for uniform histograms the number of bins should lie in {id, such that i > 1}
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Online probabilistic predictions





Introduction

In this part we study probabilistic prediction in the setting of sequential prediction of arbitrary
sequences. We are not interested anymore in producing single valued forecasts only but the learner
is asked to couple his point prediction with a measure of uncertainty (i.e., interval forecasts or
distribution forecasts).

In Chapter 7 we investigate several formulations of the above setting. We highlight the challenge
raised by the following question: how to handle uncertainties in a deterministic world? We show
that the main difficulty relies on designing the good criterion to evaluate the player. We gather
many attempts to do so in this chapter. However in each case either the criterion is impossible to
achieve, or it is trivially realized, or it is resolvable by resorting to standard techniques of the setting
of individual sequences. Be that as it may, we unfortunately do not make significant contributions
to the theory of individual sequences.

Chapter 8 tackles the problem from an empirical point of view. From August to December 2014, I
took part in two tracks of the online competition GEFCom14, that aimed at designing state-of-the-
art methods to provide probabilistic forecasts of energy data (electricity consumption and electric
price). After twelve weeks of intense competition with academic and industrial participants from
around the world, our team ranked first for both tracks. In Chapter 8 I summarize the methodology
used during the competition. It is mostly based on ideas from generalized additive models, however
we also investigate expert aggregation techniques with promising results.





7
How to handle uncertainties in a deterministic world?

In this chapter, I gather some attempts to handle uncertainties in the setting of online prediction of
arbitrary sequences with expert advice, see Cesa-Bianchi and Lugosi [43]. More precisely, I address
the task of not only producing point forecasts ŷt ∈ R of the observation yt to be predicted (such
as the electricity consumption, the heat load, or the electricity price) but I aim at coupling ŷt
with a measure of its uncertainty (i.e., producing interval forecasts). The main aim here is to
produce probabilistic forecasts ex-nihilo, in the sense that the experts do not provide uncertainty
measures of their forecasts. However, we also look at slightly different settings and we consider
several performance criteria. The key message of this chapter is that it is not an easy task to design
a correct criterion to evaluate the quality of the uncertainty forecasts. In each case considered, either
the criterion is already solved by standard methods of individual sequences or it is impossible to
satisfy by the forecaster.

Contents
7.1. The experts provide probability distributions . . . . . . . . . . . . . . . . . . . . 175

7.1.1. Cumulative logarithmic loss (well studied) . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.1.2. Kolmogorov’s criterion (new but trivially satisfied) . . . . . . . . . . . . . . . . . . . . 176
7.1.3. Cumulative pinball loss (solved by standard tools) . . . . . . . . . . . . . . . . . . . . 178

7.2. The experts provide prediction intervals . . . . . . . . . . . . . . . . . . . . . . . 180
7.3. The experts only provide point forecasts . . . . . . . . . . . . . . . . . . . . . . . 183

7.3.1. Cumulative logarithmic loss (well studied) . . . . . . . . . . . . . . . . . . . . . . . . 183
7.3.2. Cumulative pinball loss (the criterion for the next chapter) . . . . . . . . . . . . . . . 185

Nota: This chapter is published here for the first time.
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The main purpose of this chapter is to address a request from the operational decision-makers of
EDF. When they receive the predictions of the experts, if these are significantly different from each
other, the operational decision-makers expect a bigger risk in their prediction. On the other hand,
if the individual predictions match, the risk seems to be smaller. Therefore, the decision-makers
desire to receive simultaneously the combined forecast ŷt and a measure of its uncertainty that
matches this basic idea.

In today’s competitive and dynamic environment, more and more decision making processes are
relying on probabilistic forecasts so as to handle risks. Therefore the interest in probabilistic fore-
casting is steadily growing in the recent years. An example is the competition Global Energy
Forecasting Competition 2014 (see Chapter 8) that aimed at building state-of-the-art techniques
for energy probabilistic forecasting. The stochastic literature is rich and many methods of den-
sity estimation (such as kernel density estimation) or combining methods (such as Bayesian model
averaging) encounter success in a stochastic environment. Some of these methods were already
transferred to the setting of individual sequence (such as online density estimation with log loss, cf.
Section 7.1.1); see also Dawid and Vovk [57] and Shafer and Vovk [131] that bridge the individual
sequences and the deterministic world.

Literature of probabilistic forecast in individual sequences In the setting of prediction of arbi-
trary sequences y1, . . . , yn ∈ R a large part of the literature focuses on predicting only single valued
forecasts ŷ1, . . . , ŷn ∈ R without looking at the uncertainties of the forecasts (see the monograph
of Cesa-Bianchi and Lugosi [43]). However, several works already looked at probabilistic forecasts.

Among this work we can cite the notion of calibration introduced by Brier [37] in the weather
forecasting literature (see also Cesa-Bianchi and Lugosi [43, Chapter 4.5]). To summarize, the
notion of calibration considers sequences of observations yt in {0, 1} (such as sunny and rainy
days). The learner aims at each time step at predicting by p̂t the probability of rain, i.e., yt = 1.
A sequence of forecasts is called well calibrated when it is consistent in hindsight. For instance,
we want that the proportion of rainy days such that the prediction of rain was about 30% (i.e.,
p̂t ≈ 0.3) turn out to be approximatively 30% as well. More formally, a well-calibrated forecaster
satisfies for all probabilities p ∈ [0, 1] and for all ε > 0,

lim
n→∞

∣∣∣∣∣ 1n
n∑
t=1

1{|p̂t−p|6ε}(p̂t − yt)

∣∣∣∣∣ = 0 .

Quite surprisingly, calibrated forecasters exist (see Foster and Vohra [67], or Mannor and Stoltz
[112] for a nice geometric proof).

Another area of research focuses on estimating online the density of the deterministic sequence
y1, . . . , yn by minimizing the cumulative logarithmic loss (i.e., the negative log-likelihood). This
problem was formally introduced in data compression literature by Shtarkov [132] and early sug-
gested by Rissanen [128] (see also the monograph of Grünwald [82] for an overview). The aim was
to produce a code that is as good as the best code in some reference set (i.e., the set of experts).
The cumulative log loss corresponded to the incurred code length and their strategy led to well used
data compression programs like context-tree weighting (CTW). To do so, they considered various
strategies such as the Bayesian strategy (i.e., the exponentially weighted average forecaster with
log loss and with learning rate η = 1) or smoothed maximum likelihood strategies. Online density
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estimation of arbitrary sequences with log loss has then been extensively studied in the learning
literature. One can cite for instance Azoury and Warmuth [21], Freund [69], Dasgupta and Hsu
[56], Raginsky et al. [123], and Kotlowski and Grünwald [104]. Together they constructed strategies
(often based on Follow the Leader algorithm) to compete against the best of an exponential family
of distributions, including Bernoulli, Gamma, or Gaussian families.

In this chapter, we propose a brief overview of attempts to produce probabilistic forecasts when the
learner has access to a set of expert advice to be combined. We recall how to solve this problem under
a log-scoring rule and investigate other possible performance criteria inspired from the stochastic
literature. We see that the main difficulty relies on building the proper criterion to evaluate the
quality of the sequence of probabilistic forecasts. For all the criteria we thought about either the
player could easily minimize the criterion by applying well known techniques directly (e.g., the
cumulative logarithmic loss) or the criterion is impossible to meet. To formalize the problem, we
distinguish the following three settings according to the information provided on their uncertainty
by the individual forecasters (experts) to be combined.

Full uncertainty measure. Here we suppose that at each time step t > 1 the experts supply
probability forecasts of yt by producing probability density functions fk,t : R→ R+. We intend to
combine these distributions sequentially. We consider this setting in Section 7.1. Borrowing from
the stochastic literature, we consider three goals for the player, that aims at minimizing:

• the cumulative logarithmic loss (Section 7.1.1): already studied and solved by the literature;
• the Kolmogorov statistic (Section 7.1.2): trivially satisfied;
• the cumulative pinball loss (Section 7.1.3): resolvable by standard algorithms.

Partial uncertainty measure. Here the experts and the learner predict intervals. This setting is
addressed in Section 7.2. We successively attempt to design and patch a criterion that balances the
empirical level of the predicted intervals and their average width. The solution we came to, in order
get a correct criterion here, is to consider randomized forecasts. The setting is then revolvable by
standard tools.

No uncertainty measure. In this setting, the experts do not supply any measure of uncertainty
of their forecasts xk,t ∈ R. The aim is to produce a measure of uncertainty of ŷt ex-nihilo. This
setting is considered in Section 7.3. It was the primary goal of this chapter, which was motivated
by the intuition of the operational decision-makers of EDF described earlier. In the end, we retain
two methods based on:

• the cumulative log loss: already analyzed by the literature, see Dasgupta and Hsu [56];
• the cumulative pinball loss: resolvable by standard algorithms. We use it in Chapter 8.

7.1. The experts provide probability distributions

We consider the setting of sequential robust aggregation of distributions, which is described in
Figure 7.1.

The goal of the learner is to minimize some criterion that may depend on the sequence of obser-
vations (yt)16t6n, the sequences of expert forecasts (fk,t)16t6n for 1 6 k 6 K, and the sequence
of distribution forecasts of the learner (f̂t)16t6n. Hereafter we recall or investigate three criteria
inspired by the stochastic literature.
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At each time step t = 1, . . . , n

1. the experts supply density forecasts fk,t for k ∈ {1, . . . ,K};
2. the learner produces his own density forecast f̂t;
3. the nature reveals yt ∈ R.

Figure 7.1.: Generic setting of online aggregation of probability distributions

7.1.1. Cumulative logarithmic loss (well studied)

This criterion is similar to the goal of maximizing the log-likelihood in the i.i.d. batch setting. More
formally the accuracy of the predicted distribution f̂t proposed at round t for the observation yt is
evaluated by the logarithmic loss `

(
f̂t, yt

)
= − log f̂t(yt). The goal of the learner is to minimize his

cumulative logarithmic loss defined as:

n∑
t=1

`
(
f̂t, yt

)
=

n∑
t=1

− log f̂t(yt) .

Remark 7.1. As we recall in the introduction, log-scoring rules have already been well studied
in the online learning literature (see, e.g., Grünwald [82]). Thus we only explain below in a few
lines how to solve this criterion by resorting to standard algorithms.

Using the fact that the logarithmic loss is 1-exp-concave (i.e., f 7→ exp
(
−`(f, y)

)
= f(y) is concave

for all y ∈ R) and from Cesa-Bianchi and Lugosi [43, Section 9.1] the exponentially weighted average
forecaster with learning rate η = 1 achieves the following regret bound

n∑
t=1

− log f̂t(yt) 6 min
16k6K

n∑
t=1

− log fk,t(yt) + logK .

In other words, the average loss suffered by the forecaster converges to the average performance of
the best expert at rate at most O(1/n).

7.1.2. Kolmogorov’s criterion (new but trivially satisfied)

Another axis of research is to look at the quality of the cumulative distribution function F̂t : x 7→∫ x
∞ f̂t(u) du instead of the quality of the density function f̂t. However as we shall see, none of
the attempts will be acceptable: the player will always find a way to satisfy the criterion while
producing useless forecasts.

Starting point: Kolmogorov’s statistic in the i.i.d setting. The idea is to adapt Kolmogorov’s
statistic that aims at comparing a sample of i.i.d. observations (Yt)16t6n with a reference distribu-
tion Fref . It is defined as follows:

Tn
def
=
∥∥Fref − F (emp)

n ‖∞ ,

where F (emp)
n (x) , 1

n

∑n
t=1 1{Yt6x} is the empirical distribution of (Yt)16t6n. From the Glivenko-

Cantelli theorem, if the Yi are distributed with cumulative distribution Fref then Tn → 0 almost
surely. The criterion Tn can thus be used in a batch setting to assess the quality of a cumulative
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distribution Fref on the i.i.d. sample (Yi).

Adaptation to a sequential setting. Here, we adapt Kolmogorov’s statistic to a sequential setting.
We still consider that the sequence of outcomes (Yt)t>1 is generated by some underlying stochastic
process however we do not assume anymore that the observations are identically distributed. For
all t > 1, we denote by Ft the cumulative distribution of Yt knowing the past. That is,

Ft : x 7→ P (Yt 6 x|Ft−1) ,

where Ft−1 is the set of past observations Ys until time s = t− 1. Then, if the Yi are independent
and if the Ft are continuous for all t, we have Ft(Yt) ∼ U[0,1]. Therefore applying the Glivenko-
Cantelli theorem, the sequence of empirical distribution of (Ft(Yt))16t6n converges almost surely
in supremum norm to the one of the uniform distribution over [0, 1], i.e., to the identity function
on [0, 1]. That means

Tn = sup
α∈[0,1]

∣∣∣∣ 1n
n∑
t=1

1{Ft(Yt)6α} − α
∣∣∣∣ −→n→∞ 0 a.s.

The above convergence may still be valid in case where the Yt are not independent by extending
the Glivenko-Cantelli theorem to conditional distributions.

Returning to the setting of arbitrary sequences. Kolmogorov’s statistic yields a criterion to
evaluate the quality of a sequence of predicted cumulative distributions F̂1, . . . , F̂n for any arbitrary
sequence of real observations y1, . . . , yn:

T̂n
def
= sup

α∈[0,1]

∣∣∣∣ 1n
n∑
t=1

1{F̂t(yt)6α} − α
∣∣∣∣ .

We call it Kolmogorov’s criterion. Note that it is a continuous version (in α) of the rank diagrams
in the ensemble forecasting literature (see Mallet [109]). Because there is no underlying convexity,
we might well think that the player cannot easily solve Kolmogorov’s criterion.

Why this criterion is meaningless. However, the player can easily trick the criterion by making
Tn → 0 at rate O(1/n) without having to look neither at the expert forecasts nor at the past
observations. To do so, it suffices to play at time t, the cumulative distribution

F̂t : x 7→ t

n
1{−B6x<B} + 1{B6x} ,

where B is some bound on the observations (it can be any sufficiently large number). Thus, for all
times t ∈ {1, . . . , n} and for all possible observations yt we have F̂t(yt) = t/n which entails

F̂ (emp)
n (α)

def
=

1

n

n∑
t=1

1{F̂t(yt)6α} = α

for all α ∈ {1/n, 2/n, . . . , 1} and therefore T̂n 6 1/n because F̂ (emp)
n is non decreasing. The adap-

tation in n can be performed by doubling trick or by considering dyadic refinements of [0, 1].

The same argument is valid for Cramer-von-Mises-type and absolute-error-type criteria, respectively
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ρα(u)
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α = 0.8α = 0.1

α = 0.5

1

1

0

Figure 7.2.: The pinball loss for quantiles α ∈ {0.1, 0.5, 0.8}

defined by ∫ 1

0

(
1

n

n∑
t=1

1{F̂t(yt)6α} − α
)2

dα and
∫ 1

0

∣∣∣∣ 1n
n∑
t=1

1{F̂t(yt)6α} − α
∣∣∣∣dα .

7.1.3. Cumulative pinball loss (solved by standard tools)

A third way to perform probabilistic prediction is to look at quantiles. Once again we borrow ideas
from the i.i.d. setting. This approach can be solved by standard tools of individual sequences and
enjoys good forecasting performance. This is the solution followed in our practical experiments (see
Chapter 8).

Starting point: the pinball loss in the i.i.d. setting. Here we show that in the i.i.d setting a
powerful tool exists to perform quantile regression: the pinball loss.

Definition 7.1. Let Y be a real-valued random variable with cumulative distribution F . Then
the quantile qα of order α ∈ (0, 1) of Y is defined as the generalized inverse of F :

qα
def
= F−1(α) = inf {y ∈ R, F (y) > α} . (7.1)

Lemma 7.2 shows that the quantile qα minimizes in expectation a loss function, that we call the
pinball loss.

Lemma 7.2. Let α ∈ (0, 1). Let Y be an integrable real-valued random variable. Then the
quantile qα satisfies

qα = inf

{
arg min
θ∈R

E
[
ρα(Y − θ)

]}
,

where ρα is the pinball loss defined for all u ∈ R by ρα(u) = u(α− 1{u<0}).

A proof of Lemma 7.2 is available in Biau and Patra [24, Lemma 2.1]. The pinball loss is plotted
in Figure 7.2 for three different levels of α. In particular for α = 0.5 it yields back to the absolute
value. Lemma 7.2 states in this case that the median (i.e., q0.5) minimizes the expected absolute
error (i.e., 2ρ0.5).

Proposition 7.3 explains why it is interesting to minimize the cumulative pinball loss in the i.i.d



7.1. THE EXPERTS PROVIDE PROBABILITY DISTRIBUTIONS 179

setting. It expresses the fact that the minimizer of the pinball loss (i.e., the empirical quantiles
q̂α,n) converges to the true quantile qα at rate O(1/

√
n) with high probability.

Proposition 7.3. Let α ∈ (0, 1). Let (Yt)16t6n be a sample of i.i.d real-valued random variables
with density function f which is bounded from below by a positive constant c in the γ-neighborhood
of qα. Then, the minimization problem

arg min
θ∈R

n∑
t=1

ρα(Yt − θ)

has a minimal solution, denoted q̂α,n, which satisfies with probability at least 1− δ

|q̂α,n − qα| 6
1

c

√
log(2/δ)

2n
for all δ ∈ [2 exp(−2nc2γ2), 1].

Proof Let F (emp)
n be the empirical cumulative distribution of (Yt)16t6n. First, we remark that by

Lemma 7.2,
q̂α,n =

(
F (emp)
n

)−1
(α)

is the α-quantile of the empirical distribution. Then, we follow the proof of Rivoirard and Stoltz
[129, Theorem 8.13]. Let ε > γ > 0. We have

P
(
qα + ε < q̂α,n

)
= P

(
F (emp)
n (qα + ε) < α

)
= P

( n∑
t=1

1{Yt6qα+ε} < nα

)

= P
( n∑
t=1

(
1{Yt6qα+ε} − P

(
Yt 6 qα + ε)

)
< n

(
ε− F (qα + ε)

))

= P
( n∑
t=1

(
1{Yt6qα+ε} − P

(
Yt 6 qα + ε)

)
< ncε

)
,

where the last inequality is because the density function f is lower-bounded by c > 0 on [qα−γ, qα+

γ]. Performing the same calculations with P
(
qα− ε > q̂α,n

)
and applying Hoeffding’s inequality, we

obtain
P
(∣∣q̂α,n − qα∣∣ > ε

)
6 2 exp

(
− 2nc2ε2

)
,

which concludes the proof. �

Back to the setting of arbitrary sequences. We return to the setting detailed in Figure 7.1.
Fix a quantile α ∈ (0, 1). For each density function fk,t we can define a matching quantile
q

(α)
k,t

def
= inf{y ∈ R :

∫ y
−∞ fk,t(x) dx > α}. The performance of the predicted quantile q̂(α)

t (that corre-
sponds to f̂t) proposed at round t for observation yt is assessed by the pinball loss `(q̂(α)

t , yt) = ρα
(
yt − q̂(α)

t

)
.

The goal of the forecaster is then to minimize his cumulative loss

n∑
t=1

ρα

(
yt − q̂(α)

t

)
.

By convexity of the pinball loss, by applying standard convex optimization algorithm (such as the
exponentially gradient forecaster of Cesa-Bianchi and Lugosi [43] or ML-Prod of Chapter 2) the
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learner can guarantee a cumulative pinball-loss bounded as follows

n∑
t=1

ρα(yt − q̂α,t) 6 min
w∈∆K

n∑
t=1

ρα(yt −w · qt) + Ξ
√
n logK ,

where Ξ is a constant as a function of K and n; qt
def
=
(
q

(α)
1,t , . . . , q

(α)
K,t

)
are the α-quantiles predicted

by the experts; and ∆K
def
=
{
x ∈ Rd+ :

∑
i xi = 1

}
is the simplex.

7.2. The experts provide prediction intervals

We now turn to the partial information setting. The player still has to make online sequential
probabilistic prediction over a series of rounds, with the help of K experts. However in each round
t = 1, . . . , n, the experts do not provide full probability distributions but they only supply prediction
intervals of level 1− α. The setting is summarized in Figure 7.3.

At each time step t = 1, . . . , n

1. the experts supply prediction intervals Ik,t for k ∈ {1, . . . ,K} of level
1− α;

2. the learner produces his own prediction interval Ît of level 1− α;
3. the nature reveals yt ∈ R.

Figure 7.3.: Generic setting of online aggregation of prediction intervals

Similarly to the previous section, we investigate here several criteria that can be used to assess the
quality of the sequence of forecasts formed by the player. However as we will show all our tentatives
to design a good criterion fail: they all suffer weak points that the learner can exploit to succeed
without worrying about making good forecasts.

Tentative 1 (failed: trivially satisfied). First we can require that the proportion of time the yt
fall in the Ît turn out to be approximatively 1−α. A natural criterion would thus be to control the
following quantity ∣∣∣∣∣ 1n

n∑
t=1

1{yt∈Ît} − (1− α)

∣∣∣∣∣ .
Yet this is not sufficient since the player can easily fool the environment by choosing Ît = ∅ for
t 6 αn and Ît = R for the remaining times.

Tentative 2 (failed: impossible to satisfy or trivially satisfied). To patch the performance cri-
terion we add a regularization term that penalizes large intervals. We obtain the criterion∣∣∣∣∣ 1n

n∑
t=1

1{yt∈Ît} − (1− α)

∣∣∣∣∣+
λ

n

n∑
t=1

∣∣Ît∣∣ , (7.2)

where λ > 0 is a regularization parameter and |I| = maxx1,x2∈I |x2 − x1| is the diameter of
interval I. Now we can assume that the term inside the absolute value is nonpositive because if
(1/t)

∑t−1
s=1 1{ys∈Îs} > 1− α the player can play Ît = ∅ at the following round to fool the criterion
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and improve his performance. In order to avoid this trick we modify the criterion by removing the
absolute value from (7.2). The new goal is then to control the quantity

1

n

n∑
t=1

1{yt /∈Ît}︸ ︷︷ ︸
empirical level

+ λ · 1

n

n∑
t=1

∣∣Ît∣∣
︸ ︷︷ ︸

average width

=
1

n

n∑
t=1

1{yt /∈Ît} + λ
∣∣Ît∣∣

︸ ︷︷ ︸
instantaneous loss

. (7.3)

Quite surprisingly the desired level of confidence α ∈ (0, 1) does not appear in (7.3) because the
quantity to control is independent of α. Criterion (7.3) highlights the trade-off that arises between
the empirical level of the prediction interval and its average width. The regularization parameter λ
balances this compromise. It needs to be calibrated by the forecast-makers according to the level of
confidence they desire. Unfortunately Criterion 7.3 makes once again no sense. If the player cannot
use random predictions (i.e., Ît is a random variable unknown from the nature), according to the
value of λ either the environment can keep the cumulative regret

R̂n =

n∑
t=1

(
1{yt /∈Ît} + λ

∣∣Ît∣∣)− min
k=1,...,K

n∑
t=1

(
1{yt /∈Ik,t} + λ

∣∣Ik,t∣∣)
linear in n, or the player trivially succeeds (by making R̂n nonpositive). We provide below an
illustration of this fact.

Example 7.2. Let K = 2 (i.e., we have two experts). At each time step t > 1 the first expert
predicts I1,t = [0, 1/2] and the second expert outputs I2,t = [1/2, 1]. Now we show that, except
for trivial case, it is impossible for the player to guarantee a sub-linear regret uniformly over all
outcome sequences. To do so, we consider a sequence of observations yt ∈ R such that

yt /∈ Ît and yt ∈

{
I1,t if I1,t 6⊂ Ît
I2,t if I1,t ⊂ Ît and I2,t 6⊂ Ît

(7.4)

Note that if I1,t ⊂ Ît and I2,t ⊂ Ît, the observation yt can be any point that does not fall into Ît.
The possible scenarios are depicted in Figure 7.4. The instantaneous loss incurred for each scenario
by the player and the experts are summarized in Table 7.1.

0 0.5 1

(a) I1,t 6⊂ Ît

0 0.5 1

(b) I1,t ⊂ Ît and I2,t 6⊂ Ît

0 0.5 1

(c) I1,t ∪ I2,t ⊂ Ît

Figure 7.4.: Graphical representation of the three possible scenarios of (7.4)

Scenario Learner (̂̀t) Expert 1 (`1,t) Expert 2 (`2,t)

(a) I1,t 6⊂ Ît 1 + λ
∣∣Ik,t∣∣ > 1 λ/2 1 + λ/2

(b) I1,t ⊂ Ît, I2,t 6⊂ Ît 1 + λ
∣∣Ik,t∣∣ > 1 + λ/2 1 + λ/2 λ/2

(c) I1,t, I2,t ⊂ Ît 1 + λ
∣∣Ik,t∣∣ > 1 + λ 1 + λ/2 1 + λ/2

Table 7.1.: Instantaneous loss suffered by the expert and by the players according to the situation.
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Then for any value of λ > 0 either the player can fool the environment or the opposite.

• If λ > 2, the player trivially succeeds. It only needs to predict Ît = ∅. It is thus in scenario (a)
at all rounds and it suffers instantaneous loss 1, when expert 1 and 2 will respectively incur
losses 1 and 2. The cumulative regret of the learner is then nonpositive.

• If λ < 2, no matter what the player does the cumulative regret grows linearly in n. Let
us respectively denote by na, nb, and nc the number of rounds scenario (a), (b), and (c) of
Table 7.1 occur. From Table 7.1, we get that the cumulative regret with respect to expert 1 is
at least (

1− λ

2

)
na +

λ

2
nc (7.5)

and with respect to the second expert using na + nb + nc = n

− λ

2
na + nb +

λ

2
nc = n−

(
1 +

λ

2

)
na +

(λ
2
− 1
)
nc . (7.6)

Solving the minimization problem

min
na,nc∈R+

min

{(
1− λ

2

)
na +

λ

2
nc, n−

(
1 +

λ

2

)
na +

(λ
2
− 1
)
nc

}
(by equalizing (7.5) and (7.6)) we obtain the following lower bound on the regret

R̂n >
λ(2− λ)

4 + 2λ
n ,

for the optimal values na = 2λn/(2+λ) and nc = (2−λ)n/(2+λ). This concludes the example.

Randomized prediction (solved through standard tools). A solution is to allow the learner to
output randomized predictions, see Cesa-Bianchi and Lugosi [43, Chapter 4]. We suppose that at
each time step t > 1 the player chooses a distribution p̂t = (p̂1,t, . . . , p̂K,t) over the set of experts
and predicts the interval Ik,t with probability pk,t. We call Ît the player’s prediction at time t.
Furthermore we assume that the environment is an oblivious opponent: the sequence of observations
yt is determined before the start of the game (i.e., yt is a deterministic number that cannot depend
on the random variable Ît). The instantaneous loss suffered by the player at time t is then `(Ît, yt) =

1{yt /∈Ît}+ λ
∣∣Ît∣∣. It is also a random variable. Then from Cesa-Bianchi and Lugosi [43, Corollary 4.2]

for any δ ∈ (0, 1) the exponentially average forecaster with η = (1 + λB)−1
√

8 logK/n satisfies
with probability at least 1− δ

R̂n 6 (1 + λB)
√
n/2

(√
logK +

√
log(1/δ)

)
.

Here, we used the fact that the instantaneous losses belong to [0, 1+λB] where B is an upper-bound
on maxk,t |Ik,t|.

Other similar trade-off criteria can be considered. Unfortunately, we could only find criteria that
were either trivially fooled by the player, or impossible to achieve, or convex and thus solved by
standard techniques. For instance, another way to assess the quality of a sequence of prediction
intervals is to look at the cumulative pinball loss of their extremities.
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7.3. The experts only provide point forecasts

We now look at our last setting where the experts do not provide any measure of uncertainty. At
each time t > 1, the player observes a vector of K point predictions xt = (x1,t, . . . , xk,t) ∈ RK ,
the player is then asked to predict the next probability distribution (e.g., by providing a density
f̂t) and the environment reveals the observation ŷt. The goal of this section is again to find a good
criterion to assess the quality of the sequence of predictions f̂t.

The starting point of this setting was an observation of the operational team that forecasts
the electric load in France. When the operational forecasters receive the individual predictions, if
these are significantly different from each other, they conclude to a higher predictive risk than if
the individual forecasts are similar. This idea can be formalized in the standard setting of online
prediction with expert advice by the following quantity

vt =

K∑
k=1

p?k (p? · xt − xk,t)2 = Varp? [Yt] ,

where p? = (p?1, . . . , p
?
K) ∈ ∆K is the best weight combination and Yt is a random variable that

equals xk,t with probability p?k. Indeed, if several experts with large weight disagree, the random
prediction Yt will have a large variance and the prediction will be uncertain. Besides experts with
bad performance will have a small weight p?k and will not impact much the value of vt if their
prediction is far away from the predictions of other experts.

This quantity leads to the so-called second order bounds (see Chapter 2 or Cesa-Bianchi et al. [45])
on the regret. It is possible achieve the following regret bound

n∑
t=1

̂̀
t 6 min

k

{
n∑
t=1

`k,t + Ξ
√

(logK)
∑n

t=1v̂t

}
,

through a version of the exponentially weighted average forecaster with variable learning rate (see
Cesa-Bianchi et al. [45]). Here, Ξ is a constant as a function of K and n; ̂̀t and `k,t are the losses
respectively suffered by the algorithm and by the experts at time t; and v̂t =

∑K
k=1 p̂k,t

(̂̀
t−`k,t

)2 is
an approximation of vt computed by the algorithm. In some sense, v̂t thus controls the uncertainty
of the regret of the combining algorithm. But it does not include the uncertainty due to the
approximation error, i.e., the uncertainty about the performance of the best expert. If the experts
are highly correlated (e.g., because they are designed by using the same covariates), they may be
mistaken all together at the same time and v̂t will not catch this error.

Example 7.3. For instance, the environment may choose xt = (0, . . . , 0) ∈ RK and yt = 1 so
that the square loss incurred by the player and by the experts is 1 although v̂t = 0 predicts a very
small risk. A small value of v̂t actually means that the regret of the algorithm with respect to the
best expert will not increase a lot.

7.3.1. Cumulative logarithmic loss (well studied)

In order to build a satisfactory criterion, we need to consider the uncertainty about the approx-
imation error as well. A solution is to compare the performance of the predicted distributions f̂t
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formed by the player with the performance of a family of distributions. To do so, we consider the
logarithmic loss `(f̂t, yt) = − log f̂t(yt). This opens the toolbox of online density estimation with
logarithmic loss, see Section 7.1.1. We evaluate the performance of the player relatively to the
comparison class parametrized by k = 1, . . . ,K and σ > 0 that produces at time t the density

f̂
(σ)
k,t : y 7→ K

(
y − xk,t

σ

)/
σ ,

where K is a kernel (i.e., a nonnegative, integrable, and even function such that
∫
RK(u) du = 1).

For instance we can choose the family of Gaussian kernels K : x 7→ (1/
√

2π) exp(−x2/2) or the
sliding windows kernels K : x 7→ 1{|x|61/2}. The windows parameter σ needs to be optimized. The
goal of the player is to minimize his cumulative regret defined as

R̂n
def
=

n∑
t=1

− log f̂t(yt)− min
k=1,...,K

{
inf
σ>0

n∑
t=1

− log f
(σ)
k,t (yt)

}
. (7.7)

In other words the player aims at competing in cumulative logarithmic loss with the best distribu-
tion centered in an expert and with fixed variance (see Section 7.1.1).

To our knowledge previous literature (e.g., [132, 128, 82, 21, 56, 104]) in online density estimation
with a log-scoring rule did not consider this exact setting with multiple experts. However, we show
below that the above setting can easily be reduced to standard online density estimation (with no
expert) and thus solved by resorting to known techniques.

Simplification to a single expert. Now, we note that the above setting can be simplified by
considering a single expert only and by focusing on the calibration of the window parameter σ > 0.
Indeed, we can partition the analysis in two layers. First, for each expert k ∈ {1, . . . ,K} we predict
sequentially f̂j,t that guarantees small regret

R̂k,n
def
=

n∑
t=1

− log f̂k,t(yt)− inf
σ>0

n∑
i=1

− log f
(σ)
k,t (yt) .

Then, we apply the algorithm presented in Section 7.1.1 in order to compete with the best sequence
of density forecasts (f̂k,t)t>1. We then have

R̂n 6 max
k=1,...,K

R̂k,n + logK .

Therefore, if we can control each R̂k,n individually, R̂n can be controlled easily.

The Gaussian kernel. Dasgupta and Hsu [56] analyze a similar setting of online Gaussian density
estimation which captures the above setting (with an additional bias removal of xt) for the particular
case of the Gaussian kernel defined for all x > 0 by K(x) = (1/

√
2π) exp(−x2/2). They conclude

the following statements:

• R̂k,n is difficult to control uniformly over all σ > 0.
• R̂k,t is easily bounded from below through an adapted version of the Follow the Leader fore-

caster for σ > σ0. The regret if then of order O(1/(nσ2
0) + 1/σ0 + log n) which is sub-linear as

soon as σ0 � 1/n. They also discuss the case σ > 1/n.



7.3. THE EXPERTS ONLY PROVIDE POINT FORECASTS 185

The extension to other kernels is left for future research.

7.3.2. Cumulative pinball loss (the criterion for the next chapter)

Another solution to form probabilistic forecasts is to minimize the cumulative pinball loss of the
combined predictions. The idea is substantially similar to the one of Section 7.1.3. Therefore, we
give only a brief description here. The only difference is that the experts do not output quantiles
qk,t but provide only point forecasts xk,t (of the average). The expert vectors qt = (q1,t, . . . , qK,t)

of Section 7.1.3 are substituted with xt = (x1,t, . . . , xK,t).

For any α ∈ (0, 1), and any bounded convex set B ⊂ RK , we can use any standard combination
rule (such as Ridge) which guarantees

n∑
t=1

ρα(yt − q̂α,t) 6 inf
w∈B

n∑
t=1

ρα(yt −w · xt) + o(n) , when n→∞,

where q̂α,t are the α-quantiles predicted by the algorithm.

By performing multiple combining algorithms in parallel for several values of α ∈ [0, 1], we can
forecast complete distributions f̂t. Such a methodology is used in the next chapter so as to forecast
the electricity price.





8
Semi-parametric models and robust aggregation for

GEFCom2014 probabilistic electric load and electricity price
forecasting

We sum up the methodology of the team Tololo on the Global Energy Forecasting Competi-
tion 2014 for the electric load and electricity price forecasting tracks. During the competition, we
used and tested many statistical and machine learning methods such as random forests, gradient
boosting machines, or generalized additive models. In this paper, we only present the methods
that have shown the best results. For electric load forecasting, our strategy consists in producing
temperature scenarios that we plug into a probabilistic forecasting load model. Both steps are
performed by fitting a quantile generalized additive model (quantGAM). Concerning the electric-
ity price forecasting, we investigate three methods that we used during the competition. The first
method follows the spirit of the one used for electric load. The second one is based on combining a
set of individual predictors. The last one fits a sparse linear regression on a large set of covariates.
We chose to present in this paper these three methods because they show good performance and
have a nice potential of improvements for future research.
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Nota: This chapter is a joint work with Yannig Goude and Raphaël Nedellec. It is based on the
submitted paper [7].

8.1. Introduction

We present in this paper the methodology employed for the probabilistic electric load and electricity
price forecasting tracks of the Global Energy Forecasting Competition 2014 (GEFCom2014). We
participated in both tracks but with different intensity and motivation. Load forecasting was a
familiar field of research for us before the competition, whereas we were inexperienced with price
forecasting. As a consequence, we converged rapidly to a unique solution for load forecasting, but
we constantly changed our method as we were learning and improving our knowledge of electricity
price forecasting.

Quantile regression based on pinball loss minimization (see Koenker and Bassett 101) and general-
ized additive models (see Hastie and Tibshirani 88, Wood 147) are the main tools of our work. To
our knowledge, there was no off-the-shelf program achieving quantile generalized additive models
and we implemented our own solution for that. We designed it originally for load forecasting but at
the end it turned out to be the most efficient method for both tasks. We present it in Section 8.2.
We tested a wide range of other approaches for the price forecasting task. Among those we describe
those which deserve to be shared. To our opinion, they have a potential for improvement and can be
applied to other forecasting problems. Aggregation of experts is considered in Section 8.5. We were
inspired by the work of Nowotarski and Weron [118] and extend it to the case where the weights
of the combination can vary over time. More precisely, we adapt to quantile regression the setting
of robust online aggregation of experts (see Cesa-Bianchi and Lugosi 43) which has already been
applied successively for point wise load forecasting in Devaine et al. [60] and Gaillard and Goude
[75]. Our set of 13 experts consists of forecasters from the price forecasting literature (AR, TAR,
ARX, TARX, PAR as presented in Weron and Misiorek 145), GAMs, and popular machine learn-
ing: random forest (see Breiman 35) and gradient boosting machines (see Friedman 72). The third
approach presented in Section 8.6 is based on covariate selection with `1 selection procedure, com-
monly known as Lasso regression introduced in Tibshirani [136]. It was motivated by the fact that
we generated a lot of covariates (192) from the original ones (for price forecasting). Thus, we were
curious at the end of the competition to see how an automatic procedure could select an optimal
subset among them. `1 selection and quantile regression were studied in Belloni and Chernozhukov
[23] but never applied neither to price nor to load forecasting. To our experience, no open source
code exists that satisfies our needs for the competition. We present in Section 8.6 a kernel based
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approach we developed at this occasion. For the price forecasting task, the results obtained during
the competition differ slightly (sometimes better, sometimes worse) from those obtained by the
three methods (quantile GAM, quantile mixture, quantile GLM). This is largely due to the other
approaches that we used along the competition, and to hybrid variants of those presented here. We
deliberately focus on these three methods in this paper for conciseness.

The Global Energy Forecasting Competition 2014

First, let us provide a brief description of the Global Energy Forecasting Competition 2014 (GEF-
Com2014). More details are available in Hong et al. [95]. GEFCom2014 was held from August to
December 2014. It aimed at bringing together the state-of-the-art techniques and methodologies
for probabilistic energy forecasting.

The competition attracted hundreds of participants from around the worlds including academic and
industrial teams. The competition featured four tracks to predict electric load, electricity price, wind
power, and solar power. In the sequel, we focus on the first two tracks in which we participated.

Each challenge was designed on a rolling basis. The data was parsed into sixteen batches. The first
batch was the estimation set. It was used by the participants to train their forecasting models and
was provided at the start of the contest. The following fifteen batches (called validation sets) were
sequentially predicted by the participants, then released by the competition organizers, and added
to the estimation set so as to forecast the next batch.

More formally, we set {t1, . . . , t16} an ordered sequence of integers such that 1 < t1 < · · · < t16 = n

where n is the total number of data. We define the set Sk = {tk + 1, . . . , tk + 1} for k ∈ {1, . . . , 15}
and S0 = {1, . . . , t1}. The set Sk is called the k-th batch. During the competition period∗, the
contestants were asked each week k = 1, . . . , 15 to form probabilistic forecasts of the next data by
providing the percentiles τ ∈ A def

= {0.01, . . . , 0.99} of future observations yt for t ∈ Sk. To do so
the participants had knowledge of previous data in S0 ∪ · · · ∪ Sk−1 only. At the end of each week,
the new data Sk were revealed and the scores of the participants were computed as:

1

tk+1 − tk

tk+1∑
t=tk+1

1

99

∑
τ∈A

ρτ (yt − q̂τ,t),

where ρτ is the pinball loss defined for all u ∈ R by ρτ (u) = u(τ − 1{u<0}). Its interest in quantile
regression is motivated in Section 7.1.3.

Track 1: electric load. 362 contestants grouped into 34 teams took part in this forecasting track.
The estimation set S0 ranged from January 1, 2006 to August 31, 2010. The fifteen validation sets
consist of every month from September 2010 to December 2011.

Track 2: electricity price. This contest brought together 287 participants grouped into 19 teams.
The estimation set S0 included data from January 1, 2011 to June 5, 2013. The starting time of the
fifteen validation sets are displayed in Table 8.2. Because of the high volatility of electricity price
the participants were only asked to provide forecasts for the first 24 hours of each validation set.

∗from August 15 to December 6, 2014
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8.2. Quantile regression with Generalized Additive Models

We consider the supervised regression setting where we are asked to forecast an univariate response
variable Yt ∈ R (such as the load) according to several covariates Xt = (Xt,1, . . . , Xt,d) ∈ Rd (such
as the temperature). A training sample {(Xt, Yt)}nt=1 is available.

8.2.1. Generalized Additive Models

Generalized additive models (GAMs) were introduced by Hastie and Tibshirani [88]. GAMs explain
the output Yt as a sum of smooth functions of the different covariatesXt,j . More formally, we assume
that for all time t = 1, . . . , n, Yt = µ(Xt)+εt where µ is the unknown function to be estimated and
the εt denote zero mean random variables that are independent and identically distributed (i.i.d.)
from some exponential family distribution†. GAMs assume that it exists a link function g such that

g
(
µ(Xt)

)
= f1(Xt,1) + f2(Xt,2) + f3(Xt,3, Xt,4) + . . . (8.1)

where the fj are smooth functions of the covariates Xt,k ∈ R. In the following, the link function g
is the identity and the smooth functions fj are cubic splines (unless specified otherwise). Basically,
cubic splines are polynomials of degree 3 that are joined at points known as “knots” by satisfying
some continuity constraints (see Wood 147 for details). We call S(Ki) the class of cubic splines for
some fixed set Ki of knots.

We fit the smooth effects fi with penalized regression methods. To do so, we first choose the
knots Ki for each effect fi. Then, we use the ridge regression that minimizes over all effects f1 ∈
S(K1), f2 ∈ S(K2), . . . the following criterion:

n∑
t=1

(
Yt −

p∑
i=1

fi

(
Xi
t

))2

+

p∑
i=1

λi

∫ ∥∥f ′′i (x)
∥∥2

2
dx, (8.2)

where for each effectXi
t are one or two covariates ofXt corresponding to effect fi. Here λ1, ..., λp > 0

are regularization parameters that control the degree of smoothness of each effect (the higher λi
the smoother fi is). They have to be optimized. The knots Ki are uniformly distributed over the
range of the covariate(s) Xi

t corresponding to effect fi. The number of knots (i.e., the cardinal of
Ki) is another way to control the smoothness of the effect fi and should be optimized as well.
These problems are solved by using the methodology presented in Wood [147] which consists in
minimizing the Generalized Cross Validation criterion (GCV). The method is implemented in the
R package mgcv (see 147).

8.2.2. Quantile regression

Quantile regression was introduced by Koenker and Bassett [101]. Let Y be a real value random
variable and let X be a set of explanatory variables. If FY |X denotes the conditional cumulative
distribution of Y given X, then the conditional quantile qτ of order τ ∈ [0, 1] of Y knowing X is
defined as the generalized inverse of FY |X:

qτ (Y |X) = F−1
Y |X(τ) = inf

{
y ∈ R, FY |X(y) > τ

}
. (8.3)

†Throughout the paper, εt are i.i.d. error terms but their distribution may change from a display to another
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ρτ (u)

−1
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τ = 0.5

1
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0

Figure 8.1.: The pinball loss for quantiles τ ∈ {0.1, 0.5, 0.8}

Now, the idea of quantile estimation arises from the observation that the median (i.e., q0.5(Y |X))
minimizes the expected absolute error. More generally, it can be shown that the conditional quantile
qτ (Y |X) is the solution of the minimization problem:

qτ (Y |X) ∈ arg min
g

E[ρτ (Y − g(X))|X] , (8.4)

where ρτ is the pinball loss defined for all u ∈ R by ρτ (u) = u(τ − 1{u<0}). The pinball loss is
plotted in Figure 8.1.

Linear quantile regression is implemented in the R-package quantreg (see Koenker 100). It assumes
that {(Xt, Yt)}t=1,...,n are i.i.d. such that Yt = Xt

>β + εt, where β ∈ Rd is a vector of unknown
parameters. Linear quantile regression solves the following convex minimization problem:

β̂τ ∈ arg min
β∈Rd

n∑
t=1

ρτ
(
Yt −X>t β

)
. (8.5)

Then, it estimates the conditional quantile qτ with q̂τ : x 7→ x>β̂τ .

8.2.3. Mixed approach: use smooth effects estimated by GAM as input for linear
quantile regression

In this section, we introduce a generic procedure to perform quantile regression by using GAMs.
An obvious patch would be to substitute in (8.2) the square loss with the pinball loss. However,
the optimization problem is harder and we faced numerical problems trying to solve it. During the
competition, we used a multiple steps approach to deal with these computational problems. We
detail the methodology below.

1. We linearize the problem by fitting GAM. To do so, we perform the two following steps.
1.a. Fit the mean. We fit GAM by minimizing Criterion (8.2) over the non-linear effects f1 ∈

S(K1), f2 ∈ S(K2), . . . . We get estimates of the effects (denoted f̂i for all i) that capture
the non-linear relationships between the conditional mean of Yt and the covariates. We
denote by Ŷt the fitted estimate of observation Yt formed by GAM.

1.b. Fit the variance (optional). We perform a residual analysis to model the deviations from
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the mean knowing the covariates. To do so, we fit GAM to predict the square residuals(
Yt − Ŷt

)2. We obtain estimates of the effects (denoted ĝi) that trap the second-order
variation of Yt. This step is optional.

2. Finally, for each percentile τ ∈ {0.01, 0.02, ..., 0.99}, we perform a linear quantile regression by
using the estimated effects Zt =

(
f̂1(Xt,1), f̂2(Xt,2), . . . , ĝ1(Xt,1), ĝ2(Xt,2), . . .

)
as covariates

to estimate the quantile function q̂τ . To do so, we substitute in (8.5) the vector of covariates
Xt with the vector of fitted effect Zt and solve the minimization problem.

We call this procedure quantGAM.

8.3. Probabilistic electric load forecasting by quantGAM

We consider the data available for the Probabilistic Load Forecasting Track of the GEFCom2014
competition. It includes hourly observations of load consumption (from January 1, 2006 to De-
cember 31, 2011) and of temperatures from twenty-five weather stations (from January 1, 2001
to December 31, 2011). Our goal is to forecast at the end of each month the τ -quantiles of the
load consumption of the next month for τ ∈ {0.01, . . . , 0.99}. At time step t, the performance of
a prediction

(
q̂0.01,t, . . . , q̂0.99,t

)
∈ R99 is measured by the average pinball loss over the quantiles

defined as:
1

99

99∑
τ=1

ρτ (Yt − q̂τ,t) . (8.6)

The data set is parsed into two pieces: a training set from 2001 to 2010 and a testing set in
2011. The testing set is predicted online (month by month) by fitting the methods on all the past
observations (including the beginning of the testing set). The electric demand and the temperature
heavily depend on the hour of the day. Therefore the models described throughout this section are
performed per hour (unless stated otherwise). That is, the data is partitioned into 24 independent
time series (one for each hour of the day) and 24 separate models are fitted.

The importance of the past consumptions and temperatures is clearly decreasing over time. This has
driven us to use two approaches depending on the forecasting horizon: one taking into account these
dependencies for “short-term” load forecasting and a second approach for “mid-term” probabilistic
load forecasting.

Section 8.3.4 reports the performance of the method obtained for each month of the testing set.

8.3.1. Working on the data

These are the variables that have been defined in order to build the forecasting models and methods:

• Yt is the electric load at time t > 1‡.

• Tt is a uniform weighted average of the temperatures of the weather stations 6, 10, 22, and 25.
We choose these stations with a relatively simple method. Considering the simplified hourly
GAM of equation (8.10), we test successively the impact of each temperature station. We
choose these four stations using generalized cross validation scores. We represent on Figure 8.2

‡Throughout the paper, t > 1 is a linear chronological index (in hours) for the whole dataset.
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Figure 8.2.: GCV score obtained for each temperature station compared to the one obtained by the
average temperature T .

the GCV score obtained for each temperature station compared to the one obtained by Tt.
We clearly see that the 4 selected stations have similar GCV scores and that averaging them
brings a significant improvement.

• T
(γ)
t is a smoothed temperature of Tt with exponential smoothing parameter γ ∈ [0, 1]. It is

defined at time t by induction as:

T
(γ)
t , γ T (γ)

t−1 + (1− γ)Tt . (8.7)

• Toyt ∈ [0, 1] (Time of year) is a cyclic variable that indicates the annual position and repeats
each year. It is each year linearly increasing over time going from 0 on January 1 at 00:00 to 1
on December 31 at 23:30.

• DayTypet is a factorial variable with 7 levels corresponding to different types of day. The levels
are: Monday, Tuesday-Wednesday-Thursday, Friday, Saturday, Sunday, bank holidays, and a
last category corresponding to the days before and after bank holidays. This choice was driven
by our expertise on electricity load data (see e.g., 81).

8.3.2. Medium-term probabilistic forecasting of the load

To forecast the electric demand at more than two days horizons, we use a medium term probabilistic
model that does not use recent lags of the load. In fact, we validated (by performing cross validation)
the correct horizon where recent observations of the temperature (by using scenarios) were still
informative. It appears that the right horizon was around 48 hours.

Our method divides into separate layers the uncertainty of the model and the uncertainty due to
the temperature. First we build a medium-term probabilistic forecasting model of the temperature
only based on the impact of the annual position Toyt. Then we fit a model that forecast the
distribution of the load conditionally to the temperature (assuming that true temperature is known
in advance). Both models are performed by using quantGAM described in Section 8.2.3. We form
our final prediction of the load distribution by averaging the forecasted conditional distribution of
the load over the forecasted law of the temperature.

Probabilistic forecasting of the temperature We perform quantGAM, by following the steps of
the generic procedure of Section 8.2.3, as follows:

1.a. We estimate the non-linear effect of the annual position Toyt on the expected temperature by
fitting GAM

(
i.e., by minimizing Criterion (8.2) substituting the response variable Yt with the
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Figure 8.3.: Observed values of Tt together with the smooth functions f̂1 and f̂1 ± ĝ1 fitted by
Models (8.8) and (8.9).

temperature Tt
)
with the following model:

Tt = f1(Toyt) + εt . (8.8)

Here f1 is estimated by cubic cyclic regression splines to assure continuity of estimated effects
at midnight the 1st of January (see Wood 147). We denote by f̂1 the obtained estimate of f1

(i.e., the solution of the minimization of (8.2)).

1.b. We estimate the non-linear effect that impacts the forecasting errors by fitting GAM on the
residual signal with model: (

Tt − f̂1

(
Toyt

))2
= g1(Toyt) + εt , (8.9)

where g1 is estimated by cubic cyclic regression splines. We call ĝ1 the estimate of g1.

2. We perform a linear quantile regression (see Section 8.2.2) to forecast the quantiles of the
temperature by using

Zt =
(
f̂1(Toyt), ĝ1(Toyt)

)
as vector of covariates. The final estimates of the τ -quantiles, denoted T̂τ,t, are thus linear
combinations of the mean effect f̂1 and the variance effect ĝ1. That is, they are of the form:

T̂τ,t = âτ,1 f̂1(Toyt) + âτ,2 ĝ1(Toyt) ,

where âτ,1, âτ,2 ∈ R are the linear coefficients estimated by the quantile regression.

Figure 8.3 plots the estimates f̂1 and f̂1± ĝ1 together with the observed values of the temperatures
Tt.

Probabilistic forecasting of the load (knowing the temperature in advance) We fit quantGAM
as follows:

1.a. We estimate the non-linear effects that impact the expected load by fitting GAM with model:

Yt = f1(Toyt) + f2(t) + f3(Tt) + h(DayTypet) + εt , (8.10)
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where f1, f2, and f3 are cubic regression splines and h is a function that takes a different value
for each type of day. We recall that the estimation of GAM is performed by minimizing (8.2)
over all cubic splines fi ∈ S(Ki) and over all h ∈ {Monday, . . .}R. Note that h actually
corresponds to seven additional coefficients that do not appear in the regularization term
of (8.2). Note that f2 captures the trend.

1.b. We estimate the non-linear effects that impact the forecasting errors by fitting GAM on the
residual signal with model: (

Yt − Ŷt
)2

= g1(Toyt) + g2(Tt) + εt , (8.11)

where Ŷt is the load fitted by Model (8.10).

2. We perform a linear quantile regression to forecast the quantiles of the load by using the
covariate vector

Zt =
(
f̂1(Toyt), f̂2(t), . . . , ĝ1(Toyt), ĝ2(Tt)

)
.

Figure 8.4 plots the forecasted distribution of the load for three consecutive days by using the
observed values of Tt. The forecasted distribution does not take into account the uncertainty due
to the temperature and the obtained confidence intervals are thus extremely small.
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Figure 8.4.: Medium-term forecasted distribution of the load from June 6, 2011 to June 8, 2011 by
using the real values of the temperature Tt. As in all the following plots of probabilistic
distributions, we only plot the 50% confidence interval in dark gray and the 90%
confidence interval in light gray.

Probabilistic forecasting of the load (operational forecast) To provide forecasts of the load
distribution, we do not have at our disposal the future true values of the temperature Tt. To
deal with it, we average the forecasted distributions of the load over the forecasted distribution of
temperature. In other words, to generate quantile forecasts of the load at each time step t:

1. We forecast all the quantiles τ ∈ {0.01, . . . , 0.99} of the temperature at time step t by
quantGAM described earlier (see Equations (8.8) and (8.9)).

2. For each predicted quantile T̂τ,t of the temperature, we perform quantGAM (described in
Models (8.10) and (8.11)) by substituting the true value of Tt with the predicted quantile T̂τ,t
and we obtain a distribution F̂τ,t of the load.

3. We form the final prediction of the load distribution by averaging over all temperature per-
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centiles τ the forecasted distribution F̂t = (1/99)
∑99

τ=1 F̂τ,t. In the end for each level τ ′ ∈
{0.01, . . . , 0.99} we predict the percentile of the load q̂τ ′,t = F̂−1

t (τ ′) by inverting the fore-
casted distribution F̂t.

Figure 8.5 plots the forecasted distribution for the same three consecutive days as for Figure 8.4. We
remark that the obtained confidence intervals are much wider and less accurate than in Figure 8.4
which knew the true values of Tt.
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Figure 8.5.: Medium-term forecasted distribution of the load from June 6, 2011 to June 8, 2011
obtained by averaging the forecasted distributions of the load over the forecasted dis-
tribution of the temperature.

8.3.3. Forecasting up to two days’ horizon.

In order to forecast at a “short-term” horizon (up to two days ahead), we gain in accuracy by
considering recent lag of the temperature. We thus built another method for this purpose based on
Monte Carlo methods.

Basically, similarly to the medium-term model this method partitions the analysis into two different
layers. Both of them use the quantGAM method described in Section 8.2.3. First, we generate 800
temperature scenarios by sampling step by step (one hour ahead) the next value of the temperature.
Second, we plug the temperature scenarios into a probabilistic forecasting model of the load that
was fitted with the true values of the temperature as exogenous variable. The final prediction of
the load distribution is obtained by averaging the forecasted distributions over the 800 simulated
scenarios.

We explain below how the temperature scenarios are generated.

Generating randomly the temperature scenarios We generate the temperature scenarios
(
for

Tt and for the smoothed temperatures T (0.8)
t and T (0.95)

t

)
as follows. First, we remove the annual

seasonality by estimating the medium-term Model (8.8). Second, we consider the residual signal
et , Tt − f̂1(Toyt). Finally, we fit quantGAM so as to predict the distribution of the next residual
temperature (one hour ahead):

1.a. We fit the expected residuals et according to Model (8.12) to take into account autocorrelation
within the data:

et = α1et−1 + α2et−2 + . . .+ α48et−48 + εt . (8.12)
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Here, αi are coefficients to be estimated. Contrary to the other models, this residual analysis
is not performed per hour.

1.b. Then, we estimate the non-linear seasonality of the square error of the model. Indeed, we
observed that the variance was subject to the annual position (Toyt). Thus, we consider the
fitted errors (et − êt)2 and we fit GAM with model:(

et − êt
)2

= g1(Toyt) + εt , (8.13)

where g1 is estimated by cubic cyclic regression splines.

2. We perform a linear quantile regression (presented in Section 8.2.2) for all percentiles τ ∈
{0.01, . . . , 0.99} with covariates

Zt =
(
α̂1et−1, α̂2et−2, . . . , α̂48et−48, ĝ1(Toyt)

)
∈ R49 .

Here α̂i are the coefficients estimated in Step (1.a) and ĝ1 is the annual effect estimated by
Model (8.13). We denote by êτ,t the one hour ahead predicted τ -quantiles of the residual et.

To generate a temperature scenario for the next 48 hours, we perform sequentially (step by step)
for time ∈ {t + 1, . . . , t + 48} the following procedure: we forecast the next τ -quantiles êτ,s for all
τ ∈ {0.01, . . . , 0.99}; we sample the next residual es uniformly over the set of percentiles êτ,s; we
compute the next temperature Ts = f̂1(Toys) + es; we move to step s+ 1. The values of T (0.8)

s and
T

(0.95)
s are computed from the scenario of Ts by using Definition (8.7).
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Figure 8.6.: 800 temperature scenarios (Ts) generated for June 1, 2011 to June 2, 2011. The line in
black depicts the observed temperature.

We chose to generate 800 scenarios of the temperatures. This has proven to be fast enough and to
provide a good overview of what is possible. The generation of the temperature scenarios includes
randomness into our method. This partly explains the slight differences into the performance re-
ported in Table 8.1. Figure 8.6 plots the 800 scenarios simulated for June 1, 2011 to June 2, 2011
together with the observed temperature.

Probabilistic forecasting of the electric load (knowing the temperature in advance) Now we
model the distribution of the load as if we had access to the true values of the temperature in
advance. Once again, it is performed by fitting quantGAM described in Section 8.2.3. We train a
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separate model for each hour of the day h = 1, . . . , 24 (i.e, the times series is partitioned into 24
times series that we investigate independently). The model (Step 1.a. in Section 8.2.3) is defined
as:

Yt = f1(Tt, t) + f2(T
(0.8)
t ) + f3(T

(0.95)
t ) + f4(Toyt) + f5(t) + h

(
DayTypet

)
+ εt . (8.14)

We recall that f1, f2, . . . are smooth cubic splines to be estimated by GAM and that h a real
function. Then, we move to Step 2 of quantGAM by performing linear quantile regressions for all
quantiles τ ∈ {0.01, . . . , 0.99} (exceptionally, we skip Step 1.b.). Thus, we fit 2 376 (= 24 hours ×
99 quantiles) linear quantile regressions.

2005 2006 2007 2008 2009 2010 2011

−
40

−
20

0
20

40

f̂ 4(Toy)
f̂ 5(Trend)

Figure 8.7.: Non-linear effects of the annual seasonality f̂4(Toyt) and of the trend f̂5(t) on the load
estimated by Model (8.14)

Probabilistic forecasting of the electric load (operational forecast) However, to produce fore-
casts, once again we do not have access to the real values of the temperatures (Tt, T

(0.8)
t , and

T
(0.95)
t ). We need to substitute them with the 800 sampled scenarios of the temperatures. We ob-

tain a probabilistic forecast of the load for each scenario and we form our prediction by averaging
the forecasted distributions over all scenarios.
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Figure 8.8.: Forecasted distribution of the load from June 1, 2011 to June 2, 2011 by averaging
the distributions obtained for each individual scenario of the temperature (Tt, T

(0.8)
t ,

T
(0.95)
t ).

This forecasted distribution takes into account both the uncertainty with regard to the weather
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(captured by the temperature scenarios) and the uncertainty about the model (captured by quantGAM).
Figure 8.8 displays the forecasted distribution for June 1, and June 2, 2011. We see that the pre-
dicted confidence intervals are tight a few hours ahead (which was not the case for the medium
term forecasts displayed in Figure 8.5) and is widening with the horizon of prediction.

8.3.4. Final forecasts and results

In the end we form our forecasts for the next month by concatenating the short term forecasts
(from 1 hour to 48 hours ahead) with the medium term forecasts (from 49 hours ahead).

Figure 8.9 shows the probabilistic forecasts obtained for the month of June 2011. Figure 8.10
plots the percentage of time the observed electricity consumption Yt is smaller than the predicted
quantiles q̂τ,t according to τ ∈ [0, 1] during the year 2011. The closer the curve is from the identity
function the better. We remark that the method overestimated the consumption for most quantiles.
This can partly be explained by an unexpected drop of consumptions (e.g., end of August or mid-
September).

Table 8.1 reports for each month of the year 2011 the performance obtained by the benchmark,
the team Tololo, and the described methodology (used from March to December 2011 during the
competition).

Month Benchmark Tololo quantGAM

Jan. 18.74 10.44 10.62
Feb. 22.76 12.52 9.83
Mar. 13.22 8.27 7.90
Apr. 8.36 4.42 4.19
May. 10.92 5.90 5.87
Jun. 16.99 6.19 5.80
Jul. 13.40 7.32 8.13
Aug. 17.32 10.80 10.73
Sep. 13.84 5.45 5.46
Oct. 6.42 3.96 3.98
Nov. 10.94 6.32 6.33
Dec. 34.07 8.48 8.51

Table 8.1.: Performance of the benchmark, the team Tololo, and the method described in this
paper (quantGAM).

8.4. Probabilistic electricity price forecasting by quantGAM

We turn to the problem of electricity price forecasting. We consider the data available for the
Probabilistic Electricity Price Forecasting Track of the GEFCom2014 competition. It contains
hourly observations of the historical prices from January 1, 2011 to December 17, 2013, together
with hourly historical zonal and system load forecasts. Our goal is to forecast one day ahead (i.e., the
next 24 hours) the τ -quantiles of the electricity prices. Our performance is measured by the average
pinball scored defined in (8.6). We describe in this section a methodology based on quantGAM.
Similarly to the electricity consumption, the electricity price heavily depends on the hour of the
day and the models are hourly performed by partitioning the data into 24 independent time series.
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Figure 8.9.: Forecasted distribution of the electric load for several months of 2011.
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Figure 8.10.: Percentage of observed electric load values Yt under the predicted quantiles q̂τ,t during
the year 2011 which has been forecasted month by month.

8.4.1. Working on the data

In order to build our forecasting method, we defined below several covariates:

• Pt is the price at time t.

• P
(last)
t is the most recent lagged price available for the forecast at time t.

• FZLt and FTLt are respectively the forecasted zonal and total load.

• FZL
(γ)
t and FTL(γ)

t are exponential smoothing of the forecasted zonal (resp. total) load with
parameter γ ∈ [0, 1] (see Equation (8.7) for a definition).

• X
(max)
t (respectively X(min)

t and X(mean)
t ) is the maximum (respectively minimum and mean)

of the variable Xt (such as the price Pt or the forecasted zonal load FZLt) during the day
corresponding to observation t.

In the sequel, we will mostly use the logarithms of the above variables.

8.4.2. Probabilistic forecasting of the maximal price

In order to predict the electricity price of the following day, we aim at using the maximal price
P

(max)
t of the day to be predicted as an exogenous variable. To do so we should first provide a

forecast of P (max)
t . We describe below how to do so by using quantGAM:

1.a. We estimate the linear and non-linear effects that impact the expected maximal price by fitting
the generalized additive model:

log(P
(max)
t ) = α1 log(P

(max)
t−24 ) + α2 log(P

(max)
t−48 ) + α3 log(P

(mean)
t−24 ) + α4 log(P

(mean)
t−48 )

+ f1

(
log(FTL

(mean)
t−24 )

)
+ f2

(
log(FTL

(mean)
t )

)
+ f3

(
log(FZL

(max)
t )

)
+ f4

(
FZL

(max)
t−24

)
+ εt ,

(8.15)

where αi are linear coefficients and fj are smooth cubic splines to be estimated by α̂i and f̂j .

2. We perform a linear quantile regression to forecast the quantiles of the maximal price by using
the vector of covariates

Zt =
(
α̂1 log(P

(max)
t−24 ), α̂2 log(P

(max)
t−48 ), α̂3 log(P

(mean)
t−24 ), α̂4 log(P

(mean)
t−48 ),
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f̂1

(
log(FTL

(mean)
t−24 )

)
, f̂2

(
log(FTL

(mean)
t )

)
, f̂3

(
log(FZL

(max)
t )

)
, f̂4

(
FZL

(max)
t−24

))
.

Figure 8.11 plots the forecasted distribution of the maximal price from June 16, 2013 to June 25,
2013.
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Figure 8.11.: One day ahead forecasted distribution of the maximal price from June 16, 2011 to
June 25, 2013.

8.4.3. Probabilistic forecasting of the electricity price

We are now ready to forecast the electricity price distribution. We remarked that it was not nec-
essary to consider non-linear effects here. Therefore, we only estimated log(Pt) by fitting linear
quantile regression (see Section 8.2.2) without performing a first step to estimate non-linear effects.
We used the following vector of covariates:

Zt =
(

log(P
(last)
t ), log(P

(max)
t ), log(Pt−24), log(Pt−48), log(Pt−168), log(P

(min)
t−24 ), DayTypet,

FZL
(0.95)
t , FTL

(0.95)
t , FZL

(0.8)
t , FTL

(0.8)
t

)
.

All the covariates in Zt are available 24 hours in advance except log(P
(max)
t ). Thus, to address

this problem, we average the forecasted distribution of the price over the forecasted distribution
of the maximal price performed in Section 8.4.2. The method is similar to the one used for the
temperature forecasts at the end of Section 8.3.2. Figure 8.12 displays the forecasted distribution
and the observed prices for several days.

8.4.4. Results

We present in Table 8.2 and in Figure 8.13 the practical performance obtained by the method
described in this section, denoted quantGAM, on the days evaluated by the competition. Table 8.2
also summarizes the results obtained by the team Tololo during the competition and by the two
other methodologies quantMixt and quantGLM that will be detailed in the next sections. We note
that quantGAM is especially robust to price spikes (which occur on July 18 and July 19, 2013) and
exhibits good performance over all tested days.

During the competition, we started by using from Task 2 to Task 8 several versions of quantMixt,
then we used from Task 9 to Task 12 versions of quantGAM. For the last three tasks, that correspond
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Figure 8.12.: One day ahead forecasted distribution of the electricity price for days corresponding
to tasks 1 to 7.

to days in winter, we adopted quantGLM that is especially designed for winter. The results obtained
by Tololo and by the three methods are different. This is mostly due to the fact that during the
competition we did not use the same versions of the methods described in this paper. Indeed we
constantly changed our methodology during the competition. Due to space constraint we cannot
get into the details in this paper.

Task Date Benchmark Tololo quantGAM quantMixt quantGLM

1 Jun. 06 3.13 XX 0.72 0.85 1.87
2 Jun. 17 0.68 1.06 1.15 1.37 0.71
3 Jun. 24 8.13 1.91 1.31 1.58 3.05
4 Jul. 04 4.03 1.71 2.06 1.27 1.59
5 Jul. 09 7.97 1.45 2.67 3.31 1.57
6 Jul. 13 5.70 1.10 0.99 1.20 1.18
7 Jul. 16 12.15 2.01 2.23 2.28 5.02
8 Jul. 18 38.35 9.15 5.13 7.90 11.72
9 Jul. 19 44.23 4.68 4.80 6.45 13.27
10 Jul. 20 18.22 1.59 1.90 2.35 2.80
11 Jul. 24 31.57 0.75 0.75 1.78 1.42
12 Jul. 25 42.95 2.46 2.30 0.84 2.12
13 Dec. 06 2.86 2.96 0.82 1.03 0.86
14 Dec. 07 3.20 1.35 3.63 3.23 3.22
15 Dec. 17 22.38 3.56 3.83 4.26 2.87

Global 16.36 2.55 2.40 2.78 3.67

Table 8.2.: Performance of quantGAM (Section 8.4), quantMixt (Section 8.5), and quantGLM (Sec-
tion 8.6) together with the performance obtained by the benchmark proposed by the
competition organizers and by the team Tololo on the tested days in 2013 of the
electricity price competition. For each task the best of the results is highlighted in bold.
The average performance over all days (other than June 06) is also reported.

In the two remaining sections, we present the other methodologies that we considered for prob-
abilistic electricity price forecasting. Although their results seem to be worse than quantGAM in
Table 8.2, we think that they can be largely improved in the future.



204 CHAPTER 8. PROBABILISTIC ELECTRIC LOAD AND ELECTRICITY PRICE FORECASTING

2 4 6 8 10 12 14

2
4

6
8

10
12

Task

S
co

re

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

quantMixt
quantGAM
quantGLM
Tololo

Figure 8.13.: Performance of the different methods described in this article on the Tasks of the
electricity price competition.

8.5. Probabilistic electricity price forecasting by combining
individual predictors

We present in this section a second approach that we used during the competition to form probabilis-
tic forecast of the electricity price. We consider a methodology inspired from Nowotarski and Weron
[118]. The idea is a two steps approach: first, we build a set of individual predictors that aims at
predicting the mean of the electricity price; second, we combine these individual predictors so as
to obtain a forecast of the quantiles by combining the individual predictors.

The training set is partitioned into two pieces. A mixing set that consists of the last 30 days of the
training set (i.e., the last 30× 24 = 720 hours) is used to learn the best combination of individual
forecasters. The rest of the training set is the fitting set (data older than one month) which serves
to fit the individual models.

8.5.1. Individual Predictors

We consider 13 individual predictors that were chosen because they exhibit various behaviors with
the idea that the combining algorithm will be able to catch the best of each. We use the notations
defined in Section 8.4.1.

A first class of individual forecasters are well-known predictors that have been proven to per-
form well in electricity price forecasting. They include several autoregressive models, spike pre-
processed autoregressive models, and threshold autoregressive models described more in details
in Nowotarski and Weron [118]:

1. An autoregressive model (AR) defined as:

log(Pt) = α1 log(Pt−24) + α2 log(Pt−48) + α3 log(Pt−168)

+ α4 log(P
(min)
t−24 ) + h(DayTypet) + εt ,
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where εt (as in the other models) are i.i.d. centered Gaussian noise, αi are linear coefficient
to be estimated, and h is a real function to be estimated as in Equation (8.10).

2. An autoregressive model with forecasted electric loads as additional covariates (ARX). It is
defined as:

log(Pt) = α1 log(Pt−24) + α2 log(Pt−48) + α3 log(Pt−168) + α4 log(P
(min)
t−24 ) + α5 log(FTLt)

+ α6 log(FZLt) + h(DayTypet) + εt .

3. A threshold autoregressive model TAR defined as an extension of AR to two regimes depending
on the variation of the mean price between a day and eight days ago.

4. TARX the extension of ARX to the two regimes model.

5. Spike pre-processed autoregressive model (PAR): the idea is to pre-process the price data by
removing large spike (see the “damping scheme” presented in Weron and Misiorek 145): for
all Pt > M set P̃t = M +M log10(Pt/M) where M is a fixed parameter set to the mean price
plus three standard deviations. Then AR is fitted by substituting the prices Pt, Pt−24, . . . with
the pre-processed prices P̃t, P̃t−24, . . . .

6. PARX similar to PAR, but ARX is fitted with pre-processed prices.

The seven remaining individual forecasters are designed by considering several regression methods,
several subsets of covariates, and different sets of fitting data. More precisely we list them hereafter:

7. A linear regression (function lm in R) fitted with model:

log(Pt) = α1 log(Pt−24) + α2 log(Pt−48) + α3 log(Pt−168) + α4 log(P
(max)
t ) + α5FZL

(0.95)
t

+ α6FTL
(0.95)
t + α7FZL

(0.8)
t + α8FTL

(0.8)
t + h(DayTypet) + εt

In order to produce a forecast, P (max)
t is substituted with its forecast performed by a gener-

alized additive model with Equation (8.15). This substitution is also performed for the next
individual predictors.

8. A linear regression (lm) fitted as follows:

log(Pt) = α1 log(P
(last)
t ) + α2 log(Pt−24) + α3 log(P

(max)
t )

+ α4FTLt + α5FZLt + h(DayTypet) + εt .

9. A generalized additive model (see Section 8.2.1 for details) fitted with:

log(Pt) = f1(ToY t) + f2

(
log(Pt−24)

)
+ f3

(
log(P

(max)
t )

)
+ f4

(
log(P

(mean)
t−24 )

)
+ h(DayTypet) + εt .

We recall that f1 is a cubic cyclic regression spline, f2, f3, and f4 are cubic regression splines,
and h is some real function as in Equation (8.10).
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10. A generalized additive model fitted with:

log(Pt) = f1

(
log(Pt−24)

)
+ f2

(
log(P

(max)
t )

)
+ f3

(
log(P

(mean)
t−24 )

)
+ f4(FTLt) + f5(FZLt)

+ f6(ToY t) + h(DayTypet) + εt .

This model was only trained on Summer data (i.e., from June to August) if the day to
be predicted is in Summer itself. The idea of creating specialized forecasters in order to
obtain more diversity was investigated in Gaillard and Goude [75] in the context of electricity
consumption forecasting.

Then we considered two forecasters using random forests regression. Random forests were intro-
duced by Breiman [35] and are available in the R-package randomforest§. They are a powerful
ensemble method that builds a large number of random regression binary trees before aggregating
them, so as to improve their prediction accuracy. The process of fitting a random forests model and
using it to produce a prediction performs three steps. First it performs bagging: it creates multiple
bootstrap samples of the training set by sampling from the training set n observations uniformly
and with replacement, where n is the size of the training set. Second it builds random prediction
trees: for each bootstrap sample, it builds a corresponding binary decision tree by partitioning the
covariate space recursively in a dyadic fashion. The trees are extended very deeply in practice and
have high variance and low bias. Third it forms a prediction, by averaging the predictions of the
individual regression trees. The two random forests individual predictors are:

11. Random forests regression fitted with all covariates described in the previous models.

12. Random forests regression fitted with the same covariates used by the individual predictor 8.

Our last predictor is trained by using gradient boosted methods. Gradient boosted methods were
introduced by Friedman [72] and are implemented in the R-package gbm. It is another ensemble
method. By contrast to random forests the basis forecasters are a class of weak regression methods
(e.g., decision trees with very limited maximal depth) and are built sequentially by trying to reduce
the bias of the combined predictor. We ran the experiments by using the default parameters of the
package gbm and by optimizing the number of trees (basis forecasters) on the out-of-bag error using
the function gbm.perf. The last predictor is:

13. Gradient boosting machine fitted with the same covariates used by the individual predictor 8.

In the end we have 13 individual forecasters of the price. The exact form and number of individual
forecasters changed over time and over our submissions. For the sake of simplicity, we only presented
in this paper few predictors among those we tested. This partly explains why the results obtained
by the methods presented in this paper are different from those obtained during the competition.

8.5.2. Combining forecasts

Once the forecasters have been designed and fitted on the fitting set, we learn on the mixing set
(the last thirty days of available data, that we denote by E) how to combine them in order to
provide probabilistic forecasts. To do so, we consider the setting of online robust aggregation of
predictors (see the monograph of Cesa-Bianchi and Lugosi [43] for a nice overview) which was
proven to perform well on electricity load forecasting, see Devaine et al. [60].

§we run all experiments with default parameters of the package
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Figure 8.14.: One day ahead forecasted distribution of the electricity price for days corresponding
to tasks 1 and 2. The black line depicts the observed electricity price and the white
lines plots the individual forecasts.

We consider a version of the ML-Poly forecaster introduced in Gaillard et al. [77] because it is
fully adaptive and was proven to exhibit good performance on the electric load signal (see Gail-
lard and Goude 75). We detail it now. Let us denote for each time t by xt = (xt,1, . . . , xt,K) ∈ RK+
the forecasts of Pt produced by the K = 13 individual forecasters described in Section 8.5.1. Our
algorithm is described as Algorithm 14. For each quantile τ ∈ (0, 1), and for β > 0, it consists in per-
forming a kind of stochastic gradient descent so as to minimize in θ ∈ B1(β) , {θ ∈ RK , ‖θ‖1 6 β}
a regularized version of the average pinball loss over the mixing set: 1/(cardE)

∑
t∈E ρτ (Pt−θ>xt) .

Here, cardE denotes the number of observations in the mixing set (i.e., 24× 30 = 720 hours), and
ρτ is the pinball loss defined in Section (8.2.2).

More precisely, we set m ∈ N∗ a number of optimization steps. At each instance i ∈ {1, . . . ,m},
Algorithm 14 samples an observation ti uniformly in the mixing set E (Step 1). Then it updates
(Step 3) a weight-vector p̂i to p̂i+1 in the simplex ∆2K , {x ∈ R2K

+ :
∑

k xk = 1} in order to
improve the τ -quantile prediction of Pti by the weighted average P̂i =

∑2K
k=1 p̂i,kx̃ti,k, where for all

times t > 1,
x̃t , β

(
− xt,1, xt,1, . . . ,−xt,K , xt,K

)
.

Doing so, it can be guaranteed (see Gaillard et al. 77, Cesa-Bianchi and Lugosi 43) under i.i.d.
assumption of the data that the risk of the average weight vector p̄τ = (1/m)

∑m
i=1 p̂i is close

to the optimal risk minp∈∆2K
E
[
ρτ
(
Pt − p>x̃t

)
|xt
]
. The returned combination vector is finally θ̂τ

defined in (8.16) because θ̂>τ xt = p̄>τ x̃t. The idea of considering convex combinations of x̃t in ∆2K

in order to perform combinations of xt in the linear ball B1(β) dates back to Kivinen and Warmuth
[97].

In order to produce a forecast of the τ -quantile of Pt, we run over the mixing set E Algorithm 14
with parameters m = 5000 and β = 2 and we predict q̂t,τ =

∑K
k=1 θ̂τ,kxt,k, where xt are the

forecasts of the individual forecasters defined in Section 8.5.1. We call quantMixt this method.

8.5.3. Results

Figure 8.14 plots the forecasted price distribution together with the observed price values and the
individual forecasts for June 16 and June 17, 2013. The performance of this method is reported
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Algorithm 14: The averaged linear ML-Poly weighted average forecaster for quantile prediction

Input: τ ∈ (0, 1), β > 0, m ∈ N∗
Initialize: p̂1 =

(
1/(2K), . . . , 1/(2K)

)
∈ ∆2K

for each step i = 1, 2 . . . ,m do
1. sample ti uniformly in E
2. define for all k = {1, . . . , 2K}

x̃ti,k =
(
1{

k is even
} − 1{

k is odd
})β xti,dk/2e

and the learning rate

ηi,k =

(
1 +

∑i
s=1

(
`s(P̂s)− `s(x̃ts,k)

)2
)−1

where `s : x 7→
(
1{

Pts<P̂s
} − τ)x and P̂s = p̂>s x̃ts .

3. form the mixture p̂i+1 ∈ ∆2K component-wise by

p̂i+1,k =
ηs,k

(∑i
s=1 `s(P̂s)− `s(x̃ts,k)

)
+∑2K

j=1 ηs,j

(∑i
s=1 `s(P̂s)− `s(x̃ts,j)

)
+

∈ [0, 1]

where x+ , max{x, 0}.
end for

Return the weight vector θ̂τ ∈ [−β, β]K component-wise defined as

θ̂τ,k =
1

m

m∑
i=1

β (pi,2k − pi,2k+1) (8.16)

in Table 8.2. The performance is good except on July 18 and July 19, 2013 that correspond to
spikes in the electricity price. We remarked that this was partly due to bad predictive performance
of individual forecasts which did not detect spikes and partly due to the relative small size of
the mixing set where few electricity spikes are observed. This suggests two possible directions for
future research to improve the method. The first avenue would be to improve the set of individual
predictors. The second one would be to consider sequential versions of the individual predictors in
order to learn the combinations over the whole training set.

8.6. Kernel based quantile regression with Lasso penalty

Here we present the last method that we implemented in this competition for electricity price
forecasting. It was motivated by the fact that after twelve weeks of competition we have generated
a lot of covariates from the three original ones: total and zonal loads and prices, and we want to
take advantage of that in an automatic fashion. Here is the list of those transformations, where Xt

could be either the price Pt, the zonal load FZLt or the total load FTLt at time t:

• lagging: we consider the following lagged variables Xt−24, Xt−48, Xt−168, Xt−336, and X
(last)
t

the last available observation at the time of the forecast;

• log and log log transforms: log(xt), log
(

log(xt)
)
;
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• spike preprocessing of the price (see models TARX and ARX of Section 8.5.1).

• mean, max and min of the day corresponding to observation t: X(min)
t , X(max)

t , and X(mean)
t

(see Section 8.4.1);

• exponential smoothing with parameters γ ∈ {0.8, 0.95} defined by induction as in Equa-
tion (8.7).

All these single transformations could be coupled: for example we could take the log of a lagged
covariates or the maximum of a smoothed covariate etc. In the end by adding also the calendar
variables DayTypet we obtain d , 192 covariates that are candidates to enter into a linear quantile
regression. These covariates are potentially highly correlated. In the following we denote byXt ∈ Rd

the vector that contains all transformations of covariates. Our idea is to select among those 192
covariates the ones which produce good forecasting performance for each quantile. To this end we
propose to use a `1 selection procedure as presented in Tibshirani [136] together with a kernel
regularized regression. This approach has already been studied theoretically in Belloni and Cher-
nozhukov [23] but we did not find any existing R package. To benefit from the nice performance of
the R package glmnet (see Friedman et al. 74) we propose a two steps approach detailed hereafter.
First we fit a single `1-regression model on the mean by using glmnet with the Lasso penalty (cf.
Step 1). Then we fit a quantile regression model on the residuals of this model by using a weighted
version of the previous algorithm with weights corresponding to a Gaussian kernel centered around
each quantile (cf. Step 2).

• Step 1: we estimate the mean price by a sparse linear combination of the covariates. To do so,
we solve the optimization problem:

β̂ ∈ arg min
β∈Rd

{
n∑
t=1

(
Pt −X>t β

)2
+ λ ‖β ‖1

}

where d = 192 denotes the number of covariates, n is the number of observations in the training
set, Xt ∈ Rd is the vector of covariates, and λ > 0 is a parameter that penalizes large models.
It has to be optimized. We obtain the estimate β̂ ∈ Rd and the residual signal ε̂t , Pt−X>t β̂.

• Step 2: for each quantile τ ∈ (0, 1), we estimate a correction to add to the mean estimates
X>t β̂ in order to estimate the quantile of level τ . To achieve this, we first compute eτ the
empirical quantile of the sequence (ε̂t)t=1,...,n and the weights for all times t = 1, . . . , n:

wτ,t =
exp

(
− (ε̂t − eτ )2/h

)∑n
t=1 exp

(
− (ε̂t − eτ )2/h

)
where h > 0 is a window parameter to be optimized. Then we proceed to the optimization
problem:

β̂τ ∈ arg min
βτ∈Rd

{
n∑
t=1

wτ,t

(
ε̂t −X>t βτ

)2
+ λ

∥∥βτ ∥∥1

}
.
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• Step 3: the final quantile forecast q̂τ,t of the price at time t is then obtained by

q̂τ,t , X>t β̂︸ ︷︷ ︸
mean estimate

+ X>t β̂τ︸ ︷︷ ︸
τ -quantile correction

.

In Steps 1 and 2, the optimal penalization parameter λ is found by using 10-fold cross-validation
implemented in the glmnet package. The window parameter h has been optimized on a grid over the
last winter period (because we used this method at the end of the competition in order to predict
days in winter). As the process is time consuming, Step 2 is actually only performed for quantiles
τ ∈ {0.01, 0.99}∪{0.1, 0.2, . . . , 0.9}. The other quantiles are formed by linear interpolation between
those quantiles.

8.6.1. Results
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Figure 8.15.: One day ahead forecasted distribution by quantGLM of the electricity price for days
corresponding to tasks 13, 14, and 15.

The performance of this method (denoted quantGLM) is reported in Table 8.2. Note that the
parameter of the method were optimized on winter which may explains its bad performance of
several days in summer. Another critical point is that the covariate selection is mostly done at
Step 1 inducing potential bias for some quantile that could not be corrected at Step 2. We leave
for future research a unified algorithm for covariate selection for each quantile avoiding these kind
of bias as well as the optimization of the method in summer.

8.7. Conclusion

In the end, we proposed for the probabilistic price forecasting task three methods (quantGAM,
quantMixt, and quantGLM) that achieve good performance (cf. Table 8.2). We think that they can
be largely improved in the future. Figure 8.16 plots the percentage of time the observed electricity
price Pt is smaller than the quantiles q̂τ,t predicted by these methods according to τ ∈ (0, 1). The
closer the curve is from the identity function the better. While quantGAM and quantMixt do not
seem to be biased, quantGLM used to overestimate low quantiles and underestimate high quantiles.
Understanding this behavior may yield a possible improvement of quantGLM in the future.

For the probabilistic load forecasting task we converged to a single method (quantGAM) based on
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Figure 8.16.: Percentage of observed electric load values Pt under the predicted quantiles q̂τ,t.

generalized additive models. In addition to perform well on the load data set (see Table 8.1), it is
easy to use and offers a good interpretation of the effects that impact the electricity demand.





IV
Performance of sequential robust aggregation on

real-world data





Introduction

The key message of this last part is that the setting of online robust aggregation is universal.
Prediction with expert advice does not perform well on specific data set only. It can be applied to
multiple kinds of data with great forecasting performance.

In Chapter 4 and 8 we already considered two energy data sets. Chapter 4 shows that combining
forecasts largely improves the prediction accuracy of electric load upon the base forecasting meth-
ods. Chapter 8 gets promising results for one day ahead probabilistic forecasting of the electric
price through aggregation of expert advice.

This part is composed of two other empirical studies carried out for EDF. Chapter 9 addresses
the task of forecasting at different horizons of time (ranging from one half hour ahead to 72 hours
ahead). It builds a methodology which is successfully applied to two real world data sets: a heat load
data set and an electric load data set. In the end, Chapter 10 investigates a setting (which grows
in interest with the emergence of smart grids) where the global electric load (yt) to be predicted
can be decomposed into low-level signals (each corresponding to some sub-group of consumers).
The experts do not output forecasts of the global consumption yt but form forecasts of low-level
consumptions. We show that linear online aggregation of expert advice is still a good option for
our data in order to improve the prediction accuracy of the global load.





9
Heat load and electricity load multi-horizon forecasting by online

robust aggregation

In this empirical study, we address the task of forecasting the future heat demand on an urban
area of a city at different horizons of time going from one hour ahead to 72 hours ahead. We
develop a forecasting strategy based on aggregation of expert forecasts. In a first step, we design
various forecasting methods by using several machine learning methods (gradient boosting machine
and random forests) and nonparametric statistical models (generalized additive models and curve
linear regression). We show how, on this data set, combining these heterogeneous methods online
improves significantly the forecasting accuracy. We also consider an electric load data set and show
that the methodology used for heat load forecasting can easily be extended to electricity demand.
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9.1. Introduction

9.1.1. Context

We consider a cogeneration plant which aims at producing electricity and heat at the same time.
Every day, the operators have to know how much heat will be consumed by the nearby city so as
to plan the functioning of the plant and thus know how much electricity they will be able to sell
at the best cost. For big combined heat and power plants, the forecast in electricity production is
also required by the local network manager. The forecast of the heat demand is therefore needed
at different time horizons, from the next few hours for the daily steering of the plant up to a week
for the forecast in electricity production.

We develop a forecasting strategy based on experts aggregation. The term experts refers to the dif-
ferent forecasts obtained from various forecasting models based on machine learning algorithms such
as random forests (RF), see Breiman [35], or gradient boosting machine (GBM), see Ridgeway [127],
non-linear additive models such as Generalized Additive Models (GAMs), see Hastie and Tibshirani
[88], Wood [147], and curve linear regression models (CLR) presented in Cho et al. [50]. We consider
these experts as they previously obtained nice performance on electricity load data sets and we found
a lot of similarity between these case studies and the present application. GAMs were extensively
and successively tested for electricity forecasting in e.g., Pierrot and Goude [121], Fan and Hynd-
man [66], Ba et al. [22]; and Wood et al. [148]. GAMs were already applied on heat load forecasting
in Bissuel et al. [26]. Random forests were coupled to a GAM in Nedellec et al. [117] to derive short
term forecasts. To our knowledge, gradient boosting machines have never been applied for load fore-
casting but we chose it for the nice performance obtained in many machine learning contests (see
e.g., Conort [54]). Finally, curve linear regression models proposed a different -and complementary-
view on load data and at the same time obtained nice forecasting performance as demonstrated in
the empirical studies of Cho et al. [50, 51].

Aggregation of experts is a dynamic field of research in the machine learning community and the
empirical literature is large and diverse. Due to the massive development of new forecasting methods
and their implementation in open source softwares, practitioners have more and more access to a
large variety of forecasts and aggregating them is a natural ambition. In many recent forecasting
challenges (see e.g., the energy forecasting competition GEFCOM12 presented in Hong et al. [95],
or the well known Netflix competition studied in Paterek [119]), combining forecasts is thus a key
point that often makes the difference between competitive teams. Aggregation rules are developed
by a lot of different researchers with heterogeneous backgrounds and making an exhaustive review
is a hard task (see e.g., the one of Clemen [53]). We will focus on the framework of individual
sequences as described in Cesa-Bianchi and Lugosi [43] to design our aggregation algorithms. Due
to its very general theoretical hypothesis, this framework could easily embed our heterogeneous
experts. However, few real-world empirical studies consider this framework. One can cite for instance
climate prediction in Monteleoni et al. [115], air-quality prediction in Mallet [110], Mallet et al.
[111], quantile prediction of daily call volumes entering call centers in Biau and Patra [24], or
electricity consumption in Devaine et al. [60] and Chapter 4. To our knowledge, no publication
exists dealing with random forests and gradient boosting machines neither than aggregation of
experts for heat load forecasting. Furthermore, we extend the aggregation procedures proposed in
Devaine et al. [60] and Chapter 4 to the context of multi-horizon (from 1 hour to 72 hours ahead)
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forecasting.

In Section 9.2 we detail the our methodology and the generic statistical methods that we will use
for each data set to perform predictions. Our forecasting strategy is based on a two-step procedure:
first, we built our experts using machine learning methods (RF and GBM) and statistical methods
(GAM and CLR); then, we combine them online by using combining algorithms from the setting
of individual sequences (see Section 9.2.2). We study two data sets. The first one deals with heat
load and is analyzed in Section 9.3. The second data set aims at predicting the electricity demand
in France. It is analyzed in Section 9.4.

9.2. Methodology

In this section, we present the methodology that we used on both data sets to forecast the heat load
and the electric demand at different horizon of time. It follows a two-step approach. First, we use
four generic regression methods (that we describe in Section 9.2.1 ) to design five individual fore-
casters for each data set. Second, we combine online throughout a testing set these five forecasters
by using combining algorithms detailed in Section 9.2.2.

9.2.1. Classification and regression methods considered

We implemented several forecasting methods in R. They all rely in combinations of the following
four regression (or classification) methods: random forests, gradient boosting machine, generalized
additive models, and curve linear regression.

Random forests are a powerful ensemble method introduced by Breiman [35] that builds a large
number of random regression (or classification) binary trees before aggregating them, so as to
improve their prediction accuracy. The process of fitting a random forests model and using it to
produce a prediction performs three steps.

1. It performs bagging: it creates multiple bootstrap samples of the training set by randomly
sampling n instants in the training set with replacement, where n is the size of the training
set. About a third of the initial training set is left out in each bootstrap sample.

2. It builds random prediction trees: for each bootstrap sample, it builds a corresponding binary
decision tree. To do so, it partitions the covariate space recursively by choosing a covariate
to split and a corresponding threshold until a stopping condition is reached. The trees are
extended very deeply in practice and have high variance and low bias. For a new data point
(Xt, Yt), where Xt denotes the vector of covariates (like T pt , T oyt, . . . ), each tree forms a
prediction for Yt by averaging the outputs Ys of the past data of its bootstrap sample whose
covariates Xs belongs to the same subspace as Xt. For classification, averaging is replaced by
majority voting.

3. It aggregates the trees: to form a prediction, it averages the predictions of the trees. This
allows to reduce drastically the variance of the predictor.

In our experiment, we used the R package randomForests of Liaw and Wiener [106] that implements
Breiman’s random forests algorithm [35] for classification and regression. We used the default
parameters of the method. The parameter ntree which controls the number of trees of the forest
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is set to its default value 500 and the parameter mtry, which controls the number of variables
randomly sampled as candidates at each split is set to √p for classification and p/3 for regression,
where p denotes the total number of covariates.

Gradient boosting machine (gbm) is another ensemble method introduced by Friedman [72]. But,
by contrast to random forests it builds the basis forecasters sequentially by trying to reduce the bias
of the combined predictor. Furthermore, the basis forecasters are a class of weak regression methods
(e.g., decision trees with very limited maximal depth). They exhibit large bias but low variance.
Basically, at each optimization step i > 1, the boosting algorithm fits a new basis forecaster ĝi that
aims at predicting the residuals of the preceding forecaster f̂i−1. Then, it updates the combined
forecaster by adding the correction f̂i = f̂i−1 + ηĝi, where η > 0 is a tuning parameter. The bias of
the combined predictor will thus decrease step by step.

The learning rate η > 0 and the number of optimization steps are two parameters that have to be
tuned carefully. As their optimal values are closely related, usually one of them is fixed in advance,
and the other one optimized by performing cross-validation or by using the out-of-bag error.

In our experiments, we used the R package gbm of Ridgeway [127], which implements extensions
to Adaboost algorithm of Freund and Schapire [70] and Friedman’s gradient boosting machine,
see Friedman [72], Friedman et al. [74], Friedman [73], Hastie et al. [86]. It can be used either
for classification (by choosing a Bernoulli distribution) or for regression (by choosing a Gaussian
distribution). In all our experiments, we used the following parameters: the basis forecasters were
binary decision trees with a depth of variable interaction interaction.depth = 2 and at least
n.minobsinnode = 5 observations per node. First, we performed a large number of optimization
steps controlled by n.trees = 7000 with learning rate shrinkage = 0.005 (i.e., η = 0.005); then,
the actual number of trees used for prediction was optimized by minimizing out-of-bag error thanks
to the function gbm.perf.

Generalized additive models (gam) are a nonparametric regression method introduced by Hastie and Tib-
shirani [87]. It consists in the following statistical model:

Yi = f1(X1,i) + f2(X2,i) + ...+ fp(Xp,i) + εi

where Yi is a univariate response variable and Xq,i are the covariates that drive Yi. In the following
application, Yi will be the heat load demand, Xq,i the meteorological and calendar predictors. εi
denotes the model error at time i. The non-linear functions fq are supposed to be smooth. They
are estimated by penalized regression in a spline basis: fq(X) =

∑kq
j=1 βq,jb

q
j(X), where kq is the

dimension of the spline basis –potentially different for each effect– and bqj(X) the corresponding
spline functions. Denoting by B the matrix formed by concatenation of the bqj , Sq a smoothing
matrix depending on the spline basis, the regression parameters β are obtained by minimizing
minβ,λ ‖Y − Bβ‖2 +

∑p
q=1 λq β

TSqβ which is the ridge regression problem corresponding to the
optimization problem

n∑
i=1

(Yi −
p∑
q=1

fq(Xi))
2 +

p∑
q=1

λq

∫
‖f ′′q (x)‖2 dx ,

where the penalty parameter Λ = (λ1, ..., λp) controls the degree of smoothness of each effect -the
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higher λq the smoother fq is- and has to be optimized, minimizing the GCV –Generalized Cross
Validation– criterion. We used the R package mgcv, see Wood [147], Wood et al. [148].

Curve linear regression (clr) is a nonparametric regression method described in Cho et al.
[50, 51]. It consists in performing a data driven dimension reduction together with a data transfor-
mation in order to reduce the complex functional regression problem to a multiple linear regression.
Schematically, we consider that observations are couple of curves (Xi(.), Yi(.)) corresponding to co-
variates (e.g., temperature at the plant) and the heat load on the ith day. Yi is defined on the index
set I1 and Xi(.) on the index set I2. We model the dependency between X and Y via the curve
linear regression:

Yi(u) =

∫
I2
Xi(v)β(u, v) dv + εi(u) u ∈ I1

where β is a regression coefficient function defined on I1 × I2 and εi(u) is a mean 0 noise. As
explained in detail in Cho et al. [50], we use a dimension reduction based on SVD decomposition
of the covariance matrix between X and Y , to single out the direction upon which this 2 processes
are most correlated.

It is not implemented in an R package yet. We will describe in details in Section 9.3.3 our imple-
mentation of the method.

9.2.2. Combining algorithms

We consider the following sequential setting of robust online aggregation of predictors, see the
monograph of Cesa-Bianchi and Lugosi [43] for details. We suppose that the sequence of observations
of the heat load y1, . . . , yn of the testing set is observed step by step. At each time step t = 1, . . . , n

of the testing set, a finite number K > 1 of experts (designed in Section 9.1) propose predictions
xk,t+h of the future heat load yt+h. The combining algorithm is then asked to form a weight vector
p̂t+h ∈ RK , with knowledge of the past observations of the heat load y1, . . . , yt and the experts
predictions until time t + h. The combining algorithms predicts the weighted linear combination
of the expert forecasts ŷt+h = p̂t+h · xt+h, where · denotes the scalar product. The goal of the
combining algorithm is to minimize its final rmse over the testing set.

The literature of prediction with expert advice is rich and many combining algorithm (or aggrega-
tion rules) exist. We performed our experiments by considering two different aggregation rules: the
ridge regression forecaster (Ridge), and the polynomially weighted average forecaster with multiple
learning rates (ML-Poly). Both of them are described in the context of electricity load forecasting in
Chapter 4. We choose these algorithms among others because they achieve nice forecasting perfor-
mance and produce quite different evolutions of weights. Furthermore, ML-Poly can be calibrated
totally online based on theoretical oracle bounds.

Usually, combining algorithms provide one step ahead predictions, i.e., at horizon t+1. We detailed
below the extension of ML-Poly and Ridge to horizon t+ h for any fixed horizon h > 1.

The polynomially weighted average forecaster with multiple learning rates (ML-Poly) is intro-
duced and detailed in Section 2.3.2. Its implementation is extended in Algorithm 15 to an arbitrary
horizon of prediction h > 1. Algorithm 15 basically consists in shifting by h time steps the weight
vectors formed by Algorithm 3.
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Algorithm 15: The polynomially weighted average forecaster with multiple learning rates for
arbitrary horizon of prediction (ML-Poly)

Input: h > 1, horizon of prediction
Initialize: for t 6 h, pt = (1/K, . . . , 1/K) and R0 = (0, . . . , 0)

for each instance t = 1, 2, . . . , n− h do
1. predict ŷt = p̂t · xt and observe yt
2. define the pseudo prediction ỹt = p̂t+h−1 · xt
3. pick the learning rates

ηk,t =

(
1 +

t∑
s=1

(
`s(ỹs)− `s(xk,s)

)2)−1

where `s : x 7→ x(ys − ỹs).
4. for each expert k update the regret

Rk,t = Rk,t−1 + `t(ỹt)− `t(xk,t)

5. form the mixture p̂t+h defined component-wise by

p̂k,t+h = ηk,t (Rk,t)+

/[∑K
j=1ηj,t (Rj,t)+

]
where x+ denotes the vector of nonnegative parts of the components of x

end for

Remark 9.1. Another natural solution to produce forecasts for an horizon h > 1 consists in
replacing the pseudo predictions ỹt with the true predictions ŷt in Algorithm 15 (i.e., the definition
of ỹt in Step 2 is substituted with ỹt = ŷt). Unfortunately we observed poor practical performance
for this version. This can be intuitively explained as follows. Suppose that a weight vector p̂t+h−1

was badly updated at time step t−1. In Algorithm 15 the error of p̂t+h−1 is immediately taken into
account at time step t and corrected in the following weight vector p̂t+h (because ỹt depends on
p̂t+h−1). This is not the case if we substitute the ỹs with the ŷs. The weight vector pt+h−1 is used
for the first time in ŷt+h−1 and its correction is then only included for the definition p̂t+2h−1 (Step
5 of Algorithm 15) at time step t + h − 1. Thus the algorithm suffers a delay in its optimization
procedure which increases the variance of the errors.

Remark 9.2. Remark that there is a downside in using pseudo predictions ỹt instead of ŷt in
Algorithm 15. The algorithm overestimates its performance and behaves as if it was performing one
step ahead prediction. The learning rates ηk,t are not reduced enough. A solution (left for future
research) could be to replace the ỹt with the ŷt only in the learning-rate update (Step 3).

In Chapter 2 we proved that the performance of ML-Poly converged to the one of the best fixed
weight vector in the simplex at the speed O(n−1/2). ML-Poly is particularly interesting since its
fully adaptive and theoretical tuning of the learning parameters ηk,t achieves great performance.

Remark 9.3. We leave for future research the proofs of theoretical bounds of the regret for the
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Algorithm 16: The ridge regression forecaster for arbitrary horizon of prediction (Ridge)

Input: λ > 0, learning rate; h > 1, horizon
Initialize: for t 6 0, p̂t = (1/K, . . . , 1/K)

for each instance t = 1, 2, . . . , n− h do
1. form the mixture p̂t+h defined by

p̂t+h = arg min
u∈RK

{∑t
s=1 (ys − u · xs)2 + λ ‖u− p̂0‖22

}
2. output prediction ŷt+h = p̂t+h · xt+h

end for

extension of ML-Poly to h steps ahead prediction. We are convinced that the theoretical guarantees
are maintained since the weights output by Algorithm 15 are not to far from the ones formed by
the original version of ML-Poly (Algorithm 3). Indeed the weights are computed on almost the
same sets which differ by at most h instantaneous bounded losses. Defining generic extension of
combining algorithms to multi horizon forecasting with robust guarantees on the regret should be
an interesting direction of future work.

The ridge regression forecaster (Ridge) is presented in Algorithm 16. It was introduced in a
stochastic setting by Hoerl and Kennard [94]. It forms at each instance the linear combination of
experts minimizing a L2-regularized least-square criterion on past data. It was first studied in the
context of prediction with expert advice by Azoury and Warmuth [21] and Vovk [142] and was
proved to enjoy nice theoretical properties, namely a convergence o(n−1) to the performance of the
best fixed linear oracle.

Once again, the learning parameter λ of the ridge regression aggregation rule has to be calibrated
online. This tuning can be done using the methodology detailed in Section 2.4 of Devaine et al.
[60], which yields good practical performance but has no theoretical guarantees.

Ridge produces linear mixtures: the weights may be negative and their sum does not necessarily
equal one. ML-Poly, on the contrary, restricts itself to convex combination of experts. In other
words, it only forms weight vectors p̂t that belong to the simplex ∆K = {x ∈ RK+

∑
i xi = 1}.

While linear aggregation rules might have more flexibility to detect correlation between experts
and therefore often reach better performance, convex aggregation offers easy interpretation and
safe predictions. Indeed convex weight vectors only assign nonnegative weights to experts and their
predictions always lie in the convex hull of experts predictions. Thus if all the experts are known
to perform well, the aggregation rule will do so as well.

9.3. A first data set: forecasting heat load

9.3.1. Presentation of the data set

We consider a data set that consists of hourly measurements of the load Yt of a cogeneration plant
between October 1, 2009 and October 15, 2013. Several covariates, that are identified by operational
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teams to have an impact on the load, are also provided:

• Temperatures: T p, the outside temperature at the plant; T a, the temperature at the nearby
airport; Tw, the temperature of the water leaving the plant; T s, the setpoint temperature of
the water asked by the network operator a few hours in advance (not known at the time of
prediction);

• Calendar variables: Toy ∈ [0, 1] a variable describing the position in the year ranging from
0 at the beginning of each year to 1 at the end; D ∈ {Monday, . . . , Sunday} represents the
weekdays.

In the following, all variables are indexed by the time instant t. Our goal is to provide forecasts of
the load for different time horizons going from 1 hour to 72 hours in advance.

Figure 9.1.: The observed hourly load between October 1, 2009 to October 15, 2013.

The data set is partitioned into two pieces of approximatively two years (see Figure 9.1). The first
one, the training set, consists of 656 days from October 1, 2009 to August 31, 2011. It will be used
to fit the forecasting methods. The second one, the testing set, has 734 days from September 1,
2011 to October 15, 2013. It will be used to evaluate the performance of the forecasting methods.
Prediction accuracy is measured by the root mean square error (rmse). We clearly see on Figure
9.2a, representing the heat load according to the position in the year (Toy), a marked yearly cycle
mostly due to the outside temperature variation along the year.

Winter and summer modes. Figure 9.2b shows the heat load according to the outside temper-
ature (T p). It confirms the impact of this covariate. The main property of these data stands into
a two regimes behavior: winter and summer modes. We can observe that the relationship between
temperature and heat load is not really a function but that, for temperature ranging from 5 to 10
Celsius degrees, the same temperature value corresponds to two heat load responses depending on
the season. More precisely, two behaviors can be observed:

• winter: heavy correlation between the outside temperature and the load. The primary goal of
the plant is to product heat and electricity comes as an extra.

• summer: low correlation between the outside temperature and the load. There is little need
for heating and the cogeneration plant is idling.

Models that consider few interactions between covariates (such as generalized additive models with
univariate effects) cannot capture these two regimes in a single model, because they try to explain
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the impact of each covariate on the load separately.

Thus, to cope with these two regimes, we introduce St an exogenous discrete variable defined by St =

1Yt>100. Thus, St = 1 (resp. St = 0) indicates high (resp. low) value of the load, which corresponds
to the winter (resp. summer) regime. These two different modes are depicted in Figure 9.2. We
observe in black a linearly decreasing dependency of the heat load in winter: the colder it is outside,
the more heat needs to be produced. Gray points plot the summer mode when low correlation
between T p and Y is observed.

(a) Heat load according to the position in the
year.

(b) Heat load according to the outside tempera-
ture T p.

Figure 9.2.: Graphical representation of the two heat load regimes

Horizon of prediction. We consider several horizons of prediction going from 1 hour ahead to 72
hours ahead. In the following, the horizon of prediction is denoted by h. That is, to predict Yt, the
forecaster has access to the past observations Y1, . . . , Yt−h of the load and past observations of the
meteorological covariates. However we assume that the forecaster has access to the calendar variable
at time t and the airport temperature T a until time instant t. In case of operational forecasting, the
future values of T a should be replaced by their forecasts. Temperature at the plant T p is measured
but no forecasts were provided at this point.

The evaluation criterion. To assert the predictive accuracy of our forecasting methods, we con-
sider the root mean square error (rmse) over the testing set. It is defined for a sequence of predic-
tions Ŷ1:n = (Ŷ1, . . . , Ŷn) of the heat loads Y1:n = (Y1, . . . , Yn) as follows:

rmse
(
Ŷ1:n

)
=

√
(1/n)

∑n
t=1

(
Yt − Ŷt

)2
,

where t = 1, . . . , n are the time instants of the testing set. The regression methods considered in
this empirical study are thus optimized to minimized the square loss.

Due to confidentiality constraints, the rmses reported in Section 9.3.4 are all divided by the average
heat load over the testing set (1/n)

∑n
t=1 Yt.

The rmse was preferred to the mean absolute percentage of error (mape) because some of the heat
load values are close to zero in summer (see Figure 9.2a and 9.2b). mapes are extremely sensitive
to those values and thus quite unstable.

We propose a two-step forecasting strategy to cope with the two regimes structure of the data.
First, we form Ŝt a forecast of the cluster St in which the observation t to be predicted belongs to.
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This is done by using random forests or gradient boosting machine classifiers. Then, conditionally
to Ŝt, we propose different non-linear regression methods based on GAM, random forest, gradient
boosting machines or curve linear regression to forecast Yt.

9.3.2. Forecasting the mode: winter or summer?

Let us fix a time horizon h > 1 (in hours) of prediction. To predict the cluster St at time horizon
h, we consider the following exogenous variables defined in section 9.3.1: Dt, Toyt, T at , T

p
t−h the

last observation of the temperature at the plant; Yt−h, the last observation of the load; and Yt−H ,
the observation of the load H hours before, where H equals minx∈{24,48,72,96}{h < x}.

Then, to perform the classification, we fit either a random forests classifier or a gradient boosting
machine classifier (gbm) by plugging these covariates in the methods described in Section 9.2.1.

Figure 9.3 reports the prediction performance of both classifiers according to the horizon of pre-
diction and to the month. Random forests and gbm achieve similar performance which is about
0.5% or errors one hour ahead and 2% of errors 72 hours ahead. Besides, we see that the errors are
largely suffered during the mid-season.
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Figure 9.3.: Percentage of prediction errors of the mode (winter vs summer).

9.3.3. Five experts to forecast the heat load

We build five forecasters to produce h hours in advance the predictions of the load Yt. The pre-
dictions formed by these procedures will then be plugged in the combining algorithms described in
Section 9.2.2. Section 9.3.4 will compare the performance obtained by the different forecasters and
combining algorithms.

In the rest of this section, except when stated otherwise (CLR and residual analysis), we use 24
separate models for each hourly period. This choice is driven by our previous experiences in load
forecasting, as detailed in Pierrot and Goude [121] or Nedellec et al. [117].
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The Gam forecaster (GAM). As previously explained we propose two Generalized Additive Mod-
els corresponding to a winter and a summer regime:

• Winter model (sensibility to the temperature). For observations such that St = 1. The fore-
caster fits the following gam (see Section 9.2.1):

Yt =
7∑

k=1

αk1{Dt=k} + f1(Toyt) + f2(T at ) + f3(Yt−H , T
p
t−H) + f4(Yt−h, T

p
t−h) + εt

Here, the αk are seven real coefficients and the fi are cubic regression splines to be estimated.
• Summer model (no sensibility to the temperature). For observations such that St = 0. The

forecaster fits the following gam model:

Yt =

7∑
k=1

αk1{Dt=k} + f1(Toyt) + f2(T at ) + f3(Yt−H) + f4(Yt−h) + εt

where εt is a i.i.d. random noise and fi are smooth functions, estimated by penalized regression on
B-spline basis as proposed in Wood [147].

The GBM forecaster (GBM). Similarly to GAM, the GBM forecaster fits two different gbm
models for summer and winter regimes as described in Section 9.2.1. Both models use the same
exogenous variables as in GAM: Dt, Toyt, Yt−h, Yt−H , T

p
t−h, T

p
t−H and T at . The only difference

stands in the data considered for the estimation corresponding to St = 0 or St = 1. To produce a
forecast, the model is chosen according to the prediction of St by the classification gbm described
in Section 9.3.2.

The Random forests forecaster (RF). Unlike previous forecasters, the Random forests forecaster
fits a single randomForest model for all data as described in Section 9.2.1. In other words, RF does
not partition the data according to their mode (summer, winter). This clustering step is indeed
not needed by RF because it considers high interactions between covariates and can thus directly
capture the two regimes of the heat load in a single model.

The covariates considered are the same as for GBM, that is Dt, Toyt, Yt−h, Yt−H , T
p
t−h, T

p
t−H , and

T at .

Gam mid-term followed by short term residual analysis (GamMTCT). This forecaster, like
GAM and GBM, fits two different models according to the cluster St:

• Winter model (St = 1). First, the forecaster fits a medium term generalized additive model
following the equation Yt = f1(Toyt)+f2(T at )+εt. Then, a short-term correction is performed
assuming a short term gam structure of the medium term residuals: εt =

∑7
k=1 βk1{Dt=k} +

f1(εt−H , εt−h) + ut where ut is a i.i.d. random noise. In practice, we consider the estimated
residuals ε̂t obtained after the medium term estimation process and fit the short term gam on
the 30 × 24 = 720 last observations such that St = 1. This residual analysis, contrary to the
medium-term model, is not performed separately for each hourly period.

• Summer model (St = 0). We proceed similarly to the winter model except that the medium
term gam model is fitted using the equation Yt = f(Dt) + εt.
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Curve Linear Regression (CLR). Contrary to previous methods, CLR does not produce a single
punctual forecast Ŷt+h for an horizon h. With knowledge of the past consumption, of the future
temperature T a, and of the past temperature T p, it simultaneously forms forecasts of the electricity
consumption of the next day (i.e., the next 24 points Yt+1, . . . , Yt+24) assuming it as a curve. Thus,
data are not considered point by point but day by day and the models are not hourly performed
which is a quite different assumption on the heat load process than the other models proposed
before. For any variable X∗, we denote by Xi the vector of 24 points (X24 i+1, . . . , X24 i+24) that
correspond to day number i > 0. CLR aims at predicting sequentially the multidimensional time
series (Y i).

Figure 9.4.: The observed hourly heat loads [gray] together with the smoothed medium term model
[black] fitted by clr, see step (b).

Figure 9.5.: The residual signal (once the medium term model has been removed from the heat
loads) on which curve linear regression is performed, see step (c) of clr.

Data are partitioned into two pieces: summer days (such that mean(Si) < 0.2), and winter days
(mean(Si) > 0.2). Forecasting the next day (that is, the next 24 instances Yt+1, . . . , Yt+24) can be
done by performing the following steps:

1. we determine in which cluster (summer or winter) the next day will be belonging to by
performing random forests classification and we consider only these days in the past training
set.

∗for instance X will be replaced by Y , T p, T a, S, . . .
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2. as in Cho et al. [50], we stationnarize the signal by fitting a medium term model on the load,
see Figure 9.4. To do so, we smooth the load Yt → sYt and the temperature T at → sT at by
applying a Gaussian kernel, with a bandwidth of approximately one week (ksmooth function
in R). Then, we fit on the training data the following gam model: sYt = f1 (sT at ) + εt. We
finally remove the medium-term model from the load by considering the estimated residuals
ε̂t = Yt − sYt, see Figure 9.5.

3. the curve linear regression is performed with daily curves ε̂i, T
p
i and T ai , considering their

de-meaned and standardized counterparts ε̃t, T̃
p

i and T̃
a

i ∈ R24. We apply the method of Cho
et al. [50], where the response is ε̃i and the explanatory variables are ε̃i−1 the residuals of the
last day, T̃

p

i−1 the outside temperature of the previous day, and T̃
a

i the airport temperature
of the day. We set the parameters to r = 10 and M = 20.

Horizon of prediction. Initially, we divide the data into consecutive blocks of 24 hours: from
00:00 to 23:00 each day so that CLR provides forecasts at horizon t+1 at 00:00, t+2 at 01am,
. . . , and t+ 24 at 11pm. In order to provide forecasts at horizons t+ h for h = 1, . . . , 24 and
this for all hours in the day, we run 24 translated models: the first one with days defined from
00am to 11pm, the second one with days from 01am to 00am, . . . Unlike previous methods
CLR does not provide forecasts for more than a daily horizon. The extension to horizon t+h,
for h > 25 is left for future research.

In this section, we have thus designed five forecasters to provide predictions of the heat load. Each
of them is trained by using the training set (from October 1, 2009 to August 31, 2011) and used to
produce predictions throughout the testing set (from September 1, 2011 to October 15, 2013). By
applying aggregation rules (ML-Poly and Ridge) described in Section 9.2.2, their forecasts can be
aggregated online the mixture along the testing set. The goal is to improve further the prediction
accuracy by adapting online to the recent observations of the testing set. We report in the next
section the results obtained by the five experts (CLR, GAM, GamMTCT, GBM, and RF) and by
the two combining algorithms (ML-Poly and Ridge) on the testing set.

9.3.4. Results

Figure 9.6 plots the rmses suffered by the five experts together with the rmses of the combining
algorithms according to the horizon of prediction†. As it can be expected, the rmses are increasing
with the horizon of prediction. We observe that both combining algorithms (Ridge and ML-Poly)
achieve for all horizons much better performance than individual experts. The rmse of Ridge
is about 8% smaller than the one of GAM (the best expert), while ML-Poly yields an average
improvement of 13.2%.

Figure 9.7 depicts the results of the methods according to the month. Once again, we observe that
combining experts improves the quality of the predictions for all months. The heat load is especially
better predicted during winter and during the mid-season, seasons of interest for operators because
they are harder to predict.

Figure 9.8 and 9.9 plot the time evolution of the weights vector respectively formed by ML-Poly
and Ridge for the horizons of prediction 1 hour and 48 hours. We recall that ML-Poly only produces
weight vectors that have nonnegative weights and that sum to one, while Ridge can design negative

†We recall that due to confidentiality constraints the rmses are divided by the averaged heat load.
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(a) 1 hour ahead

(b) 24 hours ahead

(c) 48 hours ahead

Figure 9.8.: Graphical representation of the weights formed by ML-Poly along the testing set (going
from September 1, 2011 to October 15, 2012). At each time instant, the weights of the
five experts sum to 1 and are positive. The weight of each expert are assigned from
bottom to top to CLR (gray), RF (dark gray), GamMTCM (light gray), GBM (gray),
and GAM (black). Remark that CLR does not provide predictions 48 hours ahead.
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(a) 1 hour ahead

(b) 24 hours ahead

(c) 48 hours ahead

Figure 9.9.: Graphical representation of the weights formed by Ridge along the testing set (going
from September 1, 2011 to October 15, 2012.)
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weights. Thus we chose two different graphical representations of the weights. For 1 hour ahead
prediction, we have five experts, while only four experts provide predictions for horizon 48 hours
since CLR is then inactive. Ridge exhibits weights that are more stable over time which is important
for operators who are in favor of stability and easy interpretation. However, we see on Figure 9.8
that the relative volatility of the weights produced by ML-Poly allows the algorithm to retrieve
seasonality pattern. Some experts, like CLR, are better during winter, while others are better during
summer.

Furthermore, it is interesting to point out that the weights assigned to the experts are quite different
one hour ahead in comparison to 48 hours ahead. The strength of the sequential aggregation rules
is to retrieve in a fully automatic online fashion the best possible weight combination.

9.4. A second data set: forecasting electricity consumption

To optimize the production, the operational team of EDF needs forecasts at different horizons of
time. The goal of this section is to provide such forecasts of the electricity demand from a half-hour
ahead to 48 hours ahead. To do so, we reproduce the methodology used to forecast the heat load
and we adapt it to a second data set which corresponds to an updated version of the one analyzed
in Chapter 4.

First, we design five forecasting methods by adapting the methods used in Section 9.3.3 for heat load
forecasting. In the same way, we use gradient boosting machine, random forest, general additive
models, and curve linear regression. Then, we produce our final forecasts by combining online these
methods.

9.4.1. Presentation of the data set

The data set consists of half-hourly measurements of the total electricity consumption of the EDF
market in France from September 6, 2007 to July 27, 2013. We denote by Yt the electric demand
at time t > 1 (all variables are indexed by t the time instant of the observation). It also contains
several covariates that were shown to impact the electricity demand. We list below several covariates
(or transformations of covariates) that are used in our model. The choices of these covariates and
transformations were performed by using a cross validated approach, we refer to Pichavant [120]
for details.

Meteorological covariates. Tt is an average of the temperatures in France; T (α)
t is an exponential

smoothing of the temperature defined for α ∈ [0, 1] by induction as:

T
(α)
t = (1− α)Tt + αT

(α)
t−1 ;

T
(max)
t and T

(min)
t are respectively the maximum and the minimum daily smoothed temperature

T
(α)
t , with smoothing parameter α = 0.996; we also define ∆t = T

(0.8)
t −T (0.8)

t−24 the difference between
the smoothed temperature at time t and the one at time t − 24 (i.e., 12 hours before); Wt is an
average of the wind velocity in France; and Ct denotes the cloud cover.

Calendar covariates. Toyt ∈ [0, 1] (Time of year) is a cyclic variable that indicates the annual
position and repeats each year. It is each year linearly increasing over time going from 0 on January



234 CHAPTER 9. HEAT LOAD AND ELECTRICITY LOAD MULTI-HORIZON FORECASTING

Figure 9.10.: Electric load according to the temperature.

1 at 00am to 1 on December 31 at 12pm, each half-hour having a different value. Dt is a factorial
variable with 23 levels corresponding to different types of day (such as Monday, Tuesday,. . . ) and to
unusual days (holidays, daylight saving time). This choice was driven by our expertise on electricity
load data (see e.g., Goude et al. [81]). We also denote by Mt the month of observation t. It is a
categorical variable that can take 12 values (January, February,. . . ).

We excluded from the data unusual days such as public holidays (the day itself, as well as the days
before and after it), daylight saving days, winter holidays, and summer holidays. The data then
contains 1 623 days (each of them consists of 48 half-hourly observations).

We divide the remaining data set into two sets. The first set covers the period from September 6,
2007 to August 31, 2012. We call it the training set and we use it to design and to fit the experts.
Each expert provides then forecasts throughout the second set that we call the testing set. This
second set ranges from September 1, 2012 to July 27, 2013. We use it to evaluate the performance
of the experts and of the considered combining methods.

There is a great difference with the heat load data set: we do not observe a two regimes behavior and
the relationship between temperature and electric demand can here be modeled by a single function
(as shown in Figure 9.10). Therefore, we will consider here a single regime and the forecasting
methods will not need to determine the regime first.

9.4.2. Five experts to forecast the electric load

We detail now the five forecasting methods that we implemented to forecast the electric demand.
We used the same statistical methods as the ones presented in Section 9.3.3. We adapted them to
our new data set. Once again, because the electric consumption heavily depends on the hour of
the day, the data is parsed into 48 independent time series (one for each half hour of the day) and
we train 48 separate half-hourly models unless stated otherwise (CLR and residual analysis). Let
h ∈ {1, . . . , 48} be the horizon of prediction in half-hours. We define H def

= min
{
x ∈ {48, 96, 144} :

x > h
}
. We list below the five experts that we designed to predict h half-hours ahead.

The Gam forecaster (GAM). We consider the following Generalized Additive Model that is
inspired from the medium term forecaster designed by Pichavant [120] and analyzed in Thouvenot
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et al. [135] :

Yt = g1(Dt) + g2(Mt)∆Tt + f1(Toyt) + f2(t) + f3(Nt) + f4(Wt) + f5(Tt) + f6(t1{Tt615})

+ f7(T
(0.8)
t ) + f8

(
T

(max)
t

)
+ f9

(
T

(min)
t

)
+ f10(Yt−H) + f11(Yt−h) + εt (9.1)

where εt is a i.i.d. Gaussian noise with zero mean, fis are smooth functions that are estimated
by penalized regression on B-spline basis as proposed in Wood [147] (see Section 8.2.1 for slightly
more details), and g1 and g2 are two real functions that respectively take 23 and 12 values (i.e., one
coefficient for each category of Dt for g1 and one coefficient for each category of Mt for g2). Each
of these terms aims at modeling an effect. For instance, f1(Toyt) estimates the annual seasonality,
f2(t) estimates the trend, and f6(t1{Tt615}) estimates the heating trend.

The gbm forecaster (GBM). It fits a gbm model (see Section 9.2.1) by using the same exogenous
variables as in the Gam forecaster above (see Equation (9.1)). We recall that the model is fitted by
using the default parameters of the R-package gbm and by optimizing the number of trees on the
out-of-bag error by using the function gbm.perf.

The Random forest forecaster (RF). We fit a random forest regression (see Section 9.2.1) with
the same covariates (see Equation (9.1)) and by using the default parameters of the R-package
randomForest.

Gam mid-term followed by short term residual analysis (GamMTCT). First, the forecaster fits
a medium term generalized additive model by removing the recent lagged electricity consumptions
from Model (9.1). It is defined as:

Yt = g1(Dt) + g2(Mt)∆Tt + f1(Toyt) + f2(t) + f3(Nt) + f4(Wt) + f5(Tt) + f6(t1{Tt615})

+ f7(T
(0.8)
t ) + f8

(
T

(max)
t

)
+ f9

(
T

(min)
t

)
+ εt

This generalized additive model corresponds to the one analyzed in Pichavant [120], Thouvenot
et al. [135]. We denote by Ŷt the electric load fitted by the medium term model and by ε̂t = Yt− Ŷt
the residual signal. Then, a short-term correction is performed assuming a short term gam structure
of the medium term residuals:

ε̂t = g3(Dt) + f(ε̂t−H , ε̂t−h) + ut

where ut is a i.i.d. random noise, f is estimated by cubic regression splines, and g3 are 23 daily
coefficients to be estimated. In practice, we consider the estimated residuals ε̂t obtained after the
medium term estimation process and fit the short term gam on the 30× 24 = 720 last observations.
This residual analysis, contrary to the medium-term model, is not performed separately for each
half-hourly period.

Curve Linear Regression (CLR). We fit CLR as explained in Cho et al. [50]. In order to provide
forecasts for horizons going from 1 hour ahead to 24 hours ahead, we use the method describe
in the end of Section 9.3.3. For horizons of prediction ranging from 25 hours ahead to 48 hours
ahead, we replace, in the process to fit the model, the residuals of the day before (i.e., the lagged
consumptions from 1 to 24 hours) with the residuals of two days before (i.e., the lagged from 25 to
48 hours).
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9.4.3. Results

We recall that the five experts designed in the previous section are fitted on the training set
ranging from September 6, 2007 to August 31, 2012. Then, each of these five experts provides
forecasts throughout the testing set, which goes from September 1, 2012 to July 27, 2013. The
expert forecasts along the testing set are used to evaluate the respective performance of each
expert and to learn online how to combine them.

Similarly to the heat load data set, we use the combining algorithms presented in Section 9.2.2:
ML-Poly displayed in Algorithm 15, and Ridge recalled in Algorithm 16.

We display in Figure 9.11 the rmses suffered by each expert and by the combining algorithms along
the testing set according to the horizon of prediction. We remark that both combining algorithms
(ML-Poly and Ridge) perform better than the best expert (which is GamMTCT) for all horizons
of predictions. Figure 9.12 plots the improvement on the accuracy of the best expert GamMTCT
obtained by ML-Poly and Ridge. We see that the improvement decreases from more than 15% for
very short horizons to approximatively 1% for a horizon of 48 hours. Though the improvement is
not extremely important for large horizons the combining algorithms are fully automatic online
methods to estimate online the best expert. Besides, the best expert seems to be (especially for
large horizons) much better than the four other experts. Yet, both combining algorithm succeed to
improve further its prediction accuracy.
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Figure 9.11.: Performance (rmses) obtained by the five experts on the testing set together with
the performance obtained by the combining methods (ML-Poly and Ridge) according
to the horizon of prediction.

Figure 9.13 plots the rmses suffered by the methods (experts and aggregation rules) according to
the month. Once again both combining algorithms improve the performance for almost all months.

Since an expert (GamMTCM) seems to outperform all other experts a natural question is whether
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Figure 9.12.: Percentage of improvement of the rmses obtained by ML-Poly and Ridge compared
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(a) 1 half-hour ahead

(b) 12 hours ahead

(c) 24 hours ahead

Figure 9.14.: Graphical representation of the weights formed by ML-Poly along the testing set
(going from September 1, 2012 to July 27, 2013). The weight of each expert are
assigned from bottom to top to RF (gray), GBM (dark gray), GamMTCM (light
gray), GAM (gray), and CLR (black).
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(a) 1 half-hour ahead

(b) 12 hours ahead

(c) 24 hours ahead

Figure 9.15.: Graphical representation of the weights formed by Ridge along the testing set (going
from September 1, 2012 to July 27, 2013).
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the combining algorithms concentrate their weights on this single expert GamMTCT or not. We
plot in Figure 9.14 the time evolution of the weights formed by ML-Poly for three horizons of
prediction (1 hour ahead, 24 hours ahead, and 48 hours ahead). Note that for all time instants, the
weights of the five experts sum to 1 and are all positive. This is not the case with Ridge, whose
weights are displayed in Figure 9.14.

The larger the horizon of prediction is, the larger is the difference in performance between GamMTCT
and the other experts (see Figure 9.11), and the more weight is assigned to GamMTCM by ML-
Poly. We observe the same behaviors as for the heat load data set: Ridge produces weights that are
much more stable over time. However, Ridge may thus be less adaptive to a changing environment.
Furthermore, we see that both algorithms fully exploit the full set of experts and do not concentrate
only on the best expert GamMTCT.

9.5. Conclusion

All in all, the combining algorithms ML-Poly and Ridge perform well on both data sets. They can
compete online with the best convex weight combination of experts and this for all horizons of
prediction in a fully automatic fashion. They improve the accuracy (in rmses) of the best expert
by about 5% for the electric load data set to about 10% for the heat load data set. It seems that
the smaller the horizon of prediction is, the more benefit we gain in combining the methods online.



10
Aggregate sub-model predictions

In this chapter, we study an electricity load data set that consists of a global electricity consumption
signal together with consumption signals of smaller groups of customers (henceforth referred to
as low-level signals). The goal is to compare the performance attained by forecasting the global
consumption directly using only the global signal with the performance obtained by predicting all
low-level signals separately before aggregating them online with a combining algorithm. We show
a performance gain of about 7% by combining the sub-models online.
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10.1. Introduction

In this thesis we mostly use combining algorithms to perform convex aggregation between a set of
individual forecasters, where each forecaster was previously designed to predict the global signal Yt.
However, in some cases the individual forecasters may not forecast Yt so that convex aggregation
makes no sense anymore. Here we study such situation and we show that online aggregation can
still be a powerful tool.

10.1.1. Setting and motivation

We consider a sequence of nonnegative real observations (yt)t>1 that needs to be predicted online.
Now, suppose that we also observe K low-level sequences

(
y

(k)
t

)
t>1

for k = 1, . . . ,K that satisfy
for all times t > 1

yt = y
(1)
t + · · ·+ y

(k)
t .

In order to predict the observations yt, we have two alternatives. Either we design a forecasting
model that directly estimates the observations yt or we build K separate forecasting sub-models
that aim to estimate the low-level sequences

(
y

(k)
t

)
before aggregating them. The natural approach

to aggregate the sub-models is to assign a weight 1 to each of them. However, we will show in
this chapter that the weights can be learned sequentially. Many real world applications match this
setting.

Example 10.1. An example was provided by the the hierarchical load forecasting track of the
Global Energy Forecasting Competition 2012 (see Hong et al. [95]). The participants were required
to backcast and forecast hourly loads for a US area with 20 geographical zones at both the zonal
(20 time series) and global (sum of the 20 zonal level series) levels.

Example 10.2. Within the next few years, the French electric network operator will be able to
record the individual electricity consumption of all French households (i.e., 30 million of individual
loads) in real time (see Pompey et al. [122]). Exploiting such amount of information in order to
improve the forecasting accuracy of the global electric demand in France will be a real challenge.
A possible solution may be to cluster similar individual loads in groups of customers large enough
to be predictable before aggregating the predictions of all groups.

In this study we consider a less ambitious goal. The total energy consumption of the EDF Market in
France is parsed into seven signals corresponding to subgroups of customers. We show that predict-
ing each low-level signal separately before aggregating them improves the forecasting performance
of the global consumption by about 7% compared to predicting the global signal directly.

10.1.2. Data set description

The data set includes half hourly observations of the total energy consumption of the EDF Market
in France between January 1, 2008 to June 15, 2012. The data set also contains with the same
frequency the electric load of seven groups of customers listed below:

• Individuals: most of small EDF consumers (for instance households);
• NOP.SPE, TVsup7, and 32 0000: three groups of big electricity consumers (such as companies),

not sensible to temperature, and clustered by pricing policy;
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Figure 10.1.: Percentage of consumption of each group of customers.
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Figure 10.2.: Half-hourly observations of the seven individual electricity consumptions together
with the total electric demand in France in black (sum of the 7 individual series).

• ELD: some companies that locally provide electricity.
• Eurodif: the biggest EDF consumer.
• OE: foreign operators.

The rate of consumption for each group of customers is displayed in Figure 10.1. Covariates that
have been shown to impact the electric demand are also provided. They include meteorological
covariates (such as temperature, wind, and cloud cover in France), calendar covariates (such as
public holidays), and additional covariates (such as the number of French customers). The goal is
to predict a day ahead (48 half hours in advance) the electricity consumption of the global signal.

We exclude from the data set some special days corresponding to public holidays and the days
before and after them. The data set is then partitioned into two pieces. The first one, the training
set, consists of 1 136 days from January 1, 2008 to August 31, 2011. It will be used to estimate
the models. The second set is called the testing set. It contains 243 days from September 1, 2011
to June 15, 2012 and is used to evaluate the performance. Prediction accuracy is measured by the
root mean square error (rmse) and by the mean absolute percentage error (mape) (see Equations
(4.2) and (4.3)).

Figure 10.2 displays the signal for each group together with the global load (i.e., the sum of the
seven series). We observe that the electricity consumption of Individuals is dominant in the total
consumption. The six other signals are much smaller and show different behaviors.
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Figure 10.3 depicts the impact of temperature on the electricity consumptions. The dependency on
temperature is highly different between the groups: some groups are not dependent on temperature
(such as NOP.SPE, OE, or TVsup7) while others show a notable linear dependency for low tem-
peratures because of heating (such as Individuals or ELD). We hope that catching these different
dependencies into each sub-models may improve the accuracy of the global forecasting procedure.
Remark that the electricity consumption of Eurodif only takes a finite number of levels.

(a) Global (b) NOP.SPE (c) TVsup7 (d) Individuals

(e) ELD (f) OE (g) Eurodif (h) 32000

Figure 10.3.: Electric load according to temperature (ºC) for each group of consumers.

10.2. Methodology and performance

10.2.1. Methodology

We briefly describe the methodology employed in this empirical study. First we model the elec-
tric load of each customer group and the global consumption. The same generalized additive
model (10.2) is used for each time series (except for Eurodif). It is described in Section 10.A.
The eight models, also referred to as experts, are fitted using the training set. They are used to
produce forecasts throughout the testing set. In the end we show that combining the expert fore-
casts online improves the forecasting performance. The experts are aggregated by using the ridge
regression forecaster detailed in Section 9.2.2.

10.2.2. Expert performance

Table 10.1 reports the performance obtained for all low-level signals by the sub-models described
in Section 10.A. We remark that the different groups of customers present contrasting levels of



10.2. METHODOLOGY AND PERFORMANCE 245

difficulty with mapes ranging from 1.4% for the global load to 11.9% for the 32 000 group. The rmse
of the global series is smaller than the ones of the Individuals and 32 000 loads. The forecasting
errors of all groups will hopefully balance out.

Signal rmse (MW) mape (%)

Global 864 1.41
NOP.SPE 495 7.95
TVsup7 113 4.94
Individuals 1 243 3.02
ELD 133 4.71
OE 17.2 9.46
Eurodif 11.8 2.89
32 000 989 11.9

Table 10.1.: Performance obtained by the generalized additive models (10.2) on the testing set for
the different signals.

10.2.3. Uniform strategies

Since the global electric load is the sum of the other seven time series, we may want to predict it
by summing the predictions of the seven individual models. We obtain a deceiving rmse of 1 438

MW while its mape approximatively equals 2.4%. We call this forecaster Uniform7.

Uniform7 does not use the Global forecaster which reaches an excellent performance. We thus
define Uniform8 a second uniform forecaster which is the uniform average of Global and Uniform7.
Put differently, Uniform8 is a combination of the eight experts of Table 10.1 with weight vector
u0

def
= (1/2, . . . , 1/2) ∈ R8. Uniform8 achieves a rmse of 1 045 MW and a mape of 1.7% (see

Table 10.2) which is better than Uniform7 but again not satisfactory.

The performance of Uniform7 and Uniform8 are recalled in Table 10.2 together with the results of
the following combining algorithms.

10.2.4. Performance of online robust aggregation

Now, we show that we can still take benefit of the individual forecasts by learning the weighted com-
bination throughout the testing set sequentially. Since the weighted combination is not convex (i.e.,
the sum of the weights does not sum to 1) we use the ridge regression forecaster (see Algorithm 16
and Section 9.2.2 for details). Other aggregation rules are considered later on in Remark 10.4 but
they obtain poor performance.

We initialize the weight vector with u0 (we include the global forecaster in the aggregation proce-
dure). The rmse obtained along the testing set is about 805 MW which improves the performance
by 6.8% when compared to the generalized additive model applied to the global signal directly
(see Performance of Global in Table 10.1). Its mape equals 1.35%. Performance is summarized in
Table 10.2.

Ridge is compared to the best linear combination of experts constant over time computed in hind-
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Forecaster rmse (MW) mape (%)

Uniform7 1 438 2.41
Uniform8 1 045 1.74
Best linear 776 1.32
Ridge 805 1.35

Table 10.2.: Performance obtained by the uniform forecaster (uniform sum of the low level fore-
casts), the ridge regression forecaster, and the best constant linear combination of the
experts.

sight. The best linear combination equals

u(best) = (0.92, 0.07,−0.16, 0.10, 0.14, 0.36, 0.17, 0.03) ∈ R8 .

It performs slightly better than Ridge (see in Table 10.2). Global (the first expert) receives the
preponderant weight 0.92, the seven sub-models are used to correct some errors.

The weights assigned by Ridge to the experts are depicted in Figure 10.4. They are highly variable
at the beginning of the testing set and then slowly converge to u(best).

Figure 10.4.: Graphical representation of the weights formed by Ridge along the testing set.

Remark 10.3. We also tried to aggregate different sets of experts with Ridge:

• a set of seven experts: combining the seven low-level experts (i.e., we excluded the global model
from the set of experts) yields a rmse of 1 124 and a mape of 1.6%. It performs better than
Uniform7 but it is less efficient than the Global forecaster.

• a set of two experts: combining the Global model with Uniform7 suffers a rmse of 820 MW
and a mape of 1.38%.

Remark 10.4. Convex aggregation rules such as the exponentially weighted average forecaster,
the fixed-share forecaster, or ML-Poly (see Section 4.2.2 for definitions) can be considered instead
of Ridge. However to do so we need to scale the expert predictions so that they are of the same
order of magnitude as the global consumptions yt.
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More formally fix β ∈ R8
+ a scaling vector. At each time step t > 1 we denote by x(β)

t
def
=

(β1xt,1, . . . , β8xt,8) the vector of scaled predictions where xt,1 is the prediction of the global model
and xt,2, . . . , xt,8 are the low-level forecasts. The idea is to substitute in the convex aggregation
rules the expert predictions xt with the scaled ones x(β)

t . If β is well-chosen, the approximation
error

min
q∈∆8

{
T∑
t=1

(
yt − q>x(β)

t

)2
}

(10.1)

will be small and the convex algorithm may perform well. We recall that yt denotes the global
electric load observed at time t and ∆8

def
=
{
p ∈ R8

+ :
∑8

i=1 pi = 1
}
is the simplex. Unfortunately

for most natural choices of β ∈ R8 non significant improvements were observed for all convex
aggregation rules.

The best results were obtained with β = (1, 7, . . . , 7). This choice is based on the fact that the
predictions of Uniform7, Uniform8, and the Global forecaster match a convex combination q ∈ R8

of x(β)
t fixed over time. Indeed, the forecast output at time t by Uniform7 (resp. Uniform8 and

Global) equals q>x(β)
t with q = (0, 1/7, . . . , 1/7) (resp. (1/2, . . . , 1/2) and (1, 0, . . . , 0)). Therefore

the approximation error (10.1) is ensured to be small for this choice of β.

The best fixed convex combination (the solution of (10.1) with β = (1, 7, . . . , 7)) achieves a rmse
of 778 MW and a mape of 1.32%. It is similar to the performance obtained by the best fixed
linear combination of the experts (see Table 10.2). The combining forecasts obtained by ML-Poly
(described in Algorithm 15 in Chapter 9) suffer a rmse of 835 MW and a mape of 1.39%. If we
resort to the gradient trick (see 2.C.1) Fixed-Share and EWA perform extremely badly with rmses
exceeding 2 000 MW. It we do not, their predictions converge to the ones of the global forecaster
and incur the same errors.

10.2.5. Conclusion

All in all, we showed that we could improve the prediction of the global signal by aggregating low-
level forecasts online with a fully automatic procedure. Our method can surely be highly improved
in the future by designing specific forecasting models for each low-level signal.

10.A. Appendix: Underlying statistical models used by the experts

Here we give a brief description of the underlying statistical models used to create the eight experts.
With the exception of Eurodif that we will specifically detail later, we model as usual the electric
load of each group of customers with a generalized additive model. We refer the curious reader to
Section 8.2.1 and to [87, 147] for details. Because the electric load heavily depends on the hour of
the day, the generalized additive models presented below are half-hourly performed. The data is
parsed into 48 separate time series (one for each half hour of the day) and 48 separate models are
fitted. For the sake of simplicity, we do not write hereinafter the dependencies of the parameters
on the hour of the day. We estimate the consumption of each signal with the following generalized
additive model:

Yt = h(Dt)+αEt+f1(Toyt)+f2(Tt)+f3(Tt−48)+f4(Ct)+f5(Wt)+f6(Ft)+f7(t)+f8(Yt−48)+εt ,

(10.2)
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Figure 10.5.: Half-hourly observation of the electricity consumption of Eurodif from January 1,
2008 to June 15, 2012.

where εt are Gaussian i.i.d random variables with zero mean and

• Yt is the electric load of the considered group at time t (all variables are indexed by the time
of the observation);

• Dt is a factorial variable with 7 levels corresponding to different types of day. The levels are:
Monday, Tuesday-Wednesday-Thursday, Friday, Saturday, Sunday, bank holidays, and a last
category corresponding to the days before and after bank holidays. This choice was driven by
our expertise on electricity load data (see e.g., Goude et al. [81]).

• Et is a level provided by EDF that depends on the price policy of the day;
• Toyt ∈ [0, 1] (Time of year) is a cyclic variable that indicates the annual position and repeats

each year. It is each year linearly increasing over time going from 0 on January 1 at 00am to
1 on December 31 at 12pm, each hour having a different value;

• Tt, Ct, and Wt are respectively a spacial average of the temperatures, the cloud cover, and the
wind velocity in France;

• Ft denotes the number of EDF customers.

Besides, the function h corresponds to seven real coefficients (one for each level of day Dt) and
the fi are cubic regression splines that are estimated by the R-package mgcv (see Wood [147]) by
solving a regularized optimization problem. Remark that f1(Toyt) aims at estimating the annual
seasonality while f7(t) estimates the trend of the signal.

The Eurodif series is special as depicted in Figure 10.5. The generalized additive model (10.2)
performs extremely badly on this signal with a mape of 146%. This is partly due to the significant
decrease of the consumption in the testing set. As the electric consumption of Eurodif seems to
be approximatively piecewise constant over time, we forecast it by using the last available lag of
consumption. In other words, the consumption Yt at time t is predicted 48 half-hours ahead by
Yt−48. This autoregressive model suffers a mape of 2.9% (see Table 10.1).



Appendix: Package opera

The following pages are the documentation files of the package opera. The package will continue
to be developed to add new aggregation rules and new features.

Type Package
Title Online Prediction by ExpeRts Aggregation
Version 0.01
Date 2015-09-10
Author Pierre Gaillard
Maintainer Pierre Gaillard <pierre@gaillard.me>
Copyright EDF R&D 2015
Description This package implements, for regression-oriented time-

series, online predictions by combining a finite set of forecasts provided by the user.
License To be decided
Depends R (>= 3.1.0)
Imports quadprog, quantreg
Suggests testthat, caret, mgcv, survival,knitr
LazyData true
VignetteBuilder knitr

Contents
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opera-package Online Prediction by ExpeRts Aggregation

Description

For regression-oriented time-series, the package opera performs predictions by combining a
finite set of forecasts provided by the user. More formally, it considers a sequence of observations
y1, . . . , yT (such as electricity consumption or any bounded time series) to be predicted element
by element. At each time instance t > 1, a finite set of experts (basically some based forecasters)
provide predictions xk,t of the next observation yt. This package proposes several adaptive and
robust methods to combine the expert forecasts based on their past performance.

References

Cesa-Bianchi and Lugosi [43], Devaine et al. [60], and Gaillard et al. [77]

Examples

1 l i b r a r y ( ’ opera ’ ) # load the package
s e t . seed (1 )

3

# Example : f i nd the best one week ahead f o r e c a s t i n g s t r a t e gy ( weekly data )
5 # packages

l i b r a r y (mgcv)
7 l i b r a r y ( ca r e t )

9 # import data
data ( e l e c t r i c_load )

11 idx_data_t e s t <− 680 : nrow ( e l e c t r i c_load )
data_t r a i n <− e l e c t r i c_load [− idx_data_tes t , ]

13 data_t e s t <− e l e c t r i c_load [ idx_data_te s t , ]

15 # Medium term model to remove trend and s e a s on a l i t y ( us ing g en e r a l i z e d add i t i v e
model )

detrend . f i t <− gam(Load ~ s (Time , k=3) + s (NumWeek) + s (Temp) + s ( IPI ) , data =
data_t r a i n )

17 e l e c t r i c_load $Trend <− c ( p r ed i c t ( detrend . f i t ) , p r ed i c t ( detrend . f i t , newdata =
data_t e s t ) )

e l e c t r i c_load $Load . detrend <− e l e c t r i c_load $Load − e l e c t r i c_load $Trend
19

# a few graphs to d i sp l ay the data
21 attach ( data_t r a i n )

p l o t (Load , type = ’ l ’ )
23 p lo t (Temp, Load , pch = 16 , cex = 0 . 5 )

p l o t (NumWeek, Load , pch = 16 , cex = 0 . 5 )
25 p lo t (Load , Load1 , pch = 16 , cex = 0 . 5 )

a c f (Load , l ag .max = 20)
27 detach ( data_t r a i n )

29 # Build the expert f o r e c a s t s
# ##########################

31

# A gene r a l i z e d add i t i v e model
33 gam . f i t <− gam(Load ~ s ( IPI ) + s (Temp) + s (Time , k=3) +
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s ( Load1 ) + as . f a c t o r (NumWeek) , data = data_t r a i n )
35 gam . f o r e c a s t <− p r ed i c t (gam . f i t , newdata = data_t e s t )

37 # An on l i n e au t o r e g r e s s i v e model on the r e s i d u a l s o f the medium term model
ar . f o r e c a s t <− numeric ( l ength ( idx_data_t e s t ) )

39 f o r ( i in seq ( idx_data_t e s t ) ) {
ar . f i t <− ar ( e l e c t r i c_load $Load . detrend [ 1 : ( idx_data_t e s t [ i ] − 1) ] )

41 ar . f o r e c a s t [ i ] <− as . numeric ( p r ed i c t ( ar . f i t ) $pred ) + e l e c t r i c_load $Trend [ idx_
data_t e s t [ i ] ]

}
43

# A GBM
45 gbm0 . f i t <− t r a i n (Load ~ IPI + IPI_CVS + Temp + Temp1 + Time + Load1 + NumWeek,

data = data_tra in , method = ’gbm ’ )
47 gbm. f o r e c a s t <− p r ed i c t (gbm0 . f i t , newdata = data_t e s t )

49

# Aggregat ion o f expe r t s
51 ###########################

53 X <− cbind (gam . f o r e c a s t , ar . f o r e c a s t , gbm. f o r e c a s t )
colnames (X) <− c ( ’gam ’ , ’ ar ’ , ’gbm ’ )

55 Y <− data_t e s t $Load

57 matplot ( cbind (Y, X) , type = ’ l ’ , c o l = 1 : 6 , ylab = ’Weekly load ’ , x lab = ’Week ’ )

59

# How good are the expert ? Look at the o r a c l e s
61 o r a c l e . convex <− o r a c l e (Y = Y, exper t s = X, l o s s . type = ’ square ’ , model = ’

convex ’ )
p l o t ( o r a c l e . convex )

63 o r a c l e . convex

65 # Is a s i n g l e expert the best over time ? Are the re breaks ?
o r a c l e . s h i f t <− o r a c l e (Y = Y, exper t s = X, l o s s . type = ’ percentage ’ , model = ’

s h i f t i n g ’ )
67 p lo t ( o r a c l e . s h i f t )

o r a c l e . s h i f t
69

# Online aggregat ion o f the expe r t s with MLpol
71 #############################################

73 # I n i t i a l i z e the aggregat ion ru l e
m0.MLpol <− mixture (model = ’MLpol ’ , l o s s . type = ’ square ’ )

75

# Perform on l i n e p r ed i c t i o n us ing MLpol There are 3 equ iva l en t p o s s i b i l i t i e s 1)
77 # s t a r t with an empty model and update the model s e q u e n t i a l l y

m1.MLpol <− m0.MLpol
79 f o r ( i in 1 : l ength (Y) ) {

m1.MLpol <− p r ed i c t (m1.MLpol , newexperts = X[ i , ] , newY = Y[ i ] )
81 }

83 # 2) perform on l i n e p r ed i c t i on d i r e c t l y from the empty model
m2.MLpol <− p r ed i c t (m0.MLpol , newexpert = X, newY = Y, on l i n e = TRUE)

85

# 3) perform the on l i n e aggregat ion d i r e c t l y
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87 m3.MLpol <− mixture (Y = Y, exper t s = X, model = ’MLpol ’ , l o s s . type = ’ square ’ )

89 # These p r e d i c t i o n s are equ iva l en t :
i d e n t i c a l (m1.MLpol , m2.MLpol ) # TRUE

91 i d e n t i c a l (m1.MLpol , m3.MLpol ) # TRUE

93 # Display the r e s u l t s
summary(m3.MLpol )

95 p lo t (m3.MLpol )

electric_load Electricity forecasting data set

Description

Electricity forecasting data set provided by EDF R&D. It contains weekly measurements of
the total electricity consumption in France from 1996 to 2009, together with several covariates,
including temperature and industrial production indexes.

Usage

data(electric_load)

Format

'data.frame': 731 obs. of 11 variables:
$ Time : int 1 2 3 4 5 6 7 8 9 10 ...
$ Day : int 1 8 15 22 29 5 12 19 26 4 ...
$ Month : int 1 1 1 1 1 2 2 2 2 3 ...
$ Year : int 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 ...
$ NumWeek: num 0.0189 0.0377 0.0566 0.0755 0.0943 ...
$ Load : num 51306 51072 54407 56738 53877 ...
$ Load1 : num 61395 51306 51072 54407 56738 ...
$ Temp : num 5.86 8.49 4.42 3.65 2.83 ...
$ Temp1 : num -0.313 5.862 8.489 4.419 3.649 ...
$ IPI : num 90.1 90.1 90.1 90.1 90.1 88.4 88.4 88.4 88.4 93 ...
$ IPI_CVS: num 87.9 87.9 87.9 87.9 87.9 88.1 88.1 88.1 88.1 88.6 ...

Examples

1 data ( e l e c t r i c_load )
# a few graphs to d i sp l ay the data

3 attach ( e l e c t r i c_load )
p l o t (Load , type = ’ l ’ )

5 p lo t (Temp, Load , pch = 16 , cex = 0 . 5 )
p l o t (NumWeek, Load , pch = 16 , cex = 0 . 5 )

7 p lo t (Load , Load1 , pch = 16 , cex = 0 . 5 )
a c f (Load , l ag .max = 20)

9 detach ( e l e c t r i c_load )
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loss Errors suffered by a sequence of predictions

Description

The function loss computes the sequence of instantaneous losses suffered by the predictions in
x to predict the observation in y.

Usage

loss(x, y, loss.type = "square")

Arguments

x A vector of length T containing the sequence of prediction to be evaluated.
y A vector of length T that contains the observations to be predicted.
loss.type A string or a list with a component ’name’ specifying the loss function consid-

ered to evaluate the performance. It can be ’square’, ’absolute’, ’percentage’,
or ’pinball’. In the case of the pinball loss, the quantile can be provided by
assigning to loss.type a list of two elements:
name A string defining the name of the loss function (i.e., ’pinball’)
tau A number in [0,1] defining the quantile to be predicted. The default value

is 0.5 to predict the median.

Value

A vector of length T containing the sequence of instantaneous losses suffered by the prediction
x.

mixture Compute an aggregation rule

Description

The function mixture builds an aggregation rule chosen by the user. It can then be used
to predict new observations Y sequentially. If observations Y and expert advice experts are
provided, mixture is trained by predicting the observations in Y sequentially with the help
of the expert advice in experts. At each time instance t, the mixture forms a prediction by
assigning a weight to each expert and by combining the expert advice.

Usage

mixture(Y = NULL, experts = NULL, model = "MLpol", loss.type = "square",
loss.gradient = TRUE, coefficients = "Uniform", awake = NULL,
parameters = list())

Arguments

Y A vector of length T (a non negative integer) containing the observations to
be predicted sequentially in order to train the aggregation rule.
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experts A matrix containing the expert forecasts. Each column corresponds to the
predictions proposed by an expert to predict Y. It has as many columns as
there are experts. Its number of row should be T.

model A character string specifying the aggregation rule to use. Currently available
aggregation rules are:
’EWA’ Exponentially weighted average aggregation rule. A positive learning

rate eta can be chosen by the user. The bigger it is the faster the aggrega-
tion rule will learn from observations and experts performances. However,
too hight values lead to unstable weight vectors and thus unstable predic-
tions. If it is not specified, the learning rate is calibrated online. A finite
grid of potential learning rates to be optimized online can be specified with
grid.eta.

’FS’ Fixed-share aggregation rule. As for ewa, a learning rate eta can be chosen
by the user or calibrated online. The main difference with ewa aggregation
rule rely in the mixing rate alpha∈ [0, 1] which considers at each instance
a small probability alpha to have a rupture in the sequence and that the
best expert may change. Fixed-share aggregation rule can thus compete
with the best sequence of experts that can change a few times (see ), while
ewa can only compete with the best fixed expert. The mixing rate alpha is
either chosen by the user either calibrated online. Finite grids of learning
rates and mixing rates to be optimized can be specified with parameters
grid.eta and grid.alpha.

’Ridge’ Ridge regression. It minimizes at each instance a penalized criterion.
It forms at each instance linear combination of the experts’ forecasts and
can assign negative weights that not necessarily sum to one. It is useful
if the experts are biased or correlated. It cannot be used with specialized
experts. A positive regularization coefficient lambda can either be chosen
by the user or calibrated online. A finite grid of coefficient to be optimized
can be specified with a parameter grid.lambda.

’MLpol’ Polynomial Potential aggregation rule with different learning rates
for each expert. The learning rates are calibrated using theoretical values.
There are similar aggregation rules like ’BOA’ (Bernstein online Aggrega-
tion see [Wintenberger, 2014] ’MLewa’, and ’MLprod’ (see Gaillard et al.
[77])

loss.type A string or a list with a component ’name’ specifying the loss function consid-
ered to evaluate the performance. It can be ’square’, ’absolute’, ’percentage’,
or ’pinball’. In the case of the pinball loss, the quantile can be provided by
assigning to loss.type a list of two elements:
name A string defining the name of the loss function (i.e., ’pinball’)
tau A number in [0,1] defining the quantile to be predicted. The default value

is 0.5 to predict the median.
Ridge is restricted to square loss.

loss.gradient
A boolean. If TRUE (default) the aggregation rule will not be directly applied
to the loss function at hand but to a gradient version of it. The aggregation
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rule is then similar to gradient descent aggregation rule.
coefficients A vector containing the prior weights of the experts (not possible for ’MLpol’).
awake A matrix specifying the activation coefficients of the experts. Its entries lie in

[0,1]. Possible if some experts are specialists and do not always form and
suggest prediction. If the expert number k at instance t does not form any
prediction of observation Y_t, we can put awake[t,k]=0 so that the mixture
does not consider expert k in the mixture to predict Y_t.

parameters A list that contains optional parameters for the aggregation rule. If no pa-
rameters are provided, the aggregation rule is fully calibrated online. Possible
parameters are:
eta A positive number defining the learning rate. Possible if model is either

’EWA’ or ’FS’
grid.eta A vector of positive numbers defining potential learning rates for

’EWA’ of ’FS’. The learning rate is then calibrated by sequentially op-
timizing the parameter in the grid. The grid may be extended online if
needed by the aggregation rule.

gamma A positive number defining the exponential step of extension of grid.eta
when it is needed. The default value is 2.

alpha A number in [0,1] defining the mixing rate for ’FS’.
grid.alpha A vector of numbers in [0,1] defining potential mixing rates for ’FS’

to be optimized online. The grid is fixed over time. The default value is
[0.0001, 0.001, 0.01, 0.1].

lambda A positive number defining the smoothing parameter of ’Ridge’ ag-
gregation rule.

grid.lambda Similar to grid.eta for the parameter lambda.

Value

An object of class mixture that can be used to perform new predictions. It contains the param-
eters model, loss.type, loss.gradient, experts, Y, awake, and the fields
coefficients A vector of coefficients assigned to each expert to perform the next prediction.
weights A matrix of dimension c(T,N), with T the number of instances to be predicted

and N the number of experts. Each row contains the convex combination to
form the predictions

prediction A vector of length T that contains the predictions outputted by the aggregation
rule.

loss The average loss (as stated by parameter loss.type) suffered by the aggrega-
tion rule.

parameters The learning parameters chosen by the aggregation rule.
training A list that contains useful temporary information of the aggregation rule to be

updated and to perform predictions.

See Also

See and opera-vignette for a brief example about how to use the package.
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oracle Compute oracle predictions

Description

The function oracle performs a strategie that cannot be defined online (in contrast to ). It
requires in advance the knowledge of the whole data set Y and the expert advice to be well
defined. Examples of oracles are the best fixed expert, the best fixed convex combination rule,
the best linear combination rule, or the best expert that can shift a few times.

Usage

oracle(Y, experts, model = "convex", loss.type = "square", awake = NULL,
lambda = NULL, niter = NULL, ...)

Arguments

Y A vector containing the observations to be predicted.
experts A matrix containing the experts forecasts. Each column corresponds to the

predictions proposed by an expert to predict Y. It has as many columns as
there are experts.

model A character string specifying the oracle to use or a list with a component name
specifying the oracle and any additional parameter needed. Currently available
oracles are:
’expert’ The best fixed (constant over time) expert oracle.
’convex’ The best fixed convex combination (vector of non-negative weights

that sum to 1)
’linear’ The best fixed linear combination of expert
’shifting’ It computes for all number $m$ of stwitches the sequence of experts

with at most $m$ shifts that would have performed the best to predict the
sequence of observations in Y.

loss.type A string or a list with a component ’name’ specifying the loss function consid-
ered to evaluate the performance. It can be ’square’, ’absolute’, ’percentage’,
or ’pinball’. In the case of the pinball loss, the quantile can be provided by
assigning to loss.type a list of two elements:
name A string defining the name of the loss function (i.e., ’pinball’)
tau A number in [0,1] defining the quantile to be predicted. The default value

is 0.5 to predict the median.
awake A matrix specifying the activation coefficients of the experts. Its entries lie in

[0,1]. Possible if some experts are specialists and do not always form and
suggest prediction. If the expert number k at instance t does not form any
prediction of observation Y_t, we can put awake[t,k]=0 so that the mixture
does not consider expert k in the mixture to predict Y_t.

lambda A positive number used by the ’linear’ oracle only. A possible $L_2$ regular-
ization parameter for computing the linear oracle (if the design matrix is not
identifiable)
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niter A positive integer for ’convex’ and ’linear’ oracles if direct computation of
the oracle is not implemented. It defines the number of optimization steps to
perform in order to approximate the oracle (default value is 3).

... Additional parameters that are passed to function is order to perform convex
optimization (see parameter niter).

Value

An object of class ’oracle’ that contains:
loss The average loss suffered by the oracle. For the ’shifting’ oracle, it is a vector of

length T where T is the number of instance to be predicted (i.e., the length of the
sequence Y). The value of $loss(m)$ is the loss (determined by the parameter
loss.type) suffered by the best sequence of expert with at most $m-1$ shifts.

coefficients Not for the ’shifting’ oracle. A vector containing the best weight vector corre-
sponding to the oracle.

prediction Not for the ’shifting’ oracle. A vector containing the predictions of the oracle.
rmse If loss.type is the square loss (default) only. The root mean square error (i.e.,

it is the square root of loss.

predict.mixture Predict method for Mixture models

Description

Performs sequential predictions and updates of a mixture object based on new observations
and expert advice.

Usage

## S3 method for class 'mixture'
predict(object, newexperts = NULL, newY = NULL,

awake = NULL, online = TRUE, type = c("model", "response", "weights",
"all"), ...)

Arguments

object Object of class inheriting from ’mixture’
newexperts An optional matrix in which to look for expert advice with which predict. If

omitted, the past predictions of the object are returned and the object is not
updated.

newY An optional vector of observations to be predicted. If provided, it should have
the same length as the number of rows of newexperts. If omitted, the object
(i.e, the aggregation rule) is not updated.

awake An optional matrix specifying the activation coefficients of the experts. Its
entries lie in [0,1]. Possible if some experts are specialists and do not always
form and suggest prediction. If the expert number k at instance t does not
form any prediction of observation Y_t, we can put awake[t,k]=0 so that the
mixture does not consider expert k in the mixture to predict Y_t.
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online A boolean determining if the observations in newY are predicted sequentially
(by updating the object step by step) or not. If FALSE, the observations are
predicting using the object (without using any past information in newY). If
TRUE, newY and newexperts should not be null.

type Type of prediction. It can be
model return the updated version of object (using newY and newexperts).
response return the forecasts. If type is ’model’, forecasts can also be obtained

from the last values of object$prediction.
weights return the weights assigned to the expert advice to produce the fore-

casts. If type is ’model’, forecasts can also be obtained from the last rows
of object$weights.

all return a list containing ’model’, ’response’, and ’weights’.
... further arguments are ignored

Value

predict.mixture produces a vector of predictions (type = ’response’), an updated object (type
= ’model’), or a matrix of weights (type = ’weights’).
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