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Introduction: What is online learning?

Online Linear Optimization

Online Convex Optimization

Adversarial bandits

Stochastic bandits
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Classical Machine Learning

In classical supervised machine learning, the learner

1. observes training data with labels,

2. builds a program to minimize the training error

3. controls the error of new data if they are similar to the training data

→ Learning method → Prediction on test data
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Sequential Learning

In some applications, the environment may evolve over time and the data may be available

sequentially.

Spam detection: can be seen as a game between spammer and spam filters. Each trying to

fool the other one. The data is possibly adversarial.

Necessity to take a robust approach by learning as ones goes along from experiences as more

aspects of the problem are observed.

This is the goal of sequential learning (or sequential learning).
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Sequential learning

In sequential learning, we do not have any training data.

Data are acquired and treated on the fly.

Feedbacks are received and algorithms updated step by step.

⇒ ⇒ zebra ⇒ Change parameters ⇒ ⇒ . . .

This field has received a lot of attention recently because of the possible applications coming

from internet:

- ads to display,

- repeated auctions,

- spam detection,

- experts/algorithm aggregation
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Setting of an online learning problem/online convex optimization

At each time step t = 1, . . . ,T

- the player observes a context ct ∈ X (optional step)

- the player chooses an action xt ∈ K (compact decision/parameter set);

- the environment chooses a loss function ft : K → [0, 1];

- the player suffers loss ft(xt) and observes

– the losses of every actions: ft(x) for all x ∈ K → full-information feedback

– the loss of the chosen action only: ft(xt) → bandit feedback.

Goal. Minimize the cumulative loss:

L̂T
def
=

T∑
t=1

ft(xt) .
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Example: Multi-armed bandit (Thomson, 1933)

A simple stochastic model:

- K arms (actions: here price signals)

- Each arm k is associated an unknown probability distribution with mean µk

Setting: sequentially pick an arm kt and get reward Xkt ,t with mean µkt

Goal: maximize the expected cumulative reward

E
[ T∑

t=1

Xkt ,t

]
Exploration vs Exploitation trade-off.
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Bandit applications

Maximize one’s gains in casino? Hopeless . . .

Historical motivation (Thomson, 1933): clinical trials, for each patient t in a clinical study

- choose a treatment kt
- observe response to the treatment Xkt ,t

Goal: maximize the number of patient healed (or find the best treatment)

Successful because of many applications coming from Internet: recommender systems,

online advertisements,. . .
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Setting of an online learning problem – Multi-armed bandits

At each time step t = 1, . . . ,T

- the player observes a context xt ∈ X (optional step)

- the player chooses an action xt = kt ∈ K := {1, . . . ,K} (compact decision/parameter

set);

- the environment chooses a loss function ft : K → [0, 1] (by sampling the arms);

- the player suffers loss ft(xt) = 1− Xkt ,t and observes

– the losses of every actions: ft(x) for all x ∈ K → full-information feedback

– the loss of the chosen action only: ft(xt) = Xkt ,t → bandit feedback.

The goal of the player is to minimize his cumulative loss:

L̂T
def
=

T∑
t=1

ft(xt) .
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Example 2: Prediction with expert advice

There is some sequence of observations y1, . . . , yT ∈ [0, 1] to be predicted step by step with the help of

expert forecasts.

At each time step t ⩾ 1

- the environment reveals experts forecasts ct(k) for k = 1, . . . ,K

- the player chooses a weight vector pt ∈ ∆K
def
= {p ∈ [0, 1]K :

∑K
k=1 pk = 1}

(here xt is denoted pt and K = ∆K )

- the player forecasts ŷt =
∑K

k=1 pt(k)ct(k)

- the environment reveals yt ∈ [0, 1] and the player suffers loss ft(pt) = f (ŷt , yt) where

f : [0, 1]2 → [0, 1] is a loss function.

Considering K := ∆K and xt := pt , we recover the general setting. The inputs correspond to the

expert advice ct(k) that are often revealed before the learner makes his decision pt .
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Example 2: Prediction with expert advice

There is some sequence of observations y1, . . . , yT ∈ [0, 1] to be predicted step by step with the help of

expert forecasts.

At each time step t ⩾ 1

- the environment reveals experts forecasts ct(k) for k = 1, . . . ,K

- the player chooses a weight vector pt ∈ ∆K
def
= {p ∈ [0, 1]K :

∑K
k=1 pk = 1}

(here xt is denoted pt and K = ∆K )

- the player forecasts ŷt =
∑K

k=1 pt(k)ct(k)

- the environment reveals yt ∈ [0, 1] and the player suffers loss ft(pt) = f (ŷt , yt) where

f : [0, 1]2 → [0, 1] is a loss function.

Player’s performance is then measured via a loss function ft(pt) = f (ŷt , yt) which measures the

distance between the prediction ŷt and the output yt :

- squared loss f (ŷt , yt) = (ŷt − yt)
2

- absolute loss f (ŷt , yt) = |ŷt − yt |
- absolute percentage of error

f (ŷt , yt) = |ŷt − yt |/|yt |
- pinball loss.

All these loss functions are convex, which will play an important role in the analysis. 11



Example: Prediction with expert advice for electricity forecasting

Short term prediction (one day ahead) of the French electricity consumption

C
on

so
.

Mar Mer Jeu Ven Sam Dim

?

Important because electricity is hard to store.

Production Demand
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Example: Prediction with expert advice for electricity forecasting

Short term prediction (one day ahead) of the French electricity consumption

C
on

so
.

Mar Mer Jeu Ven Sam Dim

?

Many experts (statisticians or data scientists)

design prediction models:

Simultaneously, the French electricity market is evolving (electric cars,. . . )

➝ historical models are questioned

Which expert should we follow? ➝ Instead of picking one, we want to combine their

predictions.

12



Example: Prediction with expert advice for electricity forecasting

Short term prediction (one day ahead) of the French electricity consumption

C
on

so
.

Mar Mer Jeu Ven Sam Dim

Many experts (statisticians or data scientists)

design prediction models:

Simultaneously, the French electricity market is evolving (electric cars,. . . )

➝ historical models are questioned

Which expert should we follow? ➝ Instead of picking one, we want to combine their

predictions.

12



Example: Prediction with expert advice for electricity forecasting

Short term prediction (one day ahead) of the French electricity consumption

C
on

so
.

Mar Mer Jeu Ven Sam Dim

?

Combine the predictions using adaptive methods:

p1

p2

p3

Each day,

1. Assign a weight to each expert based on past performance

xt = weight vector

2. Predict the weighted average ŷt = ⟨xt , ct⟩ and suffer loss

ft(xt) =
(
yt − ŷt

)2
Goal: be as good as the best combination of expert ⟨ct , x∗⟩ on the long run.
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How to measure the performance? The regret

If the environment chooses large losses ft(x) for all decisions x ∈ K, it is impossible for the

player to ensure small cumulative loss.

→ Relative criterion: the regret of the player is the difference between the cumulative loss he

incurred and that of the best fixed decision in hindsight.

Definition (Regret)

The regret of the player with respect to a fixed parameter x∗ ∈ K after T time steps is

RegT (x
∗)

def
=

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) .

The regret (or uniform regret) is defined as RegT
def
= supx∗∈K RegT (x

∗).
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Regret decomposition

We have some approximation-estimation decomposition:

T∑
t=1

ft(xt) = inf
x∈K

T∑
t=1

ft(x)︸ ︷︷ ︸
Approximation error = how good the possible actions are.

+ RegT︸ ︷︷ ︸
Sequential estimation error of the best action

We will focus on the regret in these lectures.

The goal of the player is to ensure a sublinear regret RegT = o(T ) as T →∞ and this for any

possible sequence of losses f1, . . . , fT .

→ the average performance of the player will approach on the long term the one of the best

decision.
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Adversarial / Stochastic setting

The losses ft are unknown to the player beforehand and may be:

- Adversarial setting (lessons 1, 2, and 3): No stochastic assumption on the process

generating the losses ft . The latter are deterministic and may be chosen by some

adversary. Typically, the problem can be seen as a game between the player who aims at

optimizing with respect to x1, . . . , xT against an environment who aims at mazimizing

with respect to losst , . . . , lossT and x∗. Players’s goal is to control the quantity:

inf
x1

sup
f1

inf
x2

sup
f2

. . . inf
xT

sup
fT

sup
x∗∈K

RegT (x
∗) .

- Stochastic setting (lessons 4, 5, and 6): the losses are generated by some stochastic

process (e.g., i.i.d.). The regret bounds hold then in expectation or with high probability.
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Why a different loss at every round t?

This may be caused by many phenomena, e.g. by

- some observation to be predicted if ft(x) = f (x , yt). For instance, if the goal is to predict

the evolution of the temperature y1, . . . , yT , the latter changes over time and a prediction

x is evaluated with ft(x) = (x − yt)
2.

- noise: the environment is stochastic and the variation over time t models some noise

effect.

- a changing environment. For instance, if the player is playing a game against some

adversary that evolves and adapts to its strategy. A typical example is the case of spam

detections. If the player tries to detect spams, while some spammers (the environment)

try at the same time to fool the player with new spam strategies.
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Exercise: what about best x∗t at every round?

Regret

RegT =
T∑
t=1

ft(xt)− inf
x∗∈K

T∑
t=1

ft(x
∗)

Instead considering the regret with respect to a fixed x∗ ∈ K, one would be tempted to

minimize the quantity

Reg∗T
def
=

T∑
t=1

ft(xt)−
T∑
t=1

inf
x∈K

ft(x)

where the infimum is inside the sum.

Exercise: Show that the environment can ensure Reg∗T to be linear in T by choosing properly

the loss functions ft .
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Setting of an online learning problem/online convex optimization

At each time step t = 1, . . . ,T

- the player observes a context ct ∈ X (optional step)

- the player chooses an action xt ∈ K (compact decision/parameter set);

- the environment chooses a loss function ft : K → [0, 1];

- the player suffers loss ft(xt) and observes

– the losses of every actions: ft(x) for all x ∈ K → full-information feedback

– the loss of the chosen action only: ft(xt) → bandit feedback.

Goal. Minimize the regret

RegT
def
=

T∑
t=1

ft(xt)− inf
x∈K

T∑
t=1

ft(x)
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Online Linear Optimization

We will start with the simple case where the decision set K is the K -dimensional simplex

∆K
def
=
{
p ∈ [0, 1]K :

K∑
k=1

pk = 1
}
. (decision set)

Since the decisions xt are probability distributions in K = ∆K , in this part we will denote them

by pt instead of xt . We assume that the loss functions ft are linear

∀p ∈ K, ft(p) =
K∑

k=1

p(k)gt(k) ∈ [−1, 1] (linear loss)

where gt = (gt(1), . . . , gt(K )) ∈ [−1, 1]K is a loss vector chosen by the environment at round t.
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How to choose the weights

At round t the player needs to choose a weight vector pt ∈ ∆K .

How to choose the weights? The player should

- give more weight to actions that performed well in the past.

- not give all the weight to the current best action, otherwise it would not work (see

Exercise next).

The exponentially weighted average forecaster (EWA) also called Hedge performs this trade-off

by choosing a weight that decreases exponentially fast with the past errors.
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Introduction: What is online learning?

Online Linear Optimization

The exponentially weighted average forecaster (EWA)

Application to prediction with expert advice

Online Convex Optimization

Adversarial bandits

Stochastic bandits
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The exponentially weighted average forecaster (EWA)

The exponentially weighted average forecaster

Parameter: η > 0

Initialize: p1 =
(
1
K , . . . ,

1
K

)
For t = 1, . . . ,T

- select pt ; incur loss ft(pt) = p⊤t gt and observe gt ∈ [−1, 1]K ;
- update for all k ∈ {1, . . . ,K}

pt+1(k) =
e−η

∑t
s=1 gs (k)∑K

j=1 e
−η

∑t
s=1 gs (j)

.

23



Exercise

Consider the strategy, called “Follow The Leader” (FTL) that puts all the mass on the best

action so far:

pt ∈ argmin
p∈K

t−1∑
s=1

fs(p) . (FTL)

Exercise:

1. Show that pt(k) > 0 implies that k ∈ argminj
∑t−1

s=1 gs(j)

2. Show that the regret of FTL might be linear: i.e., there exists a sequence

g1, . . . , gT ∈ [−1, 1]K such that RegT ⩾ Ω(T ).

24



Solution

Consider the strategy, called “Follow The Leader” (FTL) that puts all the mass on the best

action so far:

pt ∈ argmin
p∈K

t−1∑
s=1

fs(p) . (FTL)

Exercise:

1. Show that pt(k) > 0 implies that k ∈ argminj
∑t−1

s=1 gs(j)

Solution

Assume that there exists k ∈ [K ] such that pt(k) > 0 and k /∈ argminj
∑t−1

s=1 gs(j). Then, there exists k ′ ̸= k

such that
∑t−1

s=1 gs(k
′) <

∑t−1
s=1 gs(k). Therefore,

t−1∑
s=1

fs(pt) =

t−1∑
s=1

K∑
j=1

ps(j)gs(j) =

t−1∑
s=1

∑
j ̸=k

ps(j)gs(j) + ps(k)

t−1∑
s=1

gs(k)

>

t−1∑
s=1

∑
j ̸=k

ps(j)gs(j) + ps(k
′)

t−1∑
s=1

gs(k) =

t−1∑
s=1

fs(qt) ,

where qt(j) = pt(j) if j /∈ {k, k ′} and qt(k) = 0 and qt(k ′) = pt(k ′) + qt(k ′). This yields a contradiction.
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Solution

Consider the strategy, called “Follow The Leader” (FTL) that puts all the mass on the best

action so far:

pt ∈ argmin
p∈K

t−1∑
s=1

fs(p) . (FTL)

Exercise:

1. Show that pt(k) > 0 implies that k ∈ argminj
∑t−1

s=1 gs(j)

2. Show that the regret of FTL might be linear: i.e., there exists a sequence

g1, . . . , gT ∈ [0, 1]K such that RegT ⩾ Ω(T ).

Solution

It suffices to choose gt(k) = 1 if pt(k) > 0 and gt(k) = 0 otherwise. The cumulative loss of FTL is T while

there exists an action with cumulative loss smaller then T/K .
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Regret guarantee for EWA

Theorem 1 (Regret bound for EWA)

Let T ⩾ 1. For all sequences of loss vectors g1, . . . , gT ∈ [−1, 1]K , EWA achieves the bound

RegT
def
=

T∑
t=1

ft(pt)− min
p∈∆K

T∑
t=1

ft(p) ⩽ η

T∑
t=1

K∑
k=1

pt(k)gt(k)
2 +

logK

η
, (1)

where we recall ft : p ∈ ∆K 7→ p⊤gt .

Therefore, for the choice η =
√

logK
T , EWA satisfies the regret bound RegT ⩽ 2

√
T logK .

This regret bound is optimal (see [1]).

Exercise: Generalize the above theorem when the losses g1, . . . , gT ∈ [−B,B]K for some

B > 0.

[1] Cesa-Bianchi and Lugosi 2006.
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Proof (Step 1 - Reformulation of the regret for linear losses)

First, we remark that by definition of ft : p 7→ p · gt we have

RegT
def
=

T∑
t=1

ft(pt)− min
p∈∆K

T∑
t=1

ft(p)

=
T∑
t=1

pt · gt − min
p∈∆K

T∑
t=1

p · gt

=
T∑
t=1

pt · gt − min
p∈∆K

K∑
k=1

T∑
t=1

p(k)gt(k) .

Now, we can see that the minimum over p ∈ ∆K is reached on a corner of the simplex.

Therefore

RegT =
T∑
t=1

pt · gt − min
1⩽k⩽K

T∑
t=1

gt(k) .
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Proof (Step 2 – Upper-bound of WT )

We denote Wt(j) = e−η
∑t

s=1 gt (j) and Wt =
∑K

j=1 Wt(j). The proof will consist in upper-bounding and

lower-bounding WT . We have

Wt =
K∑
j=1

Wt−1(j)e
−ηgt (j) ← W

(j)
t = Wt−1(j)e

−ηgt (j)

= Wt−1

K∑
j=1

Wt−1(j)

Wt−1
e−ηgt (j)

= Wt−1

K∑
j=1

pt(j)e
−ηgt (j) ← pt(j) =

e−η
∑t−1

s=1 gs (j)∑K
k=1 e

−η
∑t−1

s=1 gs (k)
=

Wt−1(j)

Wt−1

⩽ Wt−1

K∑
j=1

pt(j)
(
1− ηgt(j) + η2gt(j)

2) ← ex ⩽ 1 + x + x2 for x ⩽ 1

= Wt−1(1− ηpt · gt + η2pt · g 2
t ) ,

where we assumed in the inequality −ηgt(j) ⩽ 1 and where we denote gt = (gt(1), . . . , gt(K)),

g 2
t =

(
gt(1)

2, . . . , gt(K)2
)
and pt = (pt(1), . . . , pt(K)).
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Proof (Step 2 - Upper-bound of WT )

Now, using 1 + x ⩽ ex , we get:

Wt ⩽ Wt−1(1− ηpt · gt + η2pt · g2
t ) ⩽ Wt−1 exp

(
− ηpt · gt + η2pt · g2

t

)
.

By induction on t = 1, . . . ,T , this yields using W0 = K

WT ⩽ K exp
(
− η

T∑
t=1

pt · gt + η2
T∑
t=1

pt · g2
t

)
. (2)
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Proof (Step 3 – Lower-bound of WT )

On the other hand, upper-bounding the maximum with the sum,

exp
(
− η min

j∈[K ]

T∑
t=1

gt(j)
)
⩽

K∑
j=1

exp
(
− η

T∑
t=1

gt(j)
)
⩽ WT .

Combining the above inequality with Inequality (2) and taking the log, we get

− η min
j∈[K ]

T∑
t=1

gt(j) ⩽ −η
T∑
t=1

pt · gt + η2
T∑
t=1

pt · g2
t + logK . (3)

Dividing by η and reorganizing the terms proves the first inequality:

RegT =
T∑
t=1

pt · gt − min
1⩽j⩽K

T∑
t=1

gt(j) ⩽ η

T∑
t=1

pt · g2
t +

logK

η

Optimizing η and upper-bounding pt · g2
t ⩽ 1 concludes the second inequality.
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Regret guarantee for EWA

Theorem 1 (Regret bound for EWA)

Let T ⩾ 1. For all sequences of loss vectors g1, . . . , gT ∈ [−1, 1]K , EWA achieves the bound

RegT
def
=

T∑
t=1

ft(pt)− min
p∈∆K

T∑
t=1

ft(p) ⩽ η

T∑
t=1

K∑
k=1

pt(k)gt(k)
2 +

logK

η
, (1)

where we recall ft : p ∈ ∆K 7→ p⊤gt .

Therefore, for the choice η =
√

logK
T , EWA satisfies the regret bound RegT ⩽ 2

√
T logK .

This regret bound is optimal (see [1]).

Exercise: Generalize the above theorem when the losses g1, . . . , gT ∈ [−B,B]K for some

B > 0.

[1] Cesa-Bianchi and Lugosi 2006.
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Anytime algorithm

The previous algorithms EWA depends on a parameter η > 0 that needs to be optimized

according to K and T . For instance, for EWA using the value

η =

√
logK

T
.

The bound of Theorem 1 is only valid for horizon T .

However, the learner might not know the time horizon in advance and one might want an

algorithm with guarantees valid simultaneously for all T ⩾ 1.

We can avoid the assumption that T is known in advance, at the cost of a constant factor, by

using the so-called doubling trick.
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Anytime algorithm: the doubling trick

Whenever we reach a time step t which is a power of 2, we restart the algorithm (forgetting all

the information gained in the past) setting η to
√
logK/t. Let us denote EWA-doubling this

algorithm.

Theorem 2 (Anytime bound on the regret)

For all T ⩾ 1, the regret of EWA-doubling is then upper-bounded as:

RegT ⩽ 7
√
T logK .

The same trick can be used to turn most online algorithms into anytime algorithms (even in

more general settings: bandits, general loss,. . . ).

We can use the doubling trick whenever we have an algorithm with a regret of order O(Tα) for

some α > 0 with a known horizon T to turn it into an algorithm with a regret O(Tα) for all

T ⩾ 1.
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Proof

For simplicity we assume T = 2M+1 − 1. The regret of EWA-doubling is then upper-bounded as:

RegT =
T∑
t=1

ft(pt)− min
p∈∆K

T∑
t=1

ft(p)

⩽
T∑
t=1

ft(pt)−
M∑

m=0

min
p∈∆K

2m+1−1∑
t=2m

ft(p)

=
M∑

m=0

2m+1−1∑
t=2m

ft(pt)− min
p∈∆K

2m+1−1∑
t=2m

ft(p)︸ ︷︷ ︸
Rm

.

Now, we remark that each term Rm corresponds to the expected regret of an instance of EWA over the

2m rounds t = 2m, . . . , 2m+1 − 1 and run with the optimal parameter η =
√

logK/2m. Therefore, using

Theorem 1, we get Rm ⩽ 2
√
2m logK , which yields:

RegT ⩽
M∑

m=0

2
√

2m logK ⩽ 2(1 +
√
2)
√

2M+1 logK ⩽ 7
√

T logK .
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Anytime algorithm: time-varying parameter

Another solution is to use time-varying parameters ηt replacing T with the current value of t.

The analysis is however less straightforward.

Exercise: Prove a regret bound for the time-varying choice ηt =
√
logK/t in EWA.
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Reminder of the setting of prediction with expert advice

At each time step t ⩾ 1

- the environment reveals experts forecasts ct(k) for k = 1, . . . ,K

- the player chooses a weight vector pt ∈ ∆K
def
= {p ∈ [0, 1]K :

∑K
k=1 pk = 1}

(here xt is denoted pt and K = ∆K )

- the player forecasts ŷt =
∑K

k=1 pt(k)ct(k)

- the environment reveals yt ∈ [0, 1] and the player suffers loss ft(pt) = f (ŷt , yt) where

f : [0, 1]2 → [0, 1] is a loss function.

The goal is to minimize the regret with respect to the best expert

RegexpertT

def
=

T∑
t=1

f (ŷt , yt)− min
1⩽k⩽K

T∑
t=1

f (ct(k), yt) ,

where ŷt = pt · ct are the prediction of the algorithm and yt the observations to be predicted

sequentially.
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Reminder of the setting of prediction with expert advice

At each time step t ⩾ 1

- the environment reveals experts forecasts ct(k) for k = 1, . . . ,K

- the player chooses a weight vector pt ∈ ∆K
def
= {p ∈ [0, 1]K :

∑K
k=1 pk = 1}

(here xt is denoted pt and K = ∆K )

- the player forecasts ŷt =
∑K

k=1 pt(k)ct(k)

- the environment reveals yt ∈ [0, 1] and the player suffers loss ft(pt) = f (ŷt , yt) where

f : [0, 1]2 → [0, 1] is a loss function.

Player’s performance is then measured via a loss function ft(pt) = f (ŷt , yt) which measures the

distance between the prediction ŷt and the output yt :

- squared loss f (ŷt , yt) = (ŷt − yt)
2

- absolute loss f (ŷt , yt) = |ŷt − yt |
- absolute percentage of error

f (ŷt , yt) = |ŷt − yt |/|yt |
- pinball loss.

All these loss functions are convex, how can we apply our analysis for linear losses?
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Prediction with expert advice with convex loss function f .

We state bellow a corrolary to Theorem 1 when the loss functions f (·, ·) are convex in there first

argument.

Corollary 1 (Regret of EWA for prediction with expert advice and convex loss)

Let T ⩾ 1. Assume that the loss function f : (x , y) ∈ R× R 7→ R is convex and takes values in

[−1, 1]. Then, EWA applied with the vector vectors gt =
(
f (ct(1), yt), . . . , f (ct(K), yt)

)
∈ [−1, 1]K

has a regret upper-bounded by

RegexpertT

def
=

T∑
t=1

f (ŷt , yt)− min
1⩽k⩽K

T∑
t=1

f (ct(k), yt) ⩽ 2
√

T logK

where ŷt = pt · ct and were η > 0 is well-tuned.

Therefore, the average error of the algorithm will converge to the average error of the best expert.

This is the case for the square loss, the absolute loss or the absolute percentage of error.

39



Proof

It suffices to remark that by convexity of f (·, ·) in its first argument

RegexpertT =
T∑
t=1

f (pt · ct , yt)− min
1⩽k⩽K

T∑
t=1

f (ct(k), yt)

⩽
T∑
t=1

pt · gt − min
1⩽k⩽K

T∑
t=1

gt(k)
def
= RegT .

The result is then obtained by Theorem 1.
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Introduction: What is online learning?

Online Linear Optimization

Online Convex Optimization

Adversarial bandits

Stochastic bandits
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Introduction: What is online learning?

Online Linear Optimization

Online Convex Optimization

Online Mirror Descent and variants (EG, OGD)

Faster rate with curvature (OGD, EWA, ONS)

Adversarial bandits

Stochastic bandits
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Setting of an online learning problem/online convex optimization

At each time step t = 1, . . . ,T

- the player observes a context ct ∈ X (optional step)

- the player chooses an action xt ∈ K (compact decision/parameter set);

- the environment chooses a loss function ft : K → [0, 1];

- the player suffers loss ft(xt) and observes

– the losses of every actions: ft(x) for all x ∈ K → full-information feedback

– the loss of the chosen action only: ft(xt) → bandit feedback.

Goal. Minimize the regret

RegT
def
=

T∑
t=1

ft(xt)− inf
x∈K

T∑
t=1

ft(x)

Previously: we have seen an algorithm when ft(x) = ⟨x , gt⟩ and K = ∆K . How to generalize

for convex ft?
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From linear to convex losses

Setting: simplex decision set K = ∆K , convex and differentiable loss functions

Assumptions and notations: Actions are denoted by pt (instead of xt). The losses are

assumed to be convex and Lipschitz

∀pt ∈ K,
∥∥∇ft(pt)∥∥∞ ⩽ G∞.

We will see a simple trick, so-called the gradient trick that allows to extend the results we saw

for linear losses to convex losses.

The resulted algorithm is called the Exponentiated Gradient forecaster (EG). It consists in

playing EWA with the gradients gt = ∇ft(pt) ∈ [−G∞,G∞]K as loss vectors.

44



The gradient trick

ft(xt)

ft(xt) +∇ft(xt)⊤(x − xt)

ft(x)

For gt = ∇ft(xt), the linear loss f̃t(x) =

g⊤t x satisfies for any x ∈ K

ft(xt)−ft(x) ⩽ g⊤t (xt−x) ⩽ f̃t(xt)− f̃t(x) .

To prevent infinite regret, need finite |f̃t(x)| and hence bounds on the dual norms of the

domain and gradients

|f̃t(x)| ⩽ ∥gt∥p∥x∥q,
1

p
+

1

q
= 1 .
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Algorithm

The Exponentiated Gradient forecaster (EG)

Parameter: η > 0

Initialize: p1 =
(
1
K , . . . ,

1
K

)
For t = 1, . . . ,T

- select pt ; incur loss ft(pt) and observe ft : K → [0, 1];

- compute the gradient gt = ∇ft(pt) ∈ [−G∞,G∞]K

- update for all k ∈ {1, . . . ,K}

pt+1(k) =
e−η

∑t
s=1 gs (k)∑K

j=1 e
−η

∑t
s=1 gs (j)

.
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Regret bound of EG

Theorem 3

Let T ⩾ 1. For all sequences of convex differentiable losses f1, . . . , fT : K → R with bounded

gradient maxp∈K ∥∇ft(p)∥∞ ⩽ G∞, EWA applied with gt = ∇ft(pt) achieves the regret

bound

RegT
def
=

T∑
t=1

ft(pt)−min
p∈K

T∑
t=1

ft(p) ⩽ ηG 2
∞T +

logK

η
. (4)

Therefore, for the choice η = 1
G∞

√
logK
T , EWA satisfies the regret bound

RegT ⩽ 2G∞
√
T logK .
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Proof

1. Apply the regret bound of EWA with gt (see Theorem 1 of last class):

T∑
t=1

pt · gt − min
p∈∆K

T∑
t=1

p · gt ⩽ η
T∑
t=1

K∑
k=1

pt(k)gt(k)
2 +

logK

η
.

Remark that the theorem also holds for loss vectors gt ∈ [−G∞,G∞]K as soon as η ⩽ 1/G∞.

Upper-bounding gt(j)
2 ⩽ ∥∇ft(pt)∥2∞ ⩽ G 2

∞, substituting gt = ∇ft(pt), this yields for all p ∈ ∆K

T∑
t=1

pt · ∇ft(pt)− p · ∇ft(pt) ⩽ ηTG 2
∞ +

logK

η
.

2. Gradient inequality: by convexity of the losses

ft(pt)− ft(p) ⩽ (pt − p) · ∇ft(pt) ,

which yields
T∑
t=1

ft(pt)− ft(p) ⩽ ηTG 2
∞ +

logK

η
.

3. Optimize η: η = 1
G∞

√
log K
T

.
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Example: Prediction with expert advice (continued)

Setting: A sequence of observations y1, . . . , yT ∈ [0, 1] is to be predicted with the help of K

expert advice ct(k) ∈ [0, 1] for 1 ⩽ k ⩽ K . The learner predict ŷt =
∑K

k=1 pt(k)ct(k) and

suffers a loss f (ŷt , yt).

If the loss function is convex and Lipschitz in its first argument, we can apply Theorem 3 with

ft : p 7→ f (p · ct , yt).

For instance, with the absolute loss, G∞ = 1 and EG satisfies:

T∑
t=1

|ŷt − yt | −min
p∈K

T∑
t=1

∣∣∣p · ct − yt

∣∣∣ ⩽ 2
√

T logK .

Hence, on the long run we perform as good as the best convex combination of the experts

which may outperform the best expert.
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Online Gradient Descent (OGD) [2]

Setting: convex differentiable Lipschitz loss function, convex and compact decision set K

Online Gradient Descent (OGD)

Parameter: η > 0

Initialize: x1 ∈ K arbitrarily chosen

For t = 1, . . . ,T

- select xt ; incur loss ft(xt) and observe ft : K → [0, 1];

- compute the gradient ∇ft(xt)
- update

xt+1 = ProjK

(
xt − η∇ft(xt)

)
.

where ProjK is the Euclidean projection onto K.

[2] Zinkevich 2003.
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Regret bound for OGD

Online Gradient Descent

xt+1 ← ProjK (xt − η∇ft(xt))

Theorem 4 (Regret of OGD)

Let D,G , η > 0. Assume that maxx,x′∈K ∥x − x ′∥ ⩽ D and. Then for any sequence f1, . . . , fT
of convex differentiable loss functions such that maxx∈K ∥∇ft(x)∥ ⩽ G, the regret of OGD

satisfies
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ⩽
D2

2η
+
η

2
G 2T .

In particular, for η = D
G
√
T
, we have RegT ⩽ DG

√
T.
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Comparison of EG and OGD

Assume that K = ∆K is the simplex and the loss functions are sub-differentiable convex

functions with ∥∇ft∥∞ ⩽ G∞. Then both EG and OGD are possible algorithms (see

Theorems 3 and 12).

We saw in Theorem 3 that EG has a regret bound RegT ⩽ 2G∞
√
T logK . In this case, for all

p, p′ ∈ ∆K

∥p − p′∥ =
K∑

k=1

(
p(i)− p′(i)

)2
⩽

K∑
i=1

∣∣p(i)− p′(i)
∣∣ ⩽ K∑

i=1

p(i) + p′(i) = 2 ,

and ∥∇ft(p)∥ ⩽
√
K∥∇ft(p)∥∞ ⩽

√
KG∞. Therefore, the regret of OGD is upper-bounded by

Rt ⩽ G∞
√
2KT . Thus

EG: RegT ⩽ 2G∞
√
T logK and OGD: RegT ⩽ G

√
2T ⩽ G∞

√
2KT .

The dependence on K of OGD is suboptimal in this case. This is solved by OMD, a

generalization of both algorithms.
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Regret bound for OGD

Online Gradient Descent

xt+1 ← ProjK (xt − η∇ft(xt))

Theorem 4 (Regret of OGD)

Let D,G , η > 0. Assume that maxx,x′∈K ∥x − x ′∥ ⩽ D and. Then for any sequence f1, . . . , fT
of convex differentiable loss functions such that maxx∈K ∥∇ft(x)∥ ⩽ G, the regret of OGD

satisfies
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ⩽
D2

2η
+
η

2
G 2T .

In particular, for η = D
G
√
T
, we have RegT ⩽ DG

√
T.
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Proof (Step 1)

Recall the update of OGD:

OGD : xt+1 ← ProjK
(
xt − η∇ft(xt)︸ ︷︷ ︸

zt

)

1. Upper-bound the regret with gradient inequality: by convexity

RegT
def
=

T∑
t=1

ft(xt)− ft(x
∗)

Convexity
⩽

T∑
t=1

⟨∇ft(xt), xt − x∗⟩
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Proof (Step 2)

2. Get a telescoping sum:

∥∥xt+1 − x∗
∥∥2 Projection

⩽
∥∥zt − x∗

∥∥2
=
∥∥xt − η∇ft(xt)− x∗

∥∥2
=
∥∥xt − x∗

∥∥2 + η2
∥∥∇ft(xt)∥∥2 − 2η⟨∇ft(xt), xt − x∗⟩

xt+1 ← ProjK
(
xt − η∇ft(xt)︸ ︷︷ ︸

zt

)

Thus,

⟨∇ft(xt), xt − x∗⟩ ⩽ 1

2η

(∥∥xt − x∗
∥∥2 − ∥∥xt+1 − x∗

∥∥2)+ η

2

∥∥∇ft(xt)∥∥2
Summing over t = 1, . . . ,T and it telescopes

RegT ⩽
1

2η

(∥∥x1 − x∗
∥∥2 −�������∥∥xT+1 − x∗

∥∥2)+ η

2
G 2T

⩽
D2

2η
+
ηG 2T

2
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Exercises

Exercise: Prove an upper-bound on the regret of OGD

a) when η is calibrated with a doubling trick.

b) when η is calibrated using a time-varying parameter ηt = D/(G
√
t)

Exercise: Prove an upper-bound on the regret of OGD with respect to any sequence of points

x∗1 , . . . , x
∗
t ∈ K such that

∑T
t=2 ∥x∗t − x∗t−1∥ ⩽ X

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ⩽ . . .
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Online Mirror Descent (OMD)

Generalization of OGD to better exploit the geometry of the decision space K.

OMD is the online counterpart of the Mirror Descent algorithm from convex optimization.

Gradient Descent updates are performed into a dual space defined by a function ψ : K → R
called mirror map. The goal is to transform the decision space into one more suited to

Euclidean geometry.

K
xt

xt+1

∇ψ(xt)

∇ψ(xt)− ηt∇ft(xt)

∇ψ

∇ψ∗
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Bregman divergence

Definition (Bregman divergence)

For any continuously differentiable convex function ψ, the Bregman divergence with respect

to ψ is defined as

Dψ(x , y) ⩽ ψ(x)− ψ(y)−∇ψ(y) · (x − y) ∀x , y ∈ K .

It is the difference between the value

of the regularization function at x and

the value of its first order Taylor ap-

proximation.

ψ(x)

ψ(y)

xy

ψ(y) + ⟨∇ψ(y), x − y⟩

Dψ(x , y)
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Online Mirror Descent (OMD) – Lazy and agile versions

Online Mirror Descent (OMD)

Parameters: η > 0, mirror map ψ

Initialize: x1 ∈ K, z1 = x1

For t = 1, . . . ,T

- select xt ; incur loss ft(xt) and observe ft : K → [0, 1]; compute the gradient ∇ft(xt)
- update zt such that

∇ψ(zt+1) = ∇ψ(xt)− η∇ft(xt) ← agile version

∇ψ(zt+1) = ∇ψ(zt)− η∇ft(xt) ← lazy version

- project according to the Bregman divergence

xt+1 ∈ argmin
x∈K

Dψ(x , zt+1) .

Main difference: the lazy version performs all gradient steps in the dual space before computing the

projection over K to form predictions xt , while the agile version alternates projections and gradient

steps in the dual space. 59



Example: OMD (agile version) with Euclidean regularization = OGD

OGD : xt+1 ← ProjK
(
xt − η∇ft(xt)

)
OMD :

∇ψ(zt+1) = ∇ψ(xt)− η∇ft(xt)

xt+1 ∈ argminx∈K Dψ(x , zt+1)

If K ⊂ Rd , we can choose ψ(x) = 1
2∥x∥

2.

Then

∇ψ(x) = x and Dψ(x , y) =
1

2
∥x − y∥2 .

Therefore, the update of OMD becomes zt+1 = xt − η∇ft(xt) and xt+1 = ProjK(zt+1).

We recover the online gradient descent algorithm.
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OMD (agile or lazy) with negative entropy = EG

EG :
gt = ∇ft(xt)

xt+1(k) =
xt (k)e

−ηgt (k)∑K
j=1 xt (j)e−ηgt (j)

OMD :
∇ψ(zt+1) = ∇ψ(xt)− η∇ft(xt)

xt+1 ∈ argminx∈K Dψ(x , zt+1)

If K = ∆K . We consider the negative entropy ψ(x) = ⟨x , log x⟩ so that ∇ψ(x) = 1 + log x .

The update of OMD is then

1 + log(zt+1(i)) = 1 + log xt(i)− ηgt(i) ,

where gt = ∇ft(xt) ∈ RK . This can be rewritten

zt+1(i) = xt(i)e
−ηgt (i).

The projection to the simplex is a simple renormalization (exercise next), we thus recover EG.
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Exercice: Bregmann projection over the simplex is the renormalization

Exercise

Let z ∈ Rd
+, ψ(x) = ⟨x , log x⟩ and x∗ = argminx∈∆d

Dψ(x , z) . Show that

1. For any x ∈ ∆d , Dψ(x , z) = ⟨x , log x
z ⟩+ ∥z∥1 − 1 ⩾ − log(∥z∥1) + ∥z∥1 − 1

2. For all k ∈ [d ], x∗ = z/∥z∥1 .
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Exercice: Bregmann projection over the simplex is the renormalization

Exercise

Let z ∈ Rd
+, ψ(x) = ⟨x , log x⟩ and x∗ = argminx∈∆d

Dψ(x , z) . Show that

1. For any x ∈ ∆d , Dψ(x , z) = ⟨x , log x
z ⟩+ ∥z∥1 − 1 ⩾ − log(∥z∥1) + ∥z∥1 − 1

2. For all k ∈ [d ], x∗ = z/∥z∥1 .

Solution:

1.

Dψ(x , z) = ψ(x)− ψ(z)− ⟨∇ψ(z), x − z⟩ = ⟨x , log x⟩ − ⟨z , log z⟩ − ⟨1 + log z , x − z⟩

= ⟨x , log x

z
⟩+ ∥z∥1 − 1

Jensen
⩾ − log

(〈
x ,

z

x

〉)
+ 1− ∥z∥1 = − log(∥z∥1) + ∥z∥1 − 1
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Exercice: Bregmann projection over the simplex is the renormalization

Exercise

Let z ∈ Rd
+, ψ(x) = ⟨x , log x⟩ and x∗ = argminx∈∆d

Dψ(x , z) . Show that

1. For any x ∈ ∆d , Dψ(x , z) = ⟨x , log x
z ⟩+ ∥z∥1 − 1 ⩾ − log(∥z∥1) + ∥z∥1 − 1

2. For all k ∈ [d ], x∗ = z/∥z∥1 .

Solution:

1.

Dψ(x , z) = ψ(x)− ψ(z)− ⟨∇ψ(z), x − z⟩ = ⟨x , log x⟩ − ⟨z , log z⟩ − ⟨1 + log z , x − z⟩

= ⟨x , log x

z
⟩+ ∥z∥1 − 1

Jensen
⩾ − log

(〈
x ,

z

x

〉)
+ 1− ∥z∥1 = − log(∥z∥1) + ∥z∥1 − 1

2.

Dψ
( z

∥z∥1
, z
)
= ⟨ z

∥z∥1
,− log(∥z∥1)⟩+ ∥z∥1 − 1 = − log(∥z∥1) + ∥z∥1 − 1
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Equivalent Formulation of OMD (agile version)

OMD (agile version) is equivalent to the following update

xt+1 = argmin
x∈K

{〈
∇ft(xt), x − xt

〉
+

1

η
Dψ(x , xt)

}

Indeed,

argmin
x∈K

{〈
∇ft(xt), x − xt

〉
+

1

η
Dψ(x , xt)

}
= argmin

x∈K

{
η
〈
∇ft(xt), x −�xt

〉
+ ψ(x)−���ψ(xt)− ⟨∇ψ(xt), x −�xt⟩

}
= argmin

x∈K

{〈
η∇ft(xt)−∇ψ(xt), x

〉
+ ψ(x)

}
= argmin

x∈K

{〈
−∇ψ(zt+1), x

〉
+ ψ(x)

}
since ∇ψ(zt+1) = ∇ψ(xt)− η∇ft(xt)

= argmin
x∈K

{
− ψ(zt+1)−

〈
∇ψ(zt+1), x − zt+1

〉
+ ψ(x)

}
= argmin

x∈K

{
Dψ(x , zt+1)

}
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Equivalent formulation of OMD (lazy version) – linearized FTRL

OMD (lazy version) is the linearized version of Follow The Regularized Leader (FTRL)

xt+1 = argmin
x∈K

{
t∑

s=1

⟨∇fs(xs), x − xs⟩+
1

η
Dψ(x , x1)

}

Indeed, for the lazy version ∇ψ(zt+1) = ∇ψ(zt)− η∇ft(xt) = ∇ψ(z1)−
∑t

s=1 η∇fs(xs), and z1 = x1. Thus

argmin
x∈K

{ t∑
s=1

〈
∇fs(xs), x − xs

〉
+

1

η
Dψ(x , x1)

}

= argmin
x∈K

{
η

t∑
s=1

〈
∇fs(xs), x −�xs

〉
+ ψ(x)−���ψ(x1)− ⟨∇ψ(x1), x −�x1⟩

}

= argmin
x∈K

{〈 t∑
s=1

η∇fs(xs)−∇ψ(x1), x
〉
+ ψ(x)

}
= argmin

x∈K

{〈
−∇ψ(zt+1), x

〉
+ ψ(x)

}
= argmin

x∈K

{
Dψ(x , zt+1)

}
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Regret of OMD (agile or lazy version)

xt+1 = argmin
x∈K


〈
∇ft(xt), x − xt

〉
+ 1
η
Dψ(x , xt) (agile)∑t

s=1⟨∇fs(xs), x − xs⟩+ 1
η
Dψ(x , x1) (lazy)


Theorem 5 (Regret of OMD)

Let T ⩾ 1. Let K be a compact and convex, x1 ∈ K, and ψ : K → R be µ-strongly convex mirror map with

respect to some norm ∥ · ∥. Assume

Dψ(x , x1)
1/2 ⩽ D and ∥∇ft(xt)∥∗ ⩽ G∗ .

Then, for any convex f1, . . . , fT : K → R, the regret of OMD (agile or lazy version) with η = DG−1
∗

√
2µ/T is

upper bounded as

RegT ⩽ DG∗

√
2T

µ
.

We exactly the regrets of OGD and EG since ψ : x 7→ 1
2
∥x∥2 and ψ : x 7→ ⟨x , log x⟩ are resp. 1-strongly convex

with ∥ · ∥2 and ∥ · ∥1 norms.
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Proof (agile version)

Let t ⩾ 1 and x ∈ K. Denote Φt(x) =
〈
∇ft(xt), x

〉
+ 1

η
Dψ(x , xt). From the optimality condition on

xt+1, ⟨∇Φt(xt+1), xt+1 − x⟩ ⩽ 0, which entails ⟨∇ft(xt), xt+1 − x⟩ ⩽ 1
η
⟨∇ψ(xt+1)−∇ψ(xt), x − xt+1⟩

and yields

ft(xt)− ft(x) ⩽ ⟨∇ft(xt), xt − x⟩ = ⟨∇ft(xt), xt − xt+1⟩+ ⟨∇ft(xt), xt+1 − x⟩

⩽ ⟨∇ft(xt), xt − xt+1⟩+
1

η
⟨∇ψ(xt+1)−∇ψ(xt), x − xt+1⟩

= ⟨∇ft(xt), xt − xt+1⟩+
1

η

(
Dψ(x , xt)− Dψ(x , xt+1)− Dψ(xt+1, xt)

)
⩽ ⟨∇ft(xt), xt − xt+1⟩+

1

η

(
Dψ(x , xt)− Dψ(x , xt+1)−

µ

2
∥xt − xt+1∥2

)
,

where the last inequality because ψ is µ-strongly convexity. Moreover,

⟨∇ft(xt), xt − xt+1⟩
Cauchy-Schwarz

⩽ ∥xt − xt+1∥
∥∥∇ft(xt)∥∥∗

Young’s

⩽
µ

2η
∥xt − xt+1∥2 +

η

2µ

∥∥∇ft(xt)∥∥2

∗ .

Combining the last two upper-bounds and summing over t = 1, . . . ,T entails the stated regret upper

bound.
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Proof (lazy version)

Left as exercise
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Summary on OMD (lazy or agile)

xt+1 = argmin
x∈K


〈
∇ft(xt), x − xt

〉
+ 1
η
Dψ(x , xt) (agile)∑t

s=1⟨∇fs(xs), x − xs⟩+ 1
η
Dψ(x , x1) (lazy)

K
xt

xt+1

∇ψ(xt)

∇ψ(xt)− ηt∇ft(xt)

∇ψ

∇ψ∗

OMD provide efficient algorithms with generic O(
√
T ) regret bounds but suffer from some drawbacks

- O(
√
T ) is sub-optimal for some losses with curvature (e.g., squared, logistic, or log loss) for

which logarithmic regret may be achieved → ONS

- needs bounded gradients which is not the case in some settings (e.g., portfolio selection).

- the best mirror map ψ should be specified by the user → AdaGrad.
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Introduction: What is online learning?

Online Linear Optimization

Online Convex Optimization

Online Mirror Descent and variants (EG, OGD)

Faster rate with curvature (OGD, EWA, ONS)

Adversarial bandits

Stochastic bandits
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Curvature

When losses have curvature, logarithmic regret may be achieved.

- Convexity:

ft(x) ⩾ ft(xt) + ⟨∇ft(xt), x − xt⟩

- Strong convexity:

ft(x) ⩾ ft(xt) + ⟨∇ft(xt), x − xt⟩+
γ

2
∥x − xt∥2

ft(xt)

ft(xt) +∇ft(xt)⊤(x − xt)

ft(x)

- Exp-concavity: x 7→ exp(−ηft(x)) is concave, which implies (exercise)

ft(x) ⩾ ft(xt) + ⟨∇ft(xt), x − xt⟩+
γ

2
⟨∇ft(xt), x − xt⟩2

for γ = 1
2 min

{
η, 1

4G∗D

}
.
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Exp-concavity

Definition (η-exp-concavity)

For η ∈ R, a function f is said to be η-exp-concave if x 7→ e−ηf (x) is concave.

Properties:

- Exp-concavity ⇒ convexity because − log is convex and decreasing.

- Strong convexity + bounded domain and gradients ⇒ exp-concavity.

- η-exp-concavity ⇒ η′-exp-concavity for 0 ⩽ η′ ⩽ η.

Many losses are exp-concave:

- strongly convex losses on bounded domain

- squared loss is 1
2Y 2 -expconcave on [0,Y ]

- logistic loss

- relative entropy

Exercise: Prove the above the above facts.
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Exercise: Exp-concavity implies a quadratic lower-bound

Show that if the loss ft is η-exp-concave with gradients bounded by G and a domain diameter

bounded by D, then it can be lower-bounded by a quadratic approximation: for all x , xt ∈ K,

ft(x) ⩾ ft(xt) + ⟨∇ft(xt), x − xt⟩+
γ

2
⟨∇ft(xt), x − xt⟩2

for γ = 1
2 min

{
η, 1

4G∗D

}
.

ft(xt)

ft(xt) +∇ft(xt)⊤(x − xt)

ft(x)
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Constant regret for exp-concave loss functions

Corollary 2 (Regret of EWA for prediction with expert advice and exp-concave loss)

In the setting of prediction with expert advice, if the loss functions f (·, yt) are η-exp-concave
for all yt , then EWA run with vectors gt =

(
f (xt(1), yt), . . . , f (xt(K ), yt)

)
∈ RK with

parameter η > 0 satisfies

RegexpertT
def
=

T∑
t=1

f (ŷt , yt)− min
1⩽k⩽K

T∑
t=1

f (xt(k), yt) ⩽
logK

η
,

for all T ⩾ 1.

The worst-case regret does not increase with T but grows logarithmically in the dimension K .
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Proof (Step 1)

We define Wt(i) = e−η
∑t

s=1 gs (i) and Wt =
∑N

i=1 Wt(i). We have

Wt =
N∑
j=1

Wt−1(j)e
−ηgt(j) ← Wt(j) = Wt−1(j)e

−ηgt(j)

= Wt−1

N∑
j=1

Wt−1(j)

Wt−1
e−ηgt(j)

= Wt−1

N∑
j=1

pt(j)e
−ηgt(j) ← pt(j) =

e−η
∑t−1

s=1 gs (j)∑N
k=1 e

−η
∑t−1

s=1 gs (k)
=

Wt−1(j)

Wt−1

⩽ Wt−1 exp
(
− ηf (pt · xt , yt)

)
← η-exp-concavity

Now, by induction on t = 1, . . . ,T , this yields using W0 = K

WT ⩽ K exp

(
−η

T∑
t=1

f (ŷt , yt)

)
. (5)
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Proof (Step 2)

On the other hand, upper-bounding the maximum with the sum,

exp
(
− η min

j∈[K ]

T∑
t=1

gt(j)
)
⩽

K∑
j=1

exp
(
− η

T∑
t=1

gt(j)
)
⩽ WT .

Combining the above inequality with Inequality (5) and taking the log concludes the proof.
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Continuous EWA

Can we obtain a regret with respect to the best combination of experts

min
p

T∑
t=1

ft(p)

instead of the regret with respect to the best fixed expert?

Continuous EWA

pt =

∫
K pe−η

∑t−1
s=1 fs (p)dµ(p)∫

K e−η
∑t−1

s=1 fs (p)dµ(p)
,

where µ is the uniform (Lebesgue) measure on K = ∆K .
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Regret bound for continuous EWA

Theorem 6 (Regret of continuous EWA)

Let T ⩾ 1. For all sequences of η-exp-concave losses f1, . . . , ft the continuous EWA

forecaster satisfies

RegT
def
=

T∑
t=1

ft(pt)− inf
p∈K

T∑
t=1

ft(p) ⩽
1 + (K − 1) log(T + 1)

η

Nice theoretical result but hard to implement because of the integral.

In practice, pt can be computed by using (1/T )-discretization grid of K (bad complexity of

order TK !) or by using Monte-Carlo methods to approximate the integral.
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Proof (Step 1 – Upper-bound of WT )

The proof starts similarly to the one of Theorem 2. Let us denote Wt(p) = e−η
∑t

s=1 fs (p),

Wt =
∫
KWt(p)dµ(p) and d µ̂t(p) = Wt(p)dµ(p)/Wt . Then,

WT =

∫
K
e−η

∑T
t=1 ft(p)dµ(p)

= WT−1

∫
K

WT−1(p)

WT−1
e−ηfT (p)dµ(p)

= WT−1

∫
K
e−ηfT (p)d µ̂T−1(p) ← pT =

∫
K
pd µ̂T−1(p)

⩽ WT−1 exp
(
− ηfT (pT )

)
← η-exp-concavity

⩽ exp

(
−η

T∑
t=1

ft
(
pt
))

, ← induction (6)
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Proof (Step 2 – Lower bound of WT )

For simplicity, we assume that ft are continuous. Therefore the infimum is a minimum and let

p∗ ∈ argminp∈K
∑T

t=1 ft(p) and define

Kε
def
=
{
(1− ε)p∗ + εq, q ∈ K

}
, ε ∈ (0, 1) .

By exp-concavity of ft , we have for all t and all p = (1− ε)p∗ + εq

e−ηft(p) ⩾ (1− ε)e−ηft(p
∗) + εe−ηft(q) ⩾ (1− ε)e−ηft(p

∗)

Therefore, for all p ∈ Kε

e−η
∑T

t=1 ft(p) ⩾ (1− ε)T e−η
∑T

t=1 ft(p
∗)

Integrating both parts over Kε and using µ(Kε) = εK−1µ(K) (exercise) we get

WT ⩾
∫
Kε

e−η
∑T

t=1 ft(p)dµ(p) ⩾ µ(K)εK−1(1− ε)T e−η
∑T

t=1 ft(p
∗) .
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Proof (Step 3 – Conclusion)

Combining with (6), using W0 = µ(K), taking the log and reorganizing the terms yields

RegT
def
=

T∑
t=1

ft(pt)−
T∑
t=1

ft(p
∗) ⩽

(K − 1) log 1
ε + T log 1

1−ε
η

.

Optimizing ε = 1/(T + 1) concludes the proof since

T log
1

1− ε
= T log

(
1 +

1

T

)
⩽ 1 .
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Logarithmic regret for OGD under strong-convexity

Online Gradient Descent:

xt+1 ← ProjK (xt − ηt∇ft(xt))

Theorem 7 (Regret of OGD under strong-convexity)

Let D,G , γ > 0. Assume that maxx,x′∈K ∥x − x ′∥ ⩽ D and. Then for any sequence f1, . . . , fT
of γ-strongly convex differentiable loss functions such that maxx∈K ∥∇ft(x)∥ ⩽ G, the regret

of OGD with ηt = 1/(γt) satisfies

RegT
def
=

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ⩽
G 2

2γ

(
1 + logT ) .

81



Proof

1. Upper-bound the regret with strong convexity:

RegT
def
=

T∑
t=1

ft(xt)− ft(x
∗)

Strong Convexity

⩽
T∑
t=1

⟨∇ft(xt), xt − x∗⟩ − γ

2

∥∥xt − x∗∥∥2

2. Upper-bound the gradient term as for OGD analysis

⟨∇ft(xt), xt − x∗⟩ ⩽ 1

2ηt

(∥∥xt − x∗∥∥2 −
∥∥xt+1 − x∗∥∥2

)
+
ηt
2

∥∥∇ft(xt)∥∥2

3. Substitute in the previous inequality and conclude

RegT ⩽
T∑
t=1

1

2ηt

(∥∥xt − x∗∥∥2 −
∥∥xt+1 − x∗∥∥2

)
+
ηtG

2

2
− γ

2

∥∥xt − x∗∥∥2

=
1

2

T∑
t=1

��������( 1

ηt
− 1

ηt−1
− γ

)∥∥xt − x∗∥∥2
+

G 2

2

T∑
t=1

1

γt

⩽
G 2

γ
(1 + logT )
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Online Newton Step (ONS)

Idea: Include the quadratic upper-bound of the loss into FTRL:

xt = argmin
x∈K

{
t−1∑
s=1

⟨∇fs(xs), x − xs⟩+
γ

2
⟨∇fs(xs), x − xs⟩2 +

λ

2
∥x∥2

}
.

Theorem 8 (Regret of ONS)

Let T ⩾ 1. Let K ⊂ Rd be a centered convex set with diameter D > 0. Then, for any G-Lipschitz,

η-exp-concave losses f1, . . . , fT : K → R, the regret of ONS with λ > 0 and γ ⩽ 1
2
min

{
η, 1

4GD

}
satisfies

RegT ⩽
λ

2
D2 +

d

2γ
log

(
1 +

γTG 2

dλ

)
.

If the losses are η-exp-concave → logarithmic regret.

Complexity: Ignoring the projection step (may be difficult), it requires the inversion of a d × d

matrices and could be done in O(d3) operations per round.
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Proof (Step 1)

For any t ⩾ 1, define the matrix At = γ
∑t

s=1∇ft(xt)∇ft(xt)
⊤ + λI and set for any x ∈ K

ψt(x) =
γ

2

t∑
s=1

⟨∇fs(xs), x − xs⟩2 +
λ

2
∥x∥2 and Φt(x) =

t∑
s=1

〈
∇fs(xs), x − xs

〉
+ ψt(x) .

Then, ψt and Φt are 1-strongly convex with respect to the norm ∥ · ∥At .

The ONS update is then

xt+1 = argmin
x∈K

{
t∑

s=1

〈
∇fs(xs), x − xs

〉
+ ψt(x)

}
= argmin

x∈K
Φt(x) .

On the one hand, by Cauchy-Schwarz inequality

T∑
t=1

⟨∇ft(xt), xt − xt+1⟩ ⩽
1

2

T∑
t=1

∥∥∇ft(xt)∥∥2

A−1
t

+
1

2

T∑
t=1

∥∥xt − xt+1

∥∥2

At
. (7)
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Proof (Step 2)

On the other hand, fixing x ∈ K, by definition of Φt(x)

⟨∇ft(xt), xt+1 − xt⟩ = Φt(xt+1)− Φt−1(xt+1)−
γ

2
⟨ft(xt), xt+1 − xt⟩2 (8)

Thus
T∑
t=1

⟨∇ft(xt), xt+1 − x⟩ = −ΦT (x) + ψt(x) +
T∑
t=1

⟨∇ft(xt), xt+1 − xt⟩ ← by Definition of ΦT (x)

= −ΦT (x) + ψT (x) +
T∑
t=1

Φt(xt+1)− Φt−1(xt+1)−
γ

2
⟨ft(xt), xt+1 − xt⟩2 ← by (8)

=
((((((((((((
ΦT (xT+1)− ΦT (x)− Φ0(x1) + ψT (x) +

T∑
t=1

Φt−1(xt)− Φt−1(xt+1)−
γ

2
⟨ft(xt), xt+1 − xt⟩2

⩽ ψT (x)−
1

2

T∑
t=1

∥∥xt+1 − xt
∥∥2

At−1
− γ

2
⟨ft(xt), xt+1 − xt⟩2 = ψT (x)−

1

2

T∑
t=1

∥∥xt+1 − xt
∥∥2

At
. (9)

where the last inequality is because ΦT (xT+1) ⩽ ΦT (x) and by strong convexity of Φt−1 and by the

optimality condition of xt = argminx∈K Φt−1(x) we have Φt−1(xt)− Φt−1(x) ⩽ − 1
2
∥xt − x∥2At−1

.
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Proof (Step 3)

Combining (7) and (9) into the quadratic upper-bound yields

T∑
t=1

ft(xt)−ft(x)
Exp-concavity

⩽
λ

2
∥x∥2−ψT (x)+

T∑
t=1

⟨∇ft(xt), xt−x⟩ ⩽ λ

2
∥x∥2+ 1

2

T∑
t=1

∥∥∇ft(xt)∥∥2

A−1
t
. (10)

Lemma 1 (Lemma 11.11 of Cesa-Bianchi and Lugosi 2006)

For any full rank matrix A and any vector x ∈ Rd , then

x⊤(A+ xx⊤)−1x = 1− det(A)/det(A+ xx⊤)

Thus

T∑
t=1

(
1− det(At−1)

det(At)

) 1−u⩽− log u

⩽
T∑
t=1

log
det(At)

det(At−1)
= log

det(AT+1)

det(A0)
⩽ d log

(
1 +

γTG 2

dλ

)
,

where the last line used that
∥∥∇ft(xt)∥∥ ⩽ G . Substituting into (10) concludes the proof.
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Introduction: What is online learning?

Online Linear Optimization

Online Convex Optimization

Adversarial bandits

Stochastic bandits
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Setting of an online learning problem/online convex optimization

At each time step t = 1, . . . ,T

- the player observes a context ct ∈ X (optional step)

- the player chooses an action xt ∈ K (compact decision/parameter set);

- the environment chooses a loss function ft : K → [0, 1];

- the player suffers loss ft(xt) and observes

– the losses of every actions: ft(x) for all x ∈ K → full-information feedback

– the loss of the chosen action only: ft(xt) → bandit feedback.

Goal: Minimize the regret

RegT
def
=

T∑
t=1

ft(xt)− inf
x∈K

T∑
t=1

ft(x)
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Previous results for full-information feedback

The Exponentially Weighted Average (EWA) forecaster

pt(k) =
e−η

∑t−1
s=1 gs (k)∑K

j=1 e
−η

∑t−1
s=1 gs (j)

(EWA)

achieves a cumulative regret RegT ≲
√
T logK when the set of actions is the K -dimensional simplex

and for linear losses ft(p) = p⊤gt with gt ∈ [−1, 1]K .

In particular, we saw the intermediate regret-bound if −ηgt(k) ⩽ 1

T∑
t=1

pt · gt − min
1⩽j⩽K

T∑
t=1

gt(j) ⩽ η

T∑
t=1

K∑
k=1

pt(k)gt(k)
2 +

logK

η
. (∗)

Note that the loss vectors gt may depend on past information p1, g1, . . . , gt−1, pt .
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Online Linear Optimization

Online Convex Optimization

Adversarial bandits

The exponentially weighted average algorithm for bandits

Adversarial bandits with experts

OGD without Gradients

Stochastic bandits
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Adversarial multi-armed bandit and pseudo-regret

Setting: K = {1, . . . ,K}. At round t, the player chooses an action kt ∈ {1, . . . ,K} and
suffers and observes the loss ft(kt) ∈ [0, 1] only.

Regret with respect to action k ∈ [K ] by

RegT (k)
def
=

T∑
t=1

ft(kt)−
T∑
t=1

ft(k) .

Instead of minimizing the expected regret E[RegT ] = E[maxk RegT (k)] , we will start with an

easier objective, the pseudo-regret.

Definition (Pseudo-regret)

¯RegT
def
= max

k∈[K ]
E
[
RegT (k)

]
= max

k∈[K ]
E
[ T∑

t=1

ft(kt)−
T∑
t=1

ft(k)

]
. (pseudo regret)
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Oblivious vs adaptive adversary

¯RegT
def
= max

k∈[K ]
E
[
RegT (k)

]
= max

k∈[K ]
E
[ T∑

t=1

ft(kt)−
T∑
t=1

ft(k)

]

The expectation is taken with respect to the randomness of the algorithm: the decisions kt are

random.

We can distinguish two types of adversaries:

- oblivious adversary: all the loss functions f1, . . . , ft are chosen in advance before the game

starts and do not depend on the past player decisions k1, . . . , kT . In this case, the losses

ft(k) are determinist and there is thus equality: ¯RegT = E[RegT ].
- adaptive adversary: the loss function ft at round t ⩾ 1 may depend on past information

σ(k1, . . . , kt−1). It is thus random. By Jensen’s inequality

maxk∈[K ] E
[
RegT (k)

]
⩽ E

[
maxk∈[K ] RegT (k)

]
and thus ¯RegT ⩽ E[RegT ].

92



How to use EWA for bandits?

The Exponentially Weighted Average (EWA) forecaster

pt(k) =
e−η

∑t−1
s=1 gs (k)∑K

j=1 e
−η

∑t−1
s=1 gs (j)

(EWA)

Question: Can we use directly pt(k) as defined by EWA with gt = (ft(1), . . . , ft(K)) and sample

kt ∼ pt as we did for random EWA?

□ Yes □ No
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How to use EWA for bandits?

The Exponentially Weighted Average (EWA) forecaster

pt(k) =
e−η

∑t−1
s=1 gs (k)∑K

j=1 e
−η

∑t−1
s=1 gs (j)

(EWA)

Question: Can we use directly pt(k) as defined by EWA with gt = (ft(1), . . . , ft(K)) and sample

kt ∼ pt as we did for random EWA?

Answer: No, since the player does not observe ft(k) for k ̸= kt and cannot compute pt .
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How to use EWA for bandits?

The Exponentially Weighted Average (EWA) forecaster

pt(k) =
e−η

∑t−1
s=1 gs (k)∑K

j=1 e
−η

∑t−1
s=1 gs (j)

(EWA)

Question: What about setting using ft(k) if we observe it and 0 otherwise:

gt(k) =

 ft(k) if k = kt ← i.e., decision k is observed

0 otherwise
?

□ Yes □ No
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How to use EWA for bandits?

The Exponentially Weighted Average (EWA) forecaster

pt(k) =
e−η

∑t−1
s=1 gs (k)∑K

j=1 e
−η

∑t−1
s=1 gs (j)

(EWA)

Question: What about setting using ft(k) if we observe it and 0 otherwise:

gt(k) =

 ft(k) if k = kt ← i.e., decision k is observed

0 otherwise
?

Answer: No, because this estimate would be biased:

Ekt∼pt

[
gt(kt)

]
= pt(k)ft(k) ̸= ft(k) .

In other words, the actions that are less likely to be chosen by the algorithm (small weight pt(k))

are more likely to be unobserved and incur 0 loss. We need to correct this phenomenon.
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How to use EWA for bandits?

The Exponentially Weighted Average (EWA) forecaster

pt(k) =
e−η

∑t−1
s=1 gs (k)∑K

j=1 e
−η

∑t−1
s=1 gs (j)

(EWA)

Therefore, we choose

gt(k) =
ft(k)

pt(k)
1{k = kt} ,

which leads to the algorithm EXP3 detailed below.
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Exponential Weights for bandits

EXP3

Parameter: η > 0

Initialize: p1 =
(
1
K , . . . ,

1
K

)
For t = 1, . . . ,T

- draw kt ∼ pt ; incur loss ft(kt) and observe ft(kt) ∈ [0, 1];

- update for all k ∈ {1, . . . ,K}

pt+1(k) =
e−η

∑t
s=1 gs (k)∑K

j=1 e
−η

∑t
s=1 gs (j)

, where gs(k) =
fs(k)

ps(k)
1{k = ks}

94



Pseudo-Regret bound for EXP3

pt+1(k) =
e−η

∑t
s=1 gs (k)∑K

j=1 e
−η

∑t
s=1 gs (j)

, where gs(k) =
fs(k)

ps(k)
1{k = ks} (EXP3)

Theorem 9

Let T ⩾ 1. The pseudo-regret of EXP3 run with η =
√

logK
KT is upper-bounded as:

¯RegT
def
= max

k∈[K ]
E
[ T∑

t=1

ft(kt)−
T∑
t=1

ft(k)

]
⩽ 2
√
KT logK .
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Proof

Applying EWA to the estimated losses gt(j) that are completely observed and taking the

expectation:

E

[
T∑
t=1

pt · gt − min
j∈[K ]

T∑
t=1

gt(j)

]
⩽

logK

η
+ η

T∑
t=1

E
[
pt · g2

t

]
. (∗)

The rest of the proof consists in computing the expectations:

E
[
pt · gt

]
= E

[
ft(kt)

]
, E

[
gt(j)

]
= E

[
ft(j)

]
and E

[
pt · g2

t

]
⩽ K (11)
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Proof

Denote by Ft−1
def
= σ(p1, f1, k1, . . . , kt−1, pt , ft) the past information available at round t for

the adversary (which cannot use the randomness of kt but can use pt).

Note that ft and pt are Ft−1-measurable by assumption.

1) Proof that E
[
gt(j)

]
= E

[
ft(j)

]

∀j ∈ [K ] E
[
gt(j)

∣∣∣Ft−1

]
= E

[ ft(j)
pt(j)

1{j = kt}
∣∣∣Ft−1

]
=

K∑
k=1

pt(k)
fs(j)

pt(j)
1{j = k} = ft(j)

2) Proof that E
[
pt · gt

]
= E

[
ft(kt)

]
E
[
pt · gt

]
= E

[ K∑
j=1

pt(j)gt(j)

]
= E

[ K∑
j=1

pt(j)E
[
gt(j)

∣∣∣Ft−1

]]

= E
[ K∑

j=1

pt(j)ft(j)

]
= E

[
E
[
ft(kt)

∣∣Ft−1
]]

= E
[
ft(kt)

]
.
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Proof

Therefore, using

E
[
pt · gt

]
= E

[
ft(kt)

]
and E

[
gt(j)

]
= E

[
ft(j)

]
(12)

we have

E
[ T∑

t=1

pt · gt − min
j∈[K ]

T∑
t=1

gt(j)

]
⩾ max

j∈[K ]
E
[ T∑

t=1

pt · gt −
T∑
t=1

gt(j)

]

= max
j∈[K ]

E
[ T∑

t=1

ft(kt)−
T∑
t=1

ft(j)

]
= ¯RegT .
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Proof

3) Proof that E
[
pt · g 2

t

]
⩽ K

E
[
pt · g 2

t

]
= E

[ K∑
j=1

pt(j)gt(j)
2

]
= E

[ K∑
j=1

pt(j)E
[
gt(j)

2
∣∣∣Ft−1

]]

= E
[ K∑

j=1

K∑
k=1

pt(j)pt(k)
( ft(j)

pt(j)
1{j = k}

)2
]

= E
[ K∑

j=1

K∑
k=1

pt(k)
ft(j)

2

pt(j)
1{j = k}

]

= E
[ K∑

j=1

ft(j)
2

]
⩽ K .

4) Conclusion. Substituting into Inequality (∗) yields

¯RegT ⩽
logK

η
+ ηKT .

and optimizing η =
√

KT/(logK) concludes.
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Limit of the result

The issue with the above regret bound is that it bounds the pseudo-regret and not the

expected regret. This is because we have

E
[
min
j

T∑
t=1

gt(j)

]
⩽ min

j
E
[ T∑

t=1

gt(j)

]
= min

j∈[K ]
E
[ T∑

t=1

ft(j)

]
but not

E
[
min
j

T∑
t=1

gt(j)

]
≰ E

[
min
j

T∑
t=1

ft(j)

]
. (13)

Hence, controlling the cumulative loss agains the best estimated action only controls the

pseudo regret and not the true regret.
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EXP3.P

EXP3.P

Parameters: η > 0, β ∈ (0, 1), γ ∈ (0, 1)

Initialize: p1 =
(
1
K , . . . ,

1
K

)
For t = 1, . . . ,T

- draw kt ∼ pt ; receive reward rt(kt) = 1− ft(kt) and observe rt(kt) ∈ [0, 1];

- update for all k ∈ {1, . . . ,K}

pt+1(k) = (1− γ) eη
∑t

s=1 gs (k)∑K
j=1 e

η
∑t

s=1 gs (j)
+
γ

K
,

where gs(k) =
rs (k)1{k=ks}+β

ps (k)
.

The weights pt(k) of EXP3.P are necessary larger than γ/K and thus |ηgt(j)| ⩽ 1 as soon as

η(1 + β)K/γ ⩽ 1.
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Regret bound for Exp3.P

Theorem 10

For well-chosen parameters γ ∈ (0, 1), β ∈ (0, 1) and η > 0 satisfying η(1 + β)K/γ ⩽ 1, for

any δ > 0, the EXP3.P algorithm achieves

RegT ⩽ 6
√
TK logK +

√
TK

logK
log(1/δ) .

with probability at least 1− δ.

With the choice δ = 1/T it yields

E
[
RegT ] ⩽ 6

√
TK logK +

√
TK

logK
log(T ) + 1
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Setting of adversarial bandits with experts

Setting

At each time step t = 1, . . . ,T

- N experts propose recommendations ht(i) ∈ [K ] for i ∈ [N]

- the environment chooses a loss function ft : K → [0, 1];

- the player chooses an action kt ∈ [K ]

- the player suffers loss ft(kt)

- the player observes the loss of the chosen action only: ft(kt)

Goal: compete with the best expert, i.e., minimize

RegexpT
def
= max

i=1,...,N
E

[
T∑
t=1

ft(kt)−
T∑
t=1

ft
(
ht(i)

)]

with respect to the experts.
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EXP3 solution

By using EXP3 on the set of experts instead of the set of actions, we would get

¯RegT ⩽
√
TN logN .

However it does not take into account the information on the reward of all experts that choose

the same action ht(i) = kt .
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EXP4

EXP4

Parameter: η > 0 Initialize: q1 =
(

1
N
, . . . , 1

N

)
.

For each round t = 1, . . . , n

1. Get expert advice ht(1), . . . , ht(N) ∈ [K ]

2. Draw an expert it with probability distribution qt ∈ ∆N

3. Choose decision kt = ht(it)

4. Compute the estimated loss for each decision

gt(k) =
ft(k)

pt(k)
1{k = kt} ,

where pt
def
=

∑N
i=1 qt(i)δft (i) ∈ ∆K .

5. Compute the estimated loss of the experts component-wise gt(ht(i))

6. Update the probability distribution over the experts component-wise

qt+1(i) =
exp

(
− η

∑t
s=1 gs

(
hs(i)

))
∑N

j=1 exp
(
η
∑t

s=1 gs
(
hs(j)

)) , ∀1 ⩽ i ⩽ N .
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Regret of EXP4

Theorem 11

EXP4 with η =
√
logN/(KT ) satisfies RegexpT ⩽ 2

√
TK logN.

Proof left as exercise.
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Beyond finite set of actions?

At each time step t = 1, . . . ,T

- the player observes a context ct ∈ X (optional step)

- the player chooses an action xt ∈ K (compact decision/parameter set);

- the environment chooses a loss function ft : K → [0, 1];

- the player suffers loss ft(xt) and observes

– the losses of every actions: ft(x) for all x ∈ K → full-information feedback

– the loss of the chosen action only: ft(xt) → bandit feedback.

The goal of the player is to minimize his cumulative loss:

L̂T
def
=

T∑
t=1

ft(xt) .

This lecture: we saw variants of EXP3 when K is finite.

What if the losses ft are convex but K is any bounded convex set in Rd?
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Online Gradient Descent

In the full information setting (when gradient can be observed), we saw OGD algorithm:

xt+1 ← ProjK (xt − η∇ft(xt))

Theorem 12 (Regret of OGD)

Let D,G , η > 0. Assume that K has diameter bounded by D and the convex losses have

sub-Gradients bounded by G in f2-norm, the regret of OGD satisfies

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ⩽ DG
√
T .

How to adapt this algorithm to the bandit setting? That is, when only ft(xt) are observed and

not ∇ft(xt)?
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Point-wise gradient estimators

xt+1 ← ProjK (xt − η∇ft(xt))

Similarly to EXP3, the idea is to replace the gradient in OGD with unbiased estimators. That is try to

find an observable random variable ĝt that satisfies

E[ĝt ] ≈ ∇ft(xt)

Example: one-dimensional gradient estimate

f ′(x) = lim
δ→0

f (x + δ)− f (x − δ)
2δ

.

Thus we can define

ĝ(x) =


f (x+δ)
δ

with proba 1
2

− f (x−δ)
δ

with proba 1
2

which yields E[ĝ(x)] = f (x + δ)− f (x − δ)
2δ

.

Thus in expectation, for small δ, ĝ(x) approximates f ′(x).
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Point-wise gradient estimators: multi-dimensional case

We show here how the one-dimensional pointwise gradient estimator can be extended to the

multi-dimensional case.

We define f̂t to be a smoothed version of the loss:

f̂t(x) = Ev

[
ft(x + δv)

]
where v ∼ Unif (B). If δ is small, f̂t is a good approximation of ft .

Lemma 2

Let f̂t(x) = E
[
ft(x + δv)

]
where v ∼ Unif (B) be a smoothed version of the loss, then

Eu

[d
δ
ft(xt + δu)u

]
= ∇f̂t(x) .

Proof.

Left as exercise. See Lem. 6.7, Hazan et al. 2016.
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OGD without Gradients

Similarly to EXP3, the idea is to replace the gradient in OGD with unbiased estimators.

OGD without gradients

For t = 1, . . . ,T

- Draw ut ∈ S uniformly at random in the unit sphere

- Set x̂t = xt + δut a random perturbation of the current point xt
- Play x̂t
- Estimate the gradient in xt with

ĝt =
d

δ
ft(x̂t)ut

- Update

xt+1 ← ProjKδ
(xt − ηĝt)

where Kδ =
{
x ∈ K s.t x + δu ∈ K ∀u ∈ S

}
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Regret of OGD without gradients

OGD without gradients:

xt+1 ← ProjKδ
(xt − ηĝt) where ĝt =

d

η
ft(x̂t)ut and x̂t = xt + δut

Theorem 13

If the losses are in [−1, 1] and G-Lipschitz, OGD without gradients with parameters

δ = min{D, (1/2)
√
Dd/GT−1/4} and η = Dδ/(dT 1/2) satisfies the expected regret bound

T∑
t=1

E
[
ft(x̂t)]−min

x∈K

T∑
t=1

ft(x) ⩽ 2d
√
T + 2

√
GDdT 3/4 .
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Proof (Step 1)

Denote

x∗ ∈ argmin
x∈K

T∑
t=1

ft(x) and x∗
δ = ProjKδ

(x∗) .

Then, ∥∥x∗ − x∗
δ

∥∥ ⩽ δ

Thus, if the losses are G -Lipschitz

RegT :=
T∑
t=1

E
[
ft(x̂t)]−

T∑
t=1

ft(x
∗) ⩽

T∑
t=1

E
[
ft(x̂t)]−

T∑
t=1

ft(x
∗
δ )

⩽
T∑
t=1

E
[
ft(xt)]−

T∑
t=1

ft(x
∗
δ ) + δTG

⩽
T∑
t=1

E
[
f̂t(xt)]−

T∑
t=1

f̂t(x
∗
δ ) + 3δTG (*)

where f̂t(x) = Ev

[
ft(x + δv)

]
with v ∼ Unif (B) are the smoothed versions of the losses.
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Proof (Step 2)

Now, recall that the algorithm runs OGD with ĝt in place of the gradients:

xt+1 ← ProjKδ
(xt − ηĝt)

Defining the pseudo-loss ht(x) = f̂t(x) + (ĝt −∇f̂t(xt))⊤x , we can see that

∇ht(xt) = ∇f̂t(xt) + ĝt −∇f̂t(xt) = ĝt .

Therefore, the algorithm actually runs OGD on the losses ht and thus satisfies the OGD regret bound

(see Lecture 2)
T∑
t=1

ht(xt)−
T∑
t=1

ht(x
∗
δ ) ⩽

D2

2η
+
η

2

T∑
t=1

∥ĝt∥2 .

Furthermore, by construction of the gradient estimator, we have Eut

[
ĝt
]
= ∇f̂t(xt), which yields

Eut

[
ht(xt)] = f̂t(xt) and Eut

[
ht(x

∗
δ )] = f̂t(x

∗
δ )

Thus taking the expectation in the previous regret bound entails

T∑
t=1

E
[
f̂t(xt)]−

T∑
t=1

f̂t(x
∗
δ ) = E

[ T∑
t=1

ht(xt)−
T∑
t=1

ht(x
∗
δ )

]
⩽

D2

2η
+
η

2

T∑
t=1

E
[
∥ĝt∥2

]
(**)
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Proof (Step 3)

Combining the two bounds (*) and (**) that we have proved, we get

RegT ⩽
D2

2η
+
η

2

T∑
t=1

E
[
∥ĝt∥2

]
+ 3δTG

Then, since |ft(x)| ⩽ 1 for all x ∈ K,

∥ĝt∥2 =
(d
δ
ft(x̂t)

)2
⩽

d2

δ2

This finally yields the regret

RegT ⩽
D2

2η
+
ηd2T

2δ2
+ 3δTG ⩽ 2d

√
T + 2

√
GDdT 3/4

for the choices of δ and η.
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More on convex bandits

Convex bandits is still an active research area with many open problems.

The above regret bound of order O(T 3/4) is suboptimal.

More complicated methods can achieve O(
√
T ) regret but with sub-optimal dependence on d

and worst computational complexities.

More information can be found in Hazan et al. 2016.
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Online learning / adversarial bandit

At each time step t = 1, . . . ,T

- the player observes a context ct ∈ X (optional step)

- the player chooses an action xt ∈ K (compact decision/parameter set);

- the environment chooses a loss function ft : K → [0, 1];

- the player suffers loss ft(xt) and observes

– the losses of every actions: ft(x) for all x ∈ K → full-information feedback

– the loss of the chosen action only: ft(xt) → bandit feedback.

The goal of the player is to minimize his cumulative loss:

L̂T
def
=

T∑
t=1

ft(xt) .
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Stochastic bandit

At each time step t = 1, . . . ,T

- the player observes a context ct ∈ X (optional step)

- the player chooses an arm kt ∈ K (compact decision/parameter set, most often

{1, . . . ,K});
- the player observes

– the rewards of every arm: X k
t ∼ νk for all k ∈ K → full-information feedback

– the reward of the chosen arm only: X kt
t ∼ νkt → bandit feedback.

The goal of the player is to maximize their cumulative reward.
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Regret?

We could use the definition of the regret from adversarial bandits:

Definition (Regret, attempt 1)

RegT = max
k

T∑
t=1

X k
t −

T∑
t=1

X kt
t .

Let’s see why we don’t use that definition.

Notations and assumptions:

- The arm set is [K ] = {1, . . . ,K}.
- µk = EX∼νk [X ], assumed finite for all arms k .

- µ∗ = maxk∈[K ] µ
k .
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The first notion of regret is inadequate

RegT = max
k

T∑
t=1

X k
t −

T∑
t=1

X kt
t .

νk Bernoulli(1/2) for all k ∈ [K ]. µk = 1/2 for all k .

All arms are the same → there is no bad choice and no bad algorithm.

But:

ERegT = E[max
k∈[K ]

T∑
t=1

X k
t ]− T/2

= E[max
k∈[K ]

T∑
t=1

(X k
t − 1/2)]

≈
√
T logK

(See any course/book/wikipedia article on symmetric random walks). 124



Regret definition

We want a regret notion that does not blow up with stochastic fluctuations.

Definition ((Pseudo)-Regret)

The regret is defined as

RegT = max
k

T∑
t=1

µk −
T∑
t=1

µkt = Tµ∗ −
T∑
t=1

µkt .

Recall that µk = EX∼νk [X ].

Most often, we bound the expected regret E[RegT ].

Note that the expectation here is over the random rewards and the randomness of the

algorithm, if there is any.
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Regret decomposition

Suppose that the set of arms is finite: [K ].

Define the gap of arm k ∈ [K ] by ∆k = µ∗ − µk .

RegT = Tµ∗ −
T∑
t=1

µkt =
T∑
t=1

(µ∗ − µkt ) =
T∑
t=1

∆kt =
K∑

k=1

Nk
T∆k ,

where Nk
T =

∑T
t=1 I{kt = k} is the number of pulls of arm k up to time T .

Bounding the regret ⇔ bounding the number of pulls of bad arms
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Stochastic bandit

At each time step t = 1, . . . ,T

- the player observes a context ct ∈ X (optional step)

- the player chooses an arm kt ∈ K (compact decision/parameter set, most often

{1, . . . ,K});
- the player observes the reward of the chosen arm only: X kt

t ∼ νkt (independent of

other rewards).

The goal of the player is to minimize their expected regret: E[RegT ] =
∑K

k=1 E[Nk
T ]∆k .
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Variants and extensions

Setting variants:

- Contextual bandit: X kt
t ∼ νkt (ct), for a known context ct

- Linear bandit: νkt = N (x⊤ckt , 1)

- Structured bandit: the algorithm knows constraints on (µk)k∈[K ], e.g. Lipschitz, linear,

monotone. . .

Goal variants: instead of minimizing the regret, we want to

- Minimize the simple regret: return an arm at time T , and minimize its expected gap.

- Identify the best arm: return an arm at time T , and minimize the probability that its not

one of the best ones.

Relaxed assumptions: rewards not independent, distributions changing with time, etc.
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Convergence to the mean

Main idea: we can estimate the mean of the arms with the empirical mean.

Let (Xs)s∈N be iid random variables with E[|X1|] <∞ and expectated value E[X1] = µ.

Let X̄t =
∑t

s=1 Xs .

Theorem 14 (Strong law of large numbers)

X̄t
a.s.−−→ µ, that is P(X̄t → µ) = 1.

Theorem 15 (Central limit theorem)

If V[X ] = σ2 <∞, then
√
t(X̄t − µ)

d−→ N (µ, σ2).

Problem: those are asymptotic results.

Main question: if I have 15 samples of arm k , how reliable is my estimate for µk ?
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Concentration inequalities

Our main tools are concentration inequalities: bounds on the probability that the empirical

mean (or another statistic) is far from its expected value.

Theorem 16 (Hoeffding’s inequality)

If X1, . . . ,Xt are independent random variables almost surely in [a, b] then for all δ ∈ (0, 1)

we have

P

(
t∑

s=1

Xs − E

[
t∑

s=1

Xs

]
≥ (b − a)

√
t

2
log

1

δ

)
≤ δ .

Equivalently, for all ε ≥ 0,

P

(
t∑

s=1

Xs − E

[
t∑

s=1

Xs

]
≥ ε

)
≤ exp

(
− 2ε2

t(b − a)2

)
.
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Proof

Proof under a sub-Gaussian assumption. Exercise: bounded implies sub-Gaussian.

Assumption: for all s, Xs is σ2-sub-Gaussian, which means that for all λ ∈ R,

E[eλ(Xs−µs )] ≤ e
1
2σ

2λ2

.
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Proof
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Warning: random number of samples

In the analysis of bandit algorithms, we want to bound µ̂k
t − µk , where

µ̂k
t = 1

Nk
t

∑t
s=1 X

ks
s I{ks = k}.

ks is a random variable that depends on all previous rewards.

Issue: µ̂k
t is a sum of a random number of random variables which are not independent.

- µ̂k
t is not unbiased.

- µ̂k
t is not a sum of a fixed number of independent random variables.

- Hoeffding’s inequality does not apply.

How to avoid the difficulty: union bounds, or martingale arguments (see proofs later in the

course).
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Follow the leader

Goal: minimize E[RegT ] = Tµ∗ −
∑T

t=1 µ
kt .

Since the empirical mean of an arm concentrate around its expected value, can we simply pull

the arm with highest empirical mean?

Definition (Follow-The-Leader)

The FTL algorithm first explores each arm once kt = t for k ⩽ K and then pulls arm

kt = argmaxk∈[K ] µ̂
k
t−1 for all t ⩾ K + 1.

Full information: yes, FTL is optimal.

Bandit: answer is no, FTL does not work. It has linear expected regret in most settings.
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FTL still fails
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Explore then commit

Need to not only exploit, but also explore.

Explore-Then-Commit

Parameter: m ⩾ 1.

1. Exploration

- For rounds t = 1, . . . ,mK explore by drawing each arm m times.

- Compute for each arm k its empirical mean of rewards obtained by pulling arm k m times

µ̂k
mK =

1

m

Km∑
s=1

I{ks = k}X k
s .

2. Exploitation: keep playing the best arm argmaxk µ̂
k
mK for the remaining rounds

t = mK + 1, . . . ,T .
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Regret of ETC

Theorem 17 (Thm 6.1, Lattimore and Szepesvári 2019)

If all distributions are bounded in [0, 1] and 1 ⩽ m ⩽ T/K then ETC has expected regret

E[RegT ] ⩽ m
K∑

k=1

∆k + (T −mK )
K∑

k=1

∆k exp
(
−m∆2

k

)
.

- m too large ⇒ too much exploration, linear regret.

- m too small ⇒ too little exploration, linear regret.

- What m should we choose?
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Proof
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Proof
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Finding the right trade-off

Two arms bandit: arm 1 is the best arm, arm 2 has gap ∆.

ETC verifies

E[RegT ] ⩽ m∆+ (T − 2m)∆e−m∆2

.

Theorem 18

If K = 2 and m = max{1,
⌈
log(T∆2)

∆2

⌉
}, then

E[RegT ] ≤ ∆+
1 + log(T∆2)

∆
.

This is a distribution dependent bound, meaning that it depends on the gap.

Issue with those bounds: meaningless if ∆ is small.
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Worst case bound

ETC verifies

E[RegT ] ⩽ m∆+ (T − 2m)∆e−m∆2

.

Theorem 19

If K = 2 and m = max
{
1,
⌈
log(T∆2)

∆2

⌉}
, then

E[RegT ] ≤ min

{
∆+

1 + log(T∆2)

∆
, T∆

}
≲
√
T logT .

This is close to optimal: we can prove a lower bound of order
√
T .

Problems:

- m depends on ∆, which is unknown.

- What can we do for K > 2?
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Homework

The homework is available on my webpage:

http://pierre.gaillard.me/teaching.html

It is due by Jan. 10th 2025.

Upload your notebook using the form on my webpage:

http://pierre.gaillard.me/teaching/online learning uga.php
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Being optimistic

The UCB (Upper-Confidence-Bound) algorithm is a very popular bandit algorithm that has

several advantages over ETC:

- It does not rely on an initial exploration phase but

explores on the fly as rewards are observed.

- Unlike ETC, it does not require knowledge of gaps

and behaves well when there are more than two arms.

For each arm k, it builds a confidence interval on its ex-

pected reward based on past observation

I kt =
[
Lkt ,U

k
t

]
.

It is optimistic, acting as if the best possible rewards are

the real rewards:

kt ∈ argmax
k∈{1,...,K}

Uk
t .
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- Unlike ETC, it does not require knowledge of gaps

and behaves well when there are more than two arms.

For each arm k, it builds a confidence interval on its ex-

pected reward based on past observation

I kt =
[
Lkt ,U

k
t

]
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Confidence intervals

How to design the upper confidence bounds?

→ concentration inequalities. Here Hoeffding’s inequality.

Theorem 20 (Hoeffding’s inequality)

If X1, . . . ,Xt are independent random variables almost surely in [a, b] with same mean µ then

for all δ ∈ (0, 1) we have

P

(
1

t

t∑
s=1

Xs − µ ≥
√

(b − a)2

2t
log

1

δ

)
≤ δ .

Careful: UCB is adaptive, hence µ̂t is not exactly a sum of independent random variables. But

we will make it work.

For rewards in [0, 1]: Uk
t = µ̂k

t−1 +
√

2 log t
Nk

t−1
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UCB

Initialization For rounds t = 1, . . . ,K pull arm kt = t.

For t = K + 1, . . . ,T , choose

kt ∈ argmax
k∈[K ]

{
µ̂k
t−1 +

√
2 log t

Nk
t−1

}
,

and get reward X kt
t .

148



Regret Bound

Theorem 21

If the distributions νk have supports all included in [0, 1] then for all k such that ∆k > 0

E
[
Nk

T

]
⩽

8 logT

∆2
k

+ 2 .

In particular, this implies that the expected regret of UCB is upper-bounded as

E[RegT ] ⩽ 2K +
∑

k:∆k>0

8 logT

∆k
.

Remarks :

- we can also prove E[RegT ] ≲
√
KT log(T ). Close to the optimal O(

√
KT ).

- Deals with multiple gaps, without any knowledge of the gaps, unlike ETC.

- Bounded can be replaced by sub-Gaussian.
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Proof start

Idea: if the means belong to the confidence intervals and the arms are pulled enough, the

algorithm cannot pull a suboptimal arm.

We prove that if kt = k ̸= ∗, then one of these inequalities must be false:

µ∗ ≤ µ̂∗t−1 +

√
2 log t

N∗t−1
← µ∗ smaller than UCB (i)

µk ≥ µ̂k
t−1 −

√
2 log t

Nk
t−1

← µk larger than LCB (ii)

Nk
t−1 ≥

8 log t

∆2
k

← k played enough (iii)
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Proof 2

µ∗ ≤ µ̂∗t−1 +

√
2 log t

N∗t−1
and µk ≥ µ̂k

t−1 −
√

2 log t

Nk
t−1

and Nk
t−1 ≥

8 log t

∆2
k

Prove that if k is pulled at t, then there is a contradiction.
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Proof 3: decomposition wrt events

One of these is false:

µ∗ ≤ µ̂∗t−1 +

√
2 log t

N∗t−1
; µk ≥ µ̂k

t−1 −
√

2 log t

Nk
t−1

; Nk
t−1 ≥

8 log t

∆2
k

Then: E
[
Nk

T

]
⩽ u +

∑T
t=u+1

(
P
{
(i) is false

}
+ P

{
(ii) is false

})
for u =

⌈
8 logT
∆2

k

⌉
.
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Proof 4: probability of the concentration event

We show: P(µk < µ̂k
t−1 −

√
2 log t
Nk

t−1
) ≤ t−3.
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Proof summary

For u = 8 logT
∆2

k
, E
[
Nk

T

]
⩽ u+

∑T
t=u+1

(
P
{
µ∗ > µ̂∗t−1 +

√
2 log t
N∗

t−1

}
+ P
{
µk < µ̂k

t−1 −
√

2 log t
Nk

t−1

})
.

Each of these probabilities is smaller than t−3.

E[RegT ] ≤
8 logT

∆2
k

+ 2
T∑

t=u+1

1

t3
≤ 8 logT

∆2
k

+ 2 .

The bound of the regret then comes from E[RegT ] =
∑

k E[Nk
T ]∆k .
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Other Algorithms: ε-greedy

ε-greedy

First choose a parameter ε ∈ (0, 1), then at each round, select the arm with the highest

empirical mean with probability ε (i.e., be greedy), and explore by playing a random arm with

probability ε.

Works quite well in practice and is used in many application because of its simple

implementation (in particular in reinforcement learning).

Choosing ε ≈ K/(∆2T ) yields to an upper-bound of order K logT/∆2. However it requires

the knowledge of ∆.
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Other Algorithms: Thompson Sampling

Thompson Sampling

Thomson sampling was the first algorithm proposed for bandits by Thomson in 1933. It

assumes a uniform prior over the expected rewards µi ∈ (0, 1), then at each round t ⩾ 1, it

- computes ν̂k,t the posterior distribution of the rewards of each arm k given the rewards

observed so far;

- samples xk,t ∼ ν̂k,t independently;
- selects kt ∈ argmaxk∈{1,...,K} xk,t .

Thomson sampling has a similar upper-bound of order O(K logT/∆) than the one achieved by

UCB. Somewhat different proof techniques.

An advantage over UCB is the possibility of incorporating easily prior knowledge on the arms.

UCB proved easier to adapt to structured bandits (it can be hard to sample a posterior

conditioned on structural information).
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Stochastic Linear Bandits
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Stochastic Linear Bandits - Motivation

Main motivation: use contexts.

Unknown parameter: µ∗ ∈ Rd .

At each time step t = 1, . . . ,T

- the environment chooses Kt ⊆ Rd , the decision set;

- the player chooses an action xt ∈ Kt ;

- given xt , the environment draws the reward

Xt = x⊤
t µ

∗ + εt

where εt is i.i.d. 1-subgaussian noise. (∀λ > 0, E
[
exp(λεt)

]
⩽ exp(λ2/2))

- the player only observes the feedback Xt .
The player wants to minimize its expected regret defined as

ERegT
def
= E

[
T∑
t=1

max
x∈Kt

x⊤µ∗ −
T∑
t=1

x⊤
t µ

∗

]
.
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Examples

- Finite-armed bandit: if Kt = (e1, . . . , ed), unit vectors in Rd and µ∗ = (µ1, . . . , µd), we

recover the setting of finite-armed bandit (with d arms).

- Contextual linear bandit: if ct ∈ X is a context observed by the player and the reward

function µ is of the form

µ(x , x) = ψ(x , x)⊤µ∗, ∀(x , x) ∈ [K ]×X ,

for some unknown parameter µ∗ ∈ Rd and feature map ψ : [K ]×X → Rd .

- Combinatorial bandit: Kt ⊆ {0, 1}d → combinatorial bandit problems. Example: decision

set = possible paths in a graph, the vector µ∗ assigns to each edge a reward corresponding

to its cost and the goal is to find the smallest path with smallest cost.
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Algorithmic principle: optimism

Algorithm LinUCB - UCB for linear bandits.

- Build confidence region for the parameter: Ct such that µ∗ ∈ Ct with high probability.

- Build confidence bounds for the arm means: Ux
t = maxµ∈Ct x

⊤µ.

- Be optimistic: pull xt = argmaxx U
x
t .

Main question: how do we get Ct?
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Confidence region

After time t, the algorithm observed:

X1 = x⊤1 µ
∗ + ε1

X2 = x⊤2 µ
∗ + ε2

. . .

Xt = x⊤t µ
∗ + εt

The unknown parameter we want to estimate is µ∗.

Denoting by Id the d × d identity matrix and picking λ > 0, we can estimate µ∗ with

regularized least square

µ̂t
def
= argmin

µ∈Rd

{
t∑

s=1

(Xs − x⊤s µ
)2

+ λ∥µ∥2
}

= V−1t

t∑
s=1

xsXs ,

where Vt
def
= λId +

∑t
s=1 xsx

⊤
s .
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Confidence region

Lemma 3

Let δ ∈ (0, 1). Then, with probability at least 1− δ, if maxx∈Kt ∥x∥2 ⩽ 1, for all t ⩾ 1

∥∥µ̂t − µ∗
∥∥
Vt

⩽
√
λ∥µ∗∥+

√
2 log(1/δ) + d log

(
1 +

T

λ

)
def
= β(δ) ,

where ∥µ∥2Vt
= µ⊤Vtµ.

Conclusion: with probability 1− δ, for all t ⩾ 1,

µ∗ ∈ Ct , where Ct
def
=
{
x ∈ Rd :

∥∥µ− µ̂t−1
∥∥
Vt−1

⩽ β(δ/T )
}
. (14)
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Regret Bound

Theorem 22

Let T ⩾ 1 and µ∗ ∈ Rd . Assume that for all x ∈ ∪Tt=1Kt , |x⊤µ∗| ⩽ 1, ∥µ∗∥ ⩽ 1 and

∥x∥ ⩽ 1, then LinUCB with Ct defined as above satisfies the regret bound

ERegT ⩽ □λd
√
T log(T ) ,

where □λ is a constant that may depend on λ.

Remark:

- O(
√
T ): the exponent does not depend on d .
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Proof

With probability 1− 1/T , for all t ⩾ 1,

µ∗ ∈ Ct , where Ct
def
=
{
x ∈ Rd :

∥∥µ− µ̂t−1
∥∥
Vt−1

⩽ β(1/T 2)
}
.
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Proof 2
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Proof 3
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Summary

LinUCB with Ct defined as above satisfies the regret bound

ERegT ≲ d
√
T log(T ) ,

To prove it, we assumed the following lemma:

Lemma 4

Let δ ∈ (0, 1). Then, with probability at least 1− δ, if maxx∈Kt ∥x∥2 ⩽ 1, for all t ⩾ 1

∥∥µ̂t − µ∗
∥∥
Vt

⩽
√
λ∥µ∗∥+

√
2 log(1/δ) + d log

(
1 +

T

λ

)
def
= β(δ) ,

where ∥µ∥2Vt
= µ⊤Vtµ.
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Improvements

Under additional assumptions, it is possible to improve the regret bound O(d
√
T logT ).

- If the set of available actions at time t is fixed and finite; i.e., xt ∈ K where |K| = K .

Then, it is possible to achieve

ERegT ⩽ □
√
Td log(TK ) ,

which improves the previous bound by a factor
√
d/ log(K ) and improves the classical

bound of UCB O(
√
TK logT ) by a factor K/

√
d .

- Another possible improvement when d ≫ 1 is to assume that µ∗ is m0-sparse (i.e., most

of its components are zero). Then under assumptions, one can get a regret of order

Õ(
√
dm0T ).

168



References

Thank you!
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