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Balancing the power grid

Electricity is hard to store
−→ production - demand balance must be maintained

Production (supply) Consumption (demand)

Current solution: forecast demand and adapt production accordingly

▶ Adapting production is hard:

▶ Integration of renewable energy → intermittent nature
▶ Energy importation → costly alternative



Demand-Side Management

▶ Prospective solutions: manage demand instead

Generation (supply) Consumption (demand)

▶ Send incentive signals (prices)

▶ Control flexible devices



Control of flexible devices

▶ TCLs: Thermostatically Controlled Loads
▶ Electrical heating or cooling elements controlled by a thermostat: water-heaters, ar

conditioners, refrigerators, etc
▶ Flexible loads

▶ New Smart meters
▶ Access to data and instantaneous communication



Control of flexible devices: example of water heaters

Goal: Control the average consumption of M ≫ 1 water-heaters

Individual consumption
(time step n)

1 2 i M

ON1
nON2

n ON i
n ONM

n

Average consumption
(time step n)

=⇒ 1
M

∑M
i=1ON i

n

in order to track a reference consumption profile (γn) by sending a control signal (πn)

πn =⇒

device 1 → ON1
n

device i → ON i
n

device M → ONM
n

=⇒ 1

M

M∑
i=1

ON i
n︸ ︷︷ ︸

average cons.

≈ γn︸︷︷︸
target
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Setting and Model



Episodic Markov Decision Processes

▶ (X ,A) finite state and action spaces;
episodes of length N

▶ Agent starts at (x0, a0) ∼ µ0(·)
▶ At step n ∈ {1, . . . , N}:

▶ The agent: observes state xn and takes
action an ∼ πn(·|xn)

▶ The environment: generates next state
xn+1 ∼ pn(·|xn, an)

Agent Environment

State xn ∼ pn(·|xn, an)

Action an ∼ πn(·|xn)

State-action distribution sequence:

µπ,p
n (x, a) = P

(
xn = x, an = a|π, p

)



Water-heater uncontrolled dynamics

▶ [Tmin, Tmax] = temperature deadband

drain

Joule effect

heat loss
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Example: water-heater modeled as an episodic MDP
▶ Agent = water-heater; x = (ON , temperature); n = an hour; a = to turn/keep on/off;

▶ Dynamics: xn+1 ∼ pn(·|xn, an) probability of water withdraws (showers, etc), and quality of
service

▶ M water-heaters

πn
Average consumption

= 1
M

∑M
i=1 ON i

n

▶ Goal: Given a consumption profile target γ, compute π such that

1

M

M∑
i=1

ON i
n(π) ≈ γn

▶ Optimization problem:

min
π∈Π

E

[
N∑

n=1

(
1

M

M∑
i=1

ON i
n(π)− γn

)2
]
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Mean-field approximation

▶ Optimization problem:

min
π∈Π

E

[
N∑

n=1

(
1

M

M∑
i=1

ON i
n(π)− γn

)2
]

▶ Mean Field Limit (M ≫ 1):

1

M

M∑
i=1

ON i
n(π) −−−−→

M→∞
Eµπ,p

n
[ONn]

▶ Goal after mean-field limit:

min
π∈Π

{
F (µπ,p) :=

N∑
n=1

(
Eµπ,p

n
[ONn]− γn

)2}
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Reinforcement Learning (RL)
▶ Environment generates a loss

ℓ = (ℓn)n∈[N ], ℓn : X ×A → R

RL min
π∈Π

E
[∑N

n=1 ℓn(xn, an)
∣∣π, p]

Convex RL (CURL)
▶ For any convex loss F over the

state-action distribution

CURL min
π∈Π

F (µπ,p)

Examples:
▶ Pure RL exploration: F (µπ,p) := ⟨µπ,p, log(µπ,p)⟩
▶ Imitation learning: F (µπ,p) := Df (µ

π,p, µ∗), where Df is a Bregman divergence induced by a
function f

CURL’s non-linearity invalidates classical Bellman equations requiring new algorithms
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Today:

▶ Optimization task: how to solve

minπ∈Π F (µπ,p)

when p = (pn)n and F are known and fixed?

▶ Online Learning task: Real-world tasks are non-stationary!
▶ Fluctuations of energy production: ⇒ changing F t

▶ Unknown and non-stationary consumer behavior: ⇒ changing pt

▶ How to compute (πt)t∈[T ] minimizing

∑T
t=1 F

t(µπt,pt)

when p = (pn)n and F are unknown and may change?
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Optimization task: offline CURL



Problem reformulation

min
π∈Π

F (µπ,p)

gradient on π? convexity?

=⇒ min
µ∈?

F (µ)

gradient on µ! convexity!

Mp
µ0

:=

{
(µn)n

∣∣∑
a′

µn(x
′, a′) =

∑
x,a

pn(x
′|x, a)µn−1(x, a)

}

µ ∈ Mp
µ0

−→ π ∈ Π such that µπ,p = µ
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Iterative scheme
▶ Consider the following iterative scheme at iteration k

µk+1 ∈ argmin
µπ∈Mp

µ0

{
⟨∇F (µk), µπ⟩+ 1

τk
Γ(µπ, µk)

}
(1)

▶ where Γ is a non-standard regularization

Γ(µπ, µπ′
) :=

N∑
n=1

E(x,a)∼µπ
n(·)

[
log

(
πn(a|x)
π′
n(a|x)

)]

▶ Dynamic Programming yielding in a simple closed-form solution for (1):

µk+1 := µπk+1
such that

πk+1
n (a|x) :=

πk
n(a|x) exp

(
τkQ̃

k
n(x, a)

)
∑

a′∈A πk
n(a

′|x) exp
(
τkQ̃k

n(x, a
′)
)
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Convergence analysis

Theorem
Let π∗ be a minimizer of Offline CURL and K be the number of iterations, thus

min
0≤s≤K

F (µπs
)− F (µπ∗

) ≤ O
(√Γ(µπ∗ , µ0)√

K

)

Proof idea:

▶ Show Γ is a Bregman divergence and is 1-strongly convex with respect to the
sup1≤n≤N ∥ · ∥1 norm

▶ The classic convergence proof of mirror descent applies Beck and Teboulle 2003
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Target = uncontrolled dynamics + deviation
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(b) Eight hours step deviation signal.

▶ Nb of water-heaters = 104

▶ Time horizon = one day
▶ Time step = 10 minutes
▶ Heaters are homogeneous and randomly initialised
▶ Drains adapted from SMACH data



Results
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(a) Consumption simulation
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(b) Objective function

▶ FP-MFG = Fictitious Play for mean field games Perrin et al. 2020



Online learning task: unknown but fixed dynamics



Online setting: unknown but fixed dynamics
Assumptions:

▶ T episodes

▶ Unknown, but fixed, dynamics (pn)n∈[N ]

▶ Adversarial objective functions F t

Online Protocol
▶ π1 initial policy, µ0 initial state-action distribution:
▶ for each episode t ∈ {1, . . . , T}:

▶ (xt
0, a

t
0) ∼ µ0(·)

▶ for each time step n ∈ {1, . . . , N}:
▶ agent moves to xt

n ∼ pn(·|xt
n−1, a

t
n−1)

▶ choose at
n ∼ πt

n(·|xt
n)

▶ observe F t (full-information)
▶ update probability transition estimate p̂t+1

▶ compute next policy πt+1



Questions:

▶ How to compute the probability transition estimate p̂t?

▶ How to compute the next policy πt+1?

Exploration: play a policy
that explores

Exploitation: play the
current optimal policy

Performance measure: Minimize the regret

RT (π) :=
T∑
t=1

F t(µπt,p)−min
π∈Π

T∑
t=1

F t(µπ,p).



Questions:

▶ How to compute the probability transition estimate p̂t?

▶ How to compute the next policy πt+1?

Exploration: play a policy
that explores

Exploitation: play the
current optimal policy

Performance measure: Minimize the regret

RT (π) :=
T∑
t=1

F t(µπt,p)−min
π∈Π

T∑
t=1

F t(µπ,p).



Computing p̂t

▶ N t
n(x, a) = #(x, a) is visited at time step n up to episode t

▶ M t
n(x

′|x, a) = # event above is followed by a transition to x′

p̂tn(x
′|x, a) = M t

n(x
′|x, a)

max {1, N t
n(x, a)}

Proposition (Neu, Gyorgy, and Szepesvari 2012)
For any δ ∈ (0, 1)

∥pn(·|x, a)− p̂tn(·|x, a)∥1 ≤

√√√√4|X | log
(

|X ||A|NT
δ

)
max {1, N t

n(x, a)}

holds, with probability at least 1− δ simultaneously for all (n, x, a, t).



Computing πt+1

Mirror descent with p̂t+1 (as in Offline CURL)

µt+1 := argmin
µ∈Mp̂t+1

µ0

{
τ⟨∇F t(µπt,p̂t), µ⟩+ Γ(µ, µt)

}



Computing πt+1

Define a bonus vector:

btn(x, a) ∝
1√

max {1, N t+1
n (x, a)}

.

Solve at each episode

µt+1 := argmin
µ∈Mp̂t+1

µ0

{
τ⟨∇F t(µπt,p̂t)− bt, µ⟩+ Γ(µ, µt)

}



Computing πt+1

Define a bonus vector:

btn(x, a) ∝
1√

max {1, N t+1
n (x, a)}

.

Solve at each episode

µt+1 := argmin
µ∈Mp̂t+1

µ0

{
τ⟨∇F t(µπt,p̂t)− bt, µ⟩+ Γ(µ, µt)

}



Regret analysis

Theorem (Online CURL with exploration)

With probability at least 1− δ, Mirror Descent with the exploration bonus
achieves

RT (π) = Õ
(
LN3|X |

√
|A|T

)
Main challenges:

▶ Mirror descent with changing constraint sets

▶ Building the exploration bonus



Environment
▶ 11× 11 four-room grid world

▶ Actions = up, down, left, right, still

▶ εn = external noise

xn+1 = xn + an + εn

Objective:

(a) Initial distribution (b) Objective (reward in yellow,
constraints in blue)



Results

Constrained MDP task after 1000 iterations.

Greedy MD-CURL mean
distributions over all steps

n ∈ [40]

onus O-MD-CURL
distribution at last step

n = 40

Greedy MD-CURL
distribution at last step

n = 40



Average Regret
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Works of Bianca on the subject

Application to demand side management:
� Bianca Marin Moreno et al. (2023). “(Online) Convex Optimization for Demand-Side

Management: Application to Thermostatically Controlled Loads”.

Learn fixed policy π with unknown fixed dynamics p, evolving adversarial
losses F t:
� Bianca Marin Moreno, Khaled Eldowa, et al. (2025). “Online Episodic Convex Reinforcement

Learning”.

Learn time-varying policies πt with unknown non-stationary dynamics pt and
evolving adversarial losses F t

� Bianca Marin Moreno, Margaux Brégère, et al. (2024). “MetaCURL: Non-stationary Concave

Utility Reinforcement Learning”.

How to avoid episodic restarts?
� Bianca Marin Moreno, Pierre Gaillard, et al. (2025). “Online Markov Decision Processes with

Terminal Law Constraints”.



Thank you for your attention!

Questions?

Bianca M. Moreno Pierre Gaillard
Inria, LJK

Margaux Brégère
EDF R&D

Nadia Oudjane
EDF R&D
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