Séminaire scientifique - LabEx EnergyAlps

Session 2 : Approches mathématiques

Online Convex Optimisation for Demand-Side
Management
Pierre Gaillard (LJK)

Université Grenoble Alpes

/\I"/‘,EnergyAlps



Collaborators

This work was carried out as part of the Cifre PhD at EDF R&D of B. Marin Moreno.

Bianca M. Moreno Pierre Gaillard Margaux Brégere Nadia Oudjane
Inria, LJK EDF R&D EDF R&D
_ _ %EnergyAlps
Thanks to Bianca for many of these slides. universits Grenoble Alpes



Balancing the power grid

Electricity is hard to store
— production - demand balance must be maintained

B m &9 lag &7

Production (supply) A Consumption (demand)

Current solution: forecast demand and adapt production accordingly
» Adapting production is hard:

» Integration of renewable energy — intermittent nature
» Energy importation — costly alternative
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Demand-Side Management

» Prospective solutions: manage demand instead

Q;ui\' [T, hi

Generation (supply) A Consumption (demand)

» Send incentive signals (prices)

» Control flexible devices
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Control of flexible devices

» TCLs: Thermostatically Controlled Loads

» Electrical heating or cooling elements controlled by a thermostat: water-heaters, ar
conditioners, refrigerators, etc
P Flexible loads

» New Smart meters
» Access to data and instantaneous communication
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Control of flexible devices: example of water heaters

Goal: Control the average consumption of M > 1 water-heaters
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Control of flexible devices: example of water heaters

Goal: Control the average consumption of M > 1 water-heaters

Individual consumption Average consumption
tlme step n) (time step n)
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Control of flexible devices: example of water heaters

Goal: Control the average consumption of M > 1 water-heaters

Individual consumption Average consumption
tlme step n) (time step n)

-4 - s

ON}ON? ON} ONM

in order to track a reference consumption profile (,,) by sending a control signal (7,)
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Setting and Model
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Episodic Markov Decision Processes

» (X, A) finite state and action spaces;

episodes of length V State 2 ~ pn(-|n; an)

» Agent starts at (xg,ag) ~ po(+)

» The agent: observes state x,, and takes

action an ~ mp(+|zn) Action a,, ~ 7, (+|2y)
P> The environment: generates next state

Tp41 pn(|xna an)

State-action distribution sequence:

TP

pnP(x,a) = P(x, = z,a, = a|m,p)
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Water-heater uncontrolled dynamics

» [Tiin, Tmax] = temperature deadband

Joule effect 69
§ | heat loss
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Example: water-heater modeled as an episodic MDP

» Agent = water-heater; © = (ON, temperature); n = an hour; a = to turn/keep on/off;

» Dynamics: Tn+1 ~ Pn(:|Tn,an) probability of water withdraws (showers, etc), and quality of
service
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Example: water-heater modeled as an episodic MDP

Agent = water-heater; © = (ON, temperature); n = an hour; a = to turn/keep on/off;

Dynamics: Zp+1 ~ pn(-|Tn, ar) probability of water withdraws (showers, etc), and quality of
service

M water-heaters

T )

== — 1 Average consumption
_ 1 M i
— =3 2io ON,

8l

Goal: Given a consumption profile target v, compute 7 such that

1L
720]\/}11(71') ~ In
M =1
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Example: water-heater modeled as an episodic MDP

Agent = water-heater; © = (ON, temperature); n = an hour; a = to turn/keep on/off;

Dynamics: Zp+1 ~ pn(-|Tn, ar) probability of water withdraws (showers, etc), and quality of
service

M water-heaters
3] —
™ — Averalge coj\gsumpt_ion
— 1
— = M Z¢:1 ON;,

5,

3
3
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Goal: Given a consumption profile target v, compute 7 such that
1
M Z Oerz(ﬂ') ~ In
i=1
Optimization problem:

>

n=1

min E
well

<% Z ON}, () — 7n> } /‘?‘/\,EnergyAlps
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Mean-field approximation

» Optimization problem:
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Mean-field approximation

» Optimization problem:

M
1 )
AF 2= ON(m) S By [ONa)
=1
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Mean-field approximation

» Optimization problem:

» Mean Field Limit (]\J > 1)'

Z ON}(1) ——— E,=s[ON,)]
M—o0 n

» Goal after mean-field limit:

N
. TPy . 2
i {Fw P)i= 3 (Eyge[ONy] =) }
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Reinforcement Learning (RL) Convex RL (CURL)

» Environment generates a loss » For any convex loss F' over the
€= (la)nein)y bt X X A= R state-action distribution

RL min [E [ SN (2, an) ‘Tr,p} CURL milr% F(u™P)
mell TE
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Reinforcement Learning (RL) Convex RL (CURL)

» Environment generates a loss P For any convex loss I over the
L= (ln)nenys n : X X A =R state-action distribution
RL min(¢, pu™P CURL min F'(p™P
min(é, u™?) min F'(u™)
Examples:

» Pure RL exploration: F(u™?) := (™" log(u™?))

» Imitation learning: F'(u™?) := Ds(u™", u*), where Dy is a Bregman divergence induced by a
function f
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Reinforcement Learning (RL) Convex RL (CURL)

» Environment generates a loss P For any convex loss I over the
L= (ln)nenys n : X X A =R state-action distribution
RL min(¢, pu™P CURL min F'(p™P
min(é, u™?) min F'(u™)
Examples:

» Pure RL exploration: F(u™?) := (™" log(u™?))

» Imitation learning: F'(u™?) := Ds(u™", u*), where Dy is a Bregman divergence induced by a
function f

CURL'’s non-linearity invalidates classical Bellman equations requiring new algorithms
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Today:

» Optimization task: how to solve
mingcpp F(pu™P)

when p = (p,,), and F' are known and fixed?
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Today:

» Optimization task: how to solve
mingcpp F(pu™P)

when p = (p,,), and F' are known and fixed?

» Online Learning task: Real-world tasks are non-stationary!
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Today:

» Optimization task: how to solve
mingcpp F(pu™P)

when p = (p,,), and F' are known and fixed?

» Online Learning task: Real-world tasks are non-stationary!
» Fluctuations of energy production: = changing F"
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Today:

» Optimization task: how to solve
mingcpp F(pu™P)

when p = (p,,), and F' are known and fixed?

» Online Learning task: Real-world tasks are non-stationary!

» Fluctuations of energy production: = changing F"
» Unknown and non-stationary consumer behavior: = changing p’
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Today:

» Optimization task: how to solve
mingcpp F(pu™P)

when p = (p,,), and F' are known and fixed?

» Online Learning task: Real-world tasks are non-stationary!

» Fluctuations of energy production: = changing F"
» Unknown and non-stationary consumer behavior: = changing p’

» How to compute ()¢ minimizing

>y FH ()

when p = (p,,), and F" are unknown and may change?
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Optimization task: offline CURL
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Problem reformulation

1 F ™p
min F(p™F)

& gradient on w7  convexity?
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A gradient on 77

@ gradient on p!

Problem reformulation

1 F TP
min F(p™F)

convexity?

= min F'(u)
pne?

convexity!
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Problem reformulation
min F'(p™P)

mell

A gradient on w7  convexity?

= min F'(u)

pne?
@ gradient on p!  convexity!

My = { 0] Y ) = Sl ()}

z,a

p € Mj — m & Il such that p™" = p %Eﬂﬁﬂ%ﬁﬁlﬁi



lterative scheme

» Consider the following iterative scheme at iteration k

. s 1 s
pFt € arg min {(VF(,uk),u )+ —I'(p nu’k)} (1)
preMy, Tk

» where I' is a non-standard regularization

= %2 [ ()
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lterative scheme

» Consider the following iterative scheme at iteration k
: T 1 s
p € argmin {(VF(Mk)aH )+ —T(p ,M'“)} (1)
preMp, Tk
» where I' is a non-standard regularization

= %2 [ ()

» Dynamic Programming yielding in a simple closed-form solution for (1):
k+1._
phtt =

/ﬂkﬂ such that
wh(alz) exp (Qh (. a)
Sweamh(@o)exp (nQh@ @) gyeneraynips
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Convergence analysis

Theorem
Let ™™ be a minimizer of Offline CURL and K be the number of iterations, thus
s * F(:uﬂ* ) MO)
F —F(um )< Oo(XY—~2
i F(6™) = F(u™) < O(F="72=)
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Convergence analysis

Theorem
Let ™™ be a minimizer of Offline CURL and K be the number of iterations, thus

o )
o2 FG) = F(™) < 00— ")

Proof idea:
» Show I'is a Bregman divergence and is 1-strongly convex with respect to the
SUP1<n<N | - ll1 norm
» The classic convergence proof of mirror descent applies Beck and Teboulle 2003
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Target = uncontrolled dynamics + deviation
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(a) Average consumption. (b) Eight hours step deviation signal.

» Nb of water-heaters = 10*
» Time horizon = one day /\?‘{,EnergyAlps
» Time step = 10 minutes R
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(a) Consumption simulation

» FP-MFG = Fictitious Play for mean field games Perrin et al. 2020

Results

107" A

T T T T
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Iterations

(b) Objective function
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Online learning task: unknown but fixed dynamics
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Online setting: unknown but fixed dynamics

Assumptions:
» T episodes
» Unknown, but fixed, dynamics (p;,),c(n]

» Adversarial objective functions '

Online Protocol

» 7' initial policy, jio initial state-action distribution:

» for each episodet € {1,...,T}:

> (atyab) ~ pio()

» for each time stepn € {1,...,N}:
> agent moves to t, ~ p,(-|zh_1, a5 1)
> choose a!, ~ 7l (-|xL)

» observe F* (full-information)

» update probability transition estimate ptt?

» compute next policy w1
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Questions:

» How to compute the probability transition estimate p?

» How to compute the next policy 7/ *!?

Exploration: play a policy Exploitation: play the
that explores current optimal policy

A
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Questions:

» How to compute the probability transition estimate p?

» How to compute the next policy 7/ *!?

Exploration: play a policy Exploitation: play the
that explores current optimal policy

A

Performance measure: Minimize the regret

T
Ry(m) ::ZFt( gggZFt
=1
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Computing p'

» N'!(x,a) = #(x,a) is visited at time step n up to episode ¢

> M (2'|x,a) = # event above is followed by a transition to z’
M (2'|x, a)

max {1, Ni(z,a)}

Pt (2! |z, a) =

Proposition (Neu, Gyorgy, and Szepesvari 2012)
For any 6 € (0,1)

¥ _ 4|X| log (7|X”“2|NT>
||pn(|x?a) 7pn('|x7a)||1 = max{l,Nfl(x,a)}

holds, with probability at least 1 — ¢ simultaneously for all (n,z, a,t).
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Computing 7!

Mirror descent with p'™! (as in Offline CURL)

= argmin { 7(VF' (1™ 7), p) +F(u,ut)}
St+1
peML"
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Computing 7!

Define a bonus vector:

1

B (2, 0) |
\/max {1, N (z,a)}
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Computing 7!

Define a bonus vector:

1
\/max {1, N (z,a)}

b (2, 0) o«

Solve at each episode

= argmin {7 (VF! (™) — b ) + F(u,ut)}
MGJMI)HJ
1220)
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Regret analysis

Theorem (Online CURL with exploration)
With probability at least 1 — &, Mirror Descent with the exploration bonus

achieves .
Rp(r) = O(LN?|X|/|A|T)

Main challenges:
» Mirror descent with changing constraint sets

» Building the exploration bonus
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Environment

» 11 x 11 four-room grid world
» Actions = up, down, left, right, still
» =, = external noise
Tpal = Ty + an + En

Objective:

(a) Initial distribution (b) Objective (reward in yellow,
constraints in blue) \%EnergyAlps
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Constrained MDP task after 1000 iterations.

Greedy MD-CURL mean onus O-MD-CURL
distributions over all steps distribution at last step
n € [40] n =40
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Results

Greedy MD-CURL
distribution at last step
n =40
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Average Regret

101 _

10048 _
—— Greedy MD-CURL
— Bonus O-MD-CURL

100.6 _
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Iteration
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Works of Bianca on the subject

Application to demand side management:
& Bianca Marin Moreno et al. (2023). “(Online) Convex Optimization for Demand-Side
Management: Application to Thermostatically Controlled Loads”.

Learn fixed policy 7 with unknown fixed dynamics p, evolving adversarial
losses F':
& Bianca Marin Moreno, Khaled Eldowa, et al. (2025). “Online Episodic Convex Reinforcement

Learning”.

Learn time-varying policies 7' with unknown non-stationary dynamics p; and
evolving adversarial losses F*
& Bianca Marin Moreno, Margaux Bréggre, et al. (2024). “MetaCURL: Non-stationary Concave

Utility Reinforcement Learning”.

How to avoid episodic restarts?

& Bianca Marin Moreno, Pierre Gaillard, et al. (2025). “Online Markov Decision Prwsere‘se\rmt})“ps

Umvem(é Grenoble Alpes

Terminal Law Constraints”.



Thank you for your attention!

Questions?

Bianca M. Moreno Pierre Gaillard Margaux Brégere Nadia Oudjane
Inria, LJK EDF R&D EDF R&D
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