ONLINE ACCELERATION OF EXPONENTIAL WEIGHTS

Pierre Gaillard

February 10, 2017

INRIA Paris – SIERRA

This is joint work with Olivier Wintenberger

SETTING

Step by step minimization of i.i.d. convex loss functions¹ $\ell_1, \ldots, \ell_n : \mathbb{R}^d \to \mathbb{R}$.

Assumption 1 (strongly convex risk)

 $\exists \alpha > 0, \theta^* \in \mathbb{R}^d, \ \forall \theta \in \mathbb{R}^d \qquad \boldsymbol{\alpha} \| \theta - \theta^* \|_2^2 \leqslant \mathbb{E} \big[\ell_t(\theta) - \ell_t(\theta^*) \big] \,.$

Setting: for each $t = 1, \ldots, n$

- the learner provides $\widehat{\theta}_{t-1} \in \mathbb{R}^d$ based on past gradients $\nabla \ell_s(\widehat{\theta}_{s-1})$ for $s \leq t-1$
- the environment reveals $\nabla \ell_t(\widehat{\theta}_{t-1})$

Goal: minimize the average risk:

$$\operatorname{Risk}_{n}(\widehat{\theta}_{0:(n-1)}) = \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}[\ell_{t}](\widehat{\theta}_{t-1}) - \mathbb{E}[\ell_{t}](\theta^{*}).$$

Remark 1

- non-Lipschitz gradients
- only the risk needs to be strongly convex (pinball loss)

¹ Cesa-Bianchi and Lugosi, Prediction, Learning, and Games, 2006.

Step by step minimization of i.i.d. convex loss functions¹ $\ell_1, \ldots, \ell_n : \mathbb{R}^d \to \mathbb{R}$.

Assumption 1 (strongly convex risk)

 $\exists \alpha > 0, \theta^* \in \mathbb{R}^d, \ \forall \theta \in \mathbb{R}^d \qquad \boldsymbol{\alpha} \big\| \theta - \theta^* \|_2^2 \leqslant \mathbb{E} \big[\ell_t(\theta) - \ell_t(\theta^*) \big] \,.$

Setting: for each $t = 1, \ldots, n$

- the learner provides $\widehat{\theta}_{t-1} \in \mathbb{R}^d$ based on past gradients $\nabla \ell_s(\widehat{\theta}_{s-1})$ for $s \leq t-1$
- the environment reveals $\nabla \ell_t(\widehat{\theta}_{t-1})$

Goal: minimize the average risk:

$$\operatorname{Risk}_{n}(\widehat{\theta}_{0:(n-1)}) = \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}[\ell_{t}](\widehat{\theta}_{t-1}) - \mathbb{E}[\ell_{t}](\theta^{*}).$$

Remark 2 By convexity of the risk, the averaging $\overline{\theta}_{n-1} := (1/n) \sum_{t=1}^{n} \widehat{\theta}_{t-1}$ has an instantaneous risk upper-bounded by the cumulative risk

$$\operatorname{Risk}(\overline{\theta}_{n-1}) := \mathbb{E}[\ell_n](\overline{\theta}_{n-1}) - \mathbb{E}[\ell_n](\theta^*) \stackrel{\text{Jensen}}{\leqslant} \operatorname{Risk}_n(\widehat{\theta}_{0:(n-1)}).$$

¹ Cesa-Bianchi and Lugosi, Prediction, Learning, and Games, 2006.

Step by step minimization of i.i.d. convex loss functions¹ $\ell_1, \ldots, \ell_n : \mathbb{R}^d \to \mathbb{R}$.

Assumption 1 (strongly convex risk)

 $\exists \alpha > 0, \theta^* \in \mathbb{R}^d, \ \forall \theta \in \mathbb{R}^d \qquad \boldsymbol{\alpha} \big\| \theta - \theta^* \|_2^2 \leqslant \mathbb{E} \big[\ell_t(\theta) - \ell_t(\theta^*) \big] \,.$

 θ^* is d_0 -sparse $\|\theta^*\|_1 \leq U$

Setting: for each $t = 1, \ldots, n$

- the learner provides $\widehat{\theta}_{t-1} \in \mathbb{R}^d$ based on past gradients $\nabla \ell_s(\widehat{\theta}_{s-1})$ for $s \leq t-1$
- the environment reveals $\nabla \ell_t(\widehat{\theta}_{t-1})$

Goal: minimize the average risk:

$$\operatorname{Risk}_{n}(\widehat{\theta}_{0:(n-1)}) = \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}[\ell_{t}](\widehat{\theta}_{t-1}) - \mathbb{E}[\ell_{t}](\theta^{*}).$$

Remark 2 By convexity of the risk, the averaging $\overline{\theta}_{n-1} := (1/n) \sum_{t=1}^{n} \widehat{\theta}_{t-1}$ has an instantaneous risk upper-bounded by the cumulative risk

$$\operatorname{Risk}(\bar{\theta}_{n-1}) := \mathbb{E}[\ell_n](\bar{\theta}_{n-1}) - \mathbb{E}[\ell_n](\theta^*) \stackrel{\text{Jensen}}{\leqslant} \operatorname{Risk}_n(\widehat{\theta}_{0:(n-1)}).$$

Step by step minimization of i.i.d. convex loss functions $\ell_1, \ldots, \ell_n : \mathbb{R}^d \to \mathbb{R}$.

Assumption 1 (strongly convex risk)

 $\exists \alpha > 0, \theta^* \in \mathbb{R}^d, \ \forall \theta \in \mathbb{R}^d \qquad \frac{\alpha}{\|\theta - \theta^*\|_2^2} \leqslant \mathbb{E} \left[\ell_t(\theta) - \ell_t(\theta^*) \right].$

 θ^* is d_0 -sparse $\|\theta^*\|_1 \leq U$

Setting: for each $t = 1, \ldots, n$

- the learner provides $\widehat{\theta}_{t-1} \in \mathbb{R}^d$ based on past gradients $\nabla \ell_s(\widehat{\theta}_{s-1})$ for $s \leq t-1$
- the environment reveals $\nabla \ell_t(\widehat{\theta}_{t-1})$

Goal: minimize the average risk:

$$\operatorname{Risk}_{n}(\widehat{\theta}_{0:(n-1)}) = \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}[\ell_{t}](\widehat{\theta}_{t-1}) - \mathbb{E}[\ell_{t}](\theta^{*}).$$

Result

$$\operatorname{Risk}_{n}(\widehat{\theta}_{0:(n-1)}) \lesssim \min\left\{\frac{B^{2}d_{0}\log d\log n}{\alpha n}, UB\sqrt{\frac{\log d}{n}}\right\}$$

where $B \ge \max_{\|\theta\|_1 \le 2U} \|\nabla \ell_t(\theta)\|_{\infty}$.

Step by step minimization of i.i.d. convex loss functions $\ell_1, \ldots, \ell_n : \mathbb{R}^d \to \mathbb{R}$.

Assumption 1 (strongly convex risk)

 $\exists \alpha > 0, \theta^* \in \mathbb{R}^d, \ \forall \theta \in \mathbb{R}^d \qquad \boldsymbol{\alpha} \big\| \theta - \theta^* \|_2^2 \leqslant \mathbb{E} \big[\ell_t(\theta) - \ell_t(\theta^*) \big] \,.$

 θ^* is d_0 -sparse $\|\theta^*\|_1 \leq U$

Setting: for each $t = 1, \ldots, n$

- the learner provides $\widehat{\theta}_{t-1} \in \mathbb{R}^d$ based on past gradients $\nabla \ell_s(\widehat{\theta}_{s-1})$ for $s \leq t-1$
- the environment reveals $\nabla \ell_t(\widehat{\theta}_{t-1})$

Goal: minimize the average risk:

$$\operatorname{Risk}_{n}(\widehat{\theta}_{0:(n-1)}) = \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}[\ell_{t}](\widehat{\theta}_{t-1}) - \mathbb{E}[\ell_{t}](\theta^{*}).$$

Result

$$\operatorname{Risk}_{n}(\widehat{\theta}_{0:(n-1)}) \lesssim \min\left\{\frac{B^{2}d_{0}\log d\log n}{\alpha n}, UB\sqrt{\frac{\log d}{n}}\right\}$$

where $B \ge \max_{\|\theta\|_1 \le 2U} \|\nabla \ell_t(\theta)\|_{\infty}$.

Fast rate : better for large n, α Slow rate : better for small n, α

Procedure	Sequential	Rate	Polynomial
Lasso ¹	×	$\frac{d_0 \log d}{\alpha n}$	\checkmark
EWA + sparsity patern ²	×	$\frac{d_0 \log d}{n}$	×
SeqSEW ³	\checkmark	$\frac{d_0 \log d}{n}$	×
$\ell_1\text{-RDA}$ method ⁴	\checkmark	d n	\checkmark
SAEW	1	$\frac{d_0 \log d}{\alpha n}$	\checkmark

¹ Bunea, Tsybakov, and Wegkamp, "Aggregation for Gaussian regression", 2007.

² Rigollet and Tsybakov, "Exponential screening and optimal rates of sparse estimation", 2011.

³ Gerchinovitz, "Sparsity regret bounds for individual sequences in online linear regression", 2013.

⁴ Xiao, "Dual averaging methods for regularized stochastic learning and online optimization", 2010.

Convex optimization in the $\ell_1\text{-ball}$ with slow rate

Goal: perform online optimization in

$$\mathcal{B}_1\big(\theta_{\mathrm{center}},\varepsilon\big):=\big\{\theta\in\mathbb{R}^d:\|\theta-\theta_{\mathrm{center}}\|_1\leqslant\varepsilon\big\}$$

We define the 2*d* corners of the ℓ_1 -ball $e_k = \theta_{center} \pm \varepsilon(0, \dots, 0, 1, 0, \dots, 0)$

The exponentially gradient forecaster $(EG^{\pm})^5$

At each forecasting instance $t \ge 1$,

- assign to each corner e_k the weight

$$\widehat{\rho}_{k,t-1} = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \nabla \ell_s(\widehat{\theta}_{s-1})^\top e_k\right)}{\sum_{j=1}^{2d} \exp\left(-\eta \sum_{s=1}^{t-1} \nabla \ell_s(\widehat{\theta}_{s-1})^\top e_j\right)}$$

- form parameter $\widehat{\theta}_{t-1} = \sum_{k=1}^{2d} \widehat{p}_{k,t-1} e_k$

Performance: bound on the average regret, if $\theta^* \in \mathcal{B}_1(\theta_{center}, \varepsilon)$ for η well-tuned

$$\sum_{t=1}^n \ell_t(\widehat{\theta}_{t-1}) - \ell_t(\theta^*) \lesssim \varepsilon B \sqrt{\frac{\log d}{n}} \,.$$

The learning rate η can be tuned online (doubling trick, η_t).

⁵ Kivinen and Warmuth, "Exponentiated Gradient Versus Gradient Descent for Linear Predictors", 1997.

PROOF

Lemma (Hoeffding)

 ∇

If X is a random variable with $|X| \leq B$. Then,

$$\forall \eta \in \mathbb{R}, \qquad \mathbb{E}[X] \leqslant -\frac{1}{\eta} \log\left(\mathbb{E}\left[e^{-\eta X}\right]\right) + \frac{\eta B}{4}$$

1. Upper bound the instantaneous gradient

$$\ell_{t}(\widehat{\theta}_{t-1})^{\top}\widehat{\theta}_{t-1} \stackrel{\text{def. of }\widehat{\theta}_{t-1}}{=} \sum_{k=1}^{2d} \widehat{p}_{k,t-1} (\nabla \ell_{t}(\widehat{\theta}_{t-1})^{\top} e_{k})$$

$$\stackrel{\text{Hoeffding}}{\leqslant} -\frac{1}{\eta} \log \left(\sum_{k=1}^{k} \widehat{p}_{k,t} e^{-\eta \nabla \ell_{t}(\widehat{\theta}_{t-1})^{\top} e_{k}} \right) + \frac{\eta B}{4}$$

$$\stackrel{\text{def. of } \widehat{p}_{k,t+1}}{=} -\frac{1}{\eta} \log \left(\frac{\widehat{p}_{k,t}}{\widehat{p}_{k,t+1}} e^{-\eta \nabla \ell_{t}(\widehat{\theta}_{t-1})^{\top} e_{k}} \right) + \frac{\eta B}{4}$$

$$= \nabla \ell_{t}(\widehat{\theta}_{t-1})^{\top} e_{k} + \frac{1}{\eta} \log \frac{\widehat{p}_{k,t+1}}{\widehat{p}_{k,t}} + \frac{\eta B}{4}.$$

2. Sum over all *t*, the sum telescopes

$$\sum_{t=1}^{n} \ell_{t}(\widehat{\theta}_{t-1}) - \ell_{t}(\widehat{\theta}^{*}) \stackrel{\text{lensen}}{\leqslant} \sum_{1}^{n} \nabla \ell_{t}(\widehat{\theta}_{t-1})^{\top} (\widehat{\theta}_{t-1} - \theta^{*}) \leqslant \max_{k=1,\dots,2d} \left\{ \sum_{1}^{n} \nabla \ell_{t}(\widehat{\theta}_{t-1})^{\top} (\widehat{\theta}_{t-1} - e_{k}) \right\}$$
$$\leqslant \max_{k=1,\dots,2d} \left\{ \frac{1}{\eta} \log \frac{\widehat{\rho}_{k,n}}{\widehat{\rho}_{k,0}} + \frac{\eta Bn}{4} \right\} \leqslant \frac{\log(2d)}{\eta} + \frac{\eta Bn}{4}$$

Theorem

Let $0 < \delta < 1$, then if $\theta^* \in \mathcal{B}_1(\theta^*, \varepsilon)$, EG[±] satisfies

$$\alpha \|\bar{\theta}_{n-1} - \theta^*\|_2^2 \overset{\text{strong convexity}}{\leq} \mathbb{E}[\ell_n](\bar{\theta}_{n-1}) - \mathbb{E}[\ell_n](\theta^*) \lesssim \frac{\varepsilon B \sqrt{\log(d/\delta)}}{\sqrt{n}}$$

where $\bar{\theta}_{n-1} = \frac{1}{n} \sum_{t=1}^n \widehat{\theta}_{t-1}$

We observe the slow rate on the risk of order $UB\sqrt{\log(d)/n}$.

Proof:

- Hoeffding inequality for martingal : with high probability

$$\sum_{t=1}^{n} \mathbb{E}[\ell_t](\widehat{\theta}_{t-1}) - \mathbb{E}[\ell_t](\theta^*) \lesssim \sum_{t=1}^{n} \ell_t(\widehat{\theta}_{t-1}) - \mathbb{E}[\ell_t](\theta^*) + \sqrt{n \log(1/\delta)}$$

- Jensen's inequality (convex i.i.d losses):

$$\mathbb{E}[\ell_n](\bar{\theta}_{n-1}) - \mathbb{E}[\ell_n](\theta^*) \leqslant \frac{1}{n} \sum_{t=1}^n \mathbb{E}[\ell_t](\widehat{\theta}_{t-1}) - \mathbb{E}[\ell_t](\theta^*)$$

ACCELERATION : FROM SLOW RATE TO FAST RATE

ACCELERATION: REGULARLY RESTART THE ALGORITHM

Algorithm

Parameters: $U, B, \alpha, \delta > 0$ For sessions $i \ge 1$, Initialization: $\theta_{center} = 0 \in \mathbb{R}^d$, $t_1 = 1$

- Start a new EG^{\pm} in $\mathcal{B}_1(\theta_{\text{center}}, U2^{-i})$ for $t \ge t_i$
- Get the high probability ℓ_1 -ball for $heta^*$

$$\left\|\bar{\theta}_{t-1} - \theta^*\right\|_1^2 \leq d \left\|\bar{\theta}_{t-1} - \theta^*\right\|_2^2 \leq \frac{dU2^{-i}B\sqrt{\log(d/\delta)}}{\alpha\sqrt{t-t_i}} =: C(U,t)^2$$

- Define $t_{i+1} \ge t_i$ as the first time such that $C(U, t_{t_{i+1}}) \le U2^{-(i+1)}$, i.e., for

$$\sqrt{t_{i+1} - t_i} \approx \frac{4dB\sqrt{\log(d/\delta)}}{U2^{-i}\alpha}$$

- $\theta_{\text{center}} \leftarrow \bar{\theta}_{t_{i+1}-1}$

$$\mathbb{E}[\ell_n](\bar{\theta}_{n-1}) - \mathbb{E}[\ell_n](\widehat{\theta}_{t-1}) \lesssim \frac{U2^{-i}B\sqrt{\log(d/\delta)}}{\sqrt{n}}$$

but with $U2^{-i} \approx \frac{dB\sqrt{\log(d/\delta)}}{\sqrt{n}}$.

Algorithm

Parameters: $U, B, \alpha, \delta > 0$ For sessions $i \ge 1$, Initialization: $\theta_{center} = 0 \in \mathbb{R}^d$, $t_1 = 1$

- Start a new EG^{\pm} in $\mathcal{B}_1(\theta_{\text{center}}, U2^{-i})$ for $t \ge t_i$
- Get the high probability ℓ_1 -ball for $heta^*$

$$\left\|\bar{\theta}_{t-1} - \theta^*\right\|_1^2 \leq d\left\|\bar{\theta}_{t-1} - \theta^*\right\|_2^2 \lesssim \frac{dU2^{-i}B\sqrt{\log(d/\delta)}}{\alpha\sqrt{t-t_i}} =: C(U,t)^2$$

- Define $t_{i+1} \ge t_i$ as the first time such that $C(U, t_{t_{i+1}}) \le U2^{-(i+1)}$, i.e., for

$$\sqrt{t_{i+1}-t_i} \approx \frac{4dB\sqrt{\log(d/\delta)}}{U2^{-i}\alpha}$$

- $\theta_{\text{center}} \leftarrow \bar{\theta}_{t_{i+1}-1}$

but v

$$\mathbb{E}[\ell_n](\bar{\theta}_{n-1}) - \mathbb{E}[\ell_n](\widehat{\theta}_{t-1}) \lesssim \frac{U2^{-i}B\sqrt{\log(d/\delta)}}{\sqrt{n}} \lesssim \frac{dB^2\log(d/\delta)}{\alpha n}$$
with $U2^{-i} \approx \frac{dB\sqrt{\log(d/\delta)}}{\alpha \sqrt{n}}$.

Algorithm

Parameters: $U, B, \alpha, \delta > 0$ For sessions $i \ge 1$, Initialization: $\theta_{center} = 0 \in \mathbb{R}^d$, $t_1 = 1$

- Start a new EG^{\pm} in $\mathcal{B}_1(\theta_{\text{center}}, U2^{-i})$ for $t \ge t_i$
- Get the high probability ℓ_1 -ball for $heta^*$

$$\left\|\bar{\theta}_{t-1} - \theta^*\right\|_1^2 \leq d\left\|\bar{\theta}_{t-1} - \theta^*\right\|_2^2 \lesssim \frac{dU2^{-i}B\sqrt{\log(d/\delta)}}{\alpha\sqrt{t-t_i}} =: C(U,t)^2$$

- Define $t_{i+1} \ge t_i$ as the first time such that $C(U, t_{t_{i+1}}) \le U2^{-(i+1)}$, i.e., for

$$\sqrt{t_{i+1}-t_i} \approx \frac{4dB\sqrt{\log(d/\delta)}}{U2^{-i}\alpha}$$

- $\theta_{\text{center}} \leftarrow \bar{\theta}_{t_{i+1}-1}$

but

$$\mathbb{E}[\ell_n](\bar{\theta}_{n-1}) - \mathbb{E}[\ell_n](\widehat{\theta}_{t-1}) \lesssim \frac{U2^{-i}B\sqrt{\log(d/\delta)}}{\sqrt{n}} \lesssim \frac{dB^2\log(d/\delta)}{\alpha n}$$
with $U2^{-i} \approx \frac{dB\sqrt{\log(d/\delta)}}{\alpha\sqrt{n}}$.

Algorithm (SAEW)

Parameters: $U, B, \alpha, \delta > 0, d_0 \ge 1$ For sessions $i \ge 1$, Initialization: $\theta_{center} = 0 \in \mathbb{R}^d$, $t_1 = 1$

- Start a new EG^{\pm} in $\mathcal{B}_1(\theta_{center}, U2^{-i})$ for $t \ge t_i$
- Get the high probability ℓ_1 -ball for θ^*

$$\left\| [\bar{\theta}_{t-1}]_{d_0} - \theta^* \|_1^2 \leqslant d_0 \right\| [\bar{\theta}_{t-1}]_{d_0} - \theta^* \|_2^2 \lesssim \frac{d_0 U 2^{-i} B \sqrt{\log(d/\delta)}}{\alpha \sqrt{t - t_i}} =: C(U, t)^2$$

where $[\bar{\theta}_{t-1}]_{d_0}$ is the d_0 -truncation of $\bar{\theta}_{t-1}$

- Define $t_{i+1} \ge t_i$ as the first time such that $C(U, t_{t_{i+1}}) \le U2^{-(i+1)}$, i.e., for

$$\sqrt{t_{i+1} - t_i} \approx \frac{4d_0 B \sqrt{\log(d/\delta)}}{U 2^{-i} \alpha}$$

- $\theta_{\text{center}} \leftarrow \bar{\theta}_{t_{i+1}-1}$

$$\mathbb{E}[\ell_n](\bar{\theta}_{n-1}) - \mathbb{E}[\ell_n](\widehat{\theta}_{t-1}) \lesssim \frac{U2^{-i}B\sqrt{\log(d/\delta)}}{\sqrt{n}} \lesssim \frac{d_0B^2\log(d/\delta)}{\alpha n}$$

but with $U2^{-i} \approx \frac{d_0B\sqrt{\log(d/\delta)}}{\alpha\sqrt{n}}.$

Figure 1: Logarithm of the ℓ_2 -error of the averaged estimator.

Theorem

The average risk of SAEW is upper-bounded as

$$\operatorname{Risk}_{1:n}(\widehat{\theta}_{0:(n-1)}) \lesssim \min\left\{ UB\sqrt{\frac{\log(d/\delta)}{n}}, \frac{d_0B^2}{\alpha n}\log(d/\delta)\log n + \frac{\alpha U^2}{d_0n}\right\}.$$

Remarks:

- Both rates are optimal (in some sense)
- From the strong convexity assumption, this also ensures

$$\left\|\bar{\theta}_{n-1} - \theta^*\right\|_2^2 \lesssim \min\left\{\frac{UB\sqrt{\log(d/\delta)}}{\alpha\sqrt{n}}, \frac{d_0B^2}{n\alpha^2}\log(d/\delta)\log n + \frac{d_0U^2}{\alpha n}\right\}$$

- the boundness of the gradients $B \ge \max_{\theta \in \mathcal{B}_1(0,2U)} \|\nabla \ell_t(\theta)\|_{\infty}$ can be weakened to unkown B under the subgaussian condition

Theorem

The average risk of SAEW is upper-bounded as

$$\operatorname{Risk}_{1:n}(\widehat{\theta}_{0:(n-1)}) \lesssim \min\left\{ UB\sqrt{\frac{\log(d/\delta)}{n}}, \frac{d_0B^2}{\alpha n}\log(d/\delta)\log n + \frac{\alpha U^2}{d_0n}\right\}.$$

Remarks:

- Both rates are optimal (in some sense)
- From the strong convexity assumption, this also ensures

$$\left\| \frac{\tilde{\theta}_{n-1}}{\alpha \sqrt{n}} - \theta^* \right\|_2^2 \lesssim \min\left\{ \frac{UB\sqrt{\log(d/\delta)}}{\alpha \sqrt{n}}, \frac{d_0B^2}{n\alpha^2}\log(d/\delta)\log n + \frac{d_0U^2}{\alpha n^2} \right\}$$

where $\tilde{\theta}_{n-1} = (t_i - t_{i-1})^{-1} \sum_{t=t_{i-1}}^{t_i-1} \widehat{\theta}_{t-1}$ for $t_i \leqslant n \leqslant t_{i+1}$

- the boundness of the gradients $B \ge \max_{\theta \in \mathcal{B}_1(0,2U)} \|\nabla \ell_t(\theta)\|_{\infty}$ can be weakened to unkown *B* under the subgaussian condition

SIMULATIONS

We compare three online optimization procedures:

- RDA⁶: *l*₁-regularized dual averaging method

$$\widehat{\theta}_{t} = \underset{\theta \in \mathbb{R}^{d}}{\arg\min} \left\{ \frac{1}{t} \sum_{s=1}^{t} \underbrace{\nabla \ell_{t} (\widehat{\theta}_{s-1})^{\top} \theta}_{\text{Linearized loss}} + \underbrace{\lambda \|\theta\|_{1}}_{\ell_{1} \text{regularization}} + \underbrace{\frac{\gamma}{\sqrt{t}} \|\theta\|_{2}^{2}}_{\text{force strong-convexity}} \right\}$$

- Good performance for hand-written digits classification Produces sparse estimators: but slow rate, or fast rate with No sparse guarantees
- BOA⁷: exponential weights with second order regularization ($\approx EG^{\pm}$ with good tuning and high probability properties). no fast rate in the l₂-ball
 - d achieves fast rate for expert selection
- SAFW: our acceleration of BOA

All methods are tuned in hindsight with the best parameters on a grid.

Xiao, "Dual averaging methods for regularized stochastic learning and online optimization", 2010

Wintenberger, "Optimal learning with Bernstein Online Aggregation", 2014

Let $(X_t, Y_t) \in [-X, X]^d \times [-Y, Y]$ be i.i.d. random pairs (X, Y > 0).

Goal: estimate linearly Yt by approaching

$$\theta^* \in \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \mathbb{E} [(Y_t - X_t^{\top} \theta)^2]$$

The strong convexity assumption is achieved with $\alpha \leq \lambda_{\min}(\mathbb{E}[X_t X_t^{\top}])$.

Experiment: $X_t \sim \mathcal{N}(0, 1)$ for d = 500, n = 2000

$$Y_t = X_t^{\top} \theta^* + 0.1 \varepsilon_t$$
 with $\varepsilon_t \sim \mathcal{N}(0, 1)$ i.i.d.

where $d_0 = \|\theta^*\|_0 = 5$, $U = \|\theta^*\|_1 = 1$ with non-zero coordinates i.i.d. $\propto \mathcal{N}(0, 1)$, $\alpha = 1$.

Figure 2: Boxplot (30 simulations)

least square regression with $d_0 = 5$, d = 500, $\sigma = 0.1$

Figure 3: Log of the ℓ_2 error.

Figure 4: Cumulative risk.

Remarks: the cumulative risks are at most of order:

RDA: $\sigma^2 d \log n$ BOA: $\sigma^2 \sqrt{n \log d} + \log d$ SAEW: $\sigma^2 d_0 \log d \log n + \log d$ In practice: much better performance if we allow multiple pass on the training set. **Simulation:** least square regression with $d_0 = 2$, d = 2, $\sigma = 0.3$

Figure 5: Cumulative risk for square linear regression with $d = d_0 = 2$.

Let X, Y > 0. Let $(X_t, Y_t) \in [-X, X]^d \times [-Y, Y]$ be i.i.d. random pairs.

Theorem
SAEW applied with
$$B = 2X(Y + 2XU)$$
 satisfies
Risk_{1:n} $(\widehat{\theta}_{0:(n-1)}) \lesssim \min \left\{ UX(Y + XU) \sqrt{\frac{\log(d/\delta)}{n}}, \frac{d_0 X^2 (Y^2 + X^2 Y^2)}{\alpha n} \log \frac{d}{\delta} \log n + \frac{\alpha U^2}{d_0 n} \right\}.$

A better tunning of EG^{\pm} with $\eta_t \approx 1/\sqrt{\sum_{s=1}^t \|\nabla \ell_s(\hat{\theta}_{s-1})\|_{\infty}^2}$ alows to substituted B^2 with $X^2\sigma^2$ with

$$\sigma^2 = \mathbb{E}\left[(Y_t - X_t^\top \theta^*)^2\right].$$

in the instantaneous risk of $\tilde{\theta}_{n-1}$.

Let X, Y > 0. Let $(X_t, Y_t) \in [-X, X]^d \times [-Y, Y]$ be i.i.d. random pairs.

Theorem

SAEW applied with B = 2X(Y + 2XU) satisfies

$$\operatorname{Risk}\left(\tilde{\theta}_{n-1}\right) \lesssim \min\left\{\sigma\sqrt{\frac{\log(d/\delta)}{n}}, \frac{d_0X^2\sigma^2}{n\alpha}\log\frac{d}{\delta} + \frac{\alpha U^2}{d_0n^2}\right\}.$$

A better tunning of EG^{\pm} with $\eta_t \approx 1/\sqrt{\sum_{s=1}^t \|\nabla \ell_s(\widehat{\theta}_{s-1})\|_{\infty}^2}$ alows to substituted B^2 with $X^2\sigma^2$ with

$$\sigma^2 = \mathbb{E}\left[(\mathbf{Y}_t - \mathbf{X}_t^{\top} \boldsymbol{\theta}^*)^2\right].$$

in the instantaneous risk of $\tilde{\theta}_{n-1}$.

🖕 Optimal rate for sparse least square regression.

The algorithm needs to know : $d_0, U, B, \alpha, \delta$

и Run a meta-algorithm (BOA⁸) with parameters in a growing grid.

👎 We leave the initial setting since we need

- to observe the gradients of all sub-algorithms.
- to clip the predictions $\widehat{\theta}_{t-1}^{\top}X_t \to [\widehat{\theta}_{t-1}^{\top}X_t]_{[-Y,Y]}$ otherwise we pay the maximal value of *U* considered in the final bound.
- we need strongly convex ℓ_t (instead of $\mathbb{E}[\ell_t]$ only)

┢ This works to build an estimator for least square regression.

Theorem (Calibrated SAEW for Least Square Linear Regression)

The excess risk of the estimator produced by the meta-algorithm is of order

$$\mathcal{O}_n\left(\frac{Y^2}{n}\log\left(\frac{(\log d)(\log n + \log Y)}{\delta}\right)_{\text{Price of calibration}} + \underbrace{\frac{d_0 X^2 \sigma^2}{\alpha^* n}\log\left(d/\delta\right)}_{\text{Fast rate with best }\alpha^*, d_0}\right),$$

where α^{*} is the largest stong-convexity parameter.

Can we substitute α^* with local strong convexity (cf. Lasso)?

⁸ Wintenberger, "Optimal learning with Bernstein Online Aggregation", 2014.

Let $\tau \in (0, 1)$. Let $(X_t, Y_t) \in \mathbb{R}^d \times \mathbb{R}$ be i.i.d. random pairs.

Goal: estimate the conditional τ -quantile of Y_t given X_t .

Popular solution: linear regression with the pinball loss by $\rho_{\tau} : u \in \mathbb{R} \to u(\tau - \mathbb{1}_{u < 0})$ The conditional quantile $q_{\tau}(Y_t|X_t)$ is the solution of

$$q_{\tau}(Y_t|X_t) \in \operatorname*{arg\,min}_{q} \mathbb{E}\left[\rho_{\tau}(Y_t - g(X_t))|X_t\right].$$

 \rightarrow minimize the pinball loss q_{τ} = τ -quantile prediction

 $\overset{?}{\downarrow}$ non-strongly convex loss $\overset{\bullet}{\bullet}$ strongly convex risk⁹ \rightarrow ok for fixed parameter

Let $\tau \in (0, 1)$. Let $(X_t, Y_t) \in \mathbb{R}^d \times \mathbb{R}$ be i.i.d. random pairs.

Goal: estimate the conditional τ -quantile of Y_t given X_t .

Popular solution: linear regression with the pinball loss by $\rho_{\tau} : u \in \mathbb{R} \to u(\tau - \mathbb{1}_{u < 0})$ The conditional quantile $q_{\tau}(Y_t|X_t)$ is the solution of

$$q_{\tau}(Y_t|X_t) \in \operatorname*{arg\,min}_{q} \mathbb{E}\left[\rho_{\tau}(Y_t - g(X_t))|X_t\right].$$

 \rightarrow minimize the pinball loss q_{τ} = τ -quantile prediction

 $\overset{?}{\downarrow}$ non-strongly convex loss $\overset{\bullet}{\bullet}$ strongly convex risk⁹ \rightarrow ok for fixed parameter

Let $\tau \in (0, 1)$. Let $(X_t, Y_t) \in \mathbb{R}^d \times \mathbb{R}$ be i.i.d. random pairs.

Goal: estimate the conditional τ -quantile of Y_t given X_t .

Popular solution: linear regression with the pinball loss by $\rho_{\tau} : u \in \mathbb{R} \to u(\tau - \mathbb{1}_{u < 0})$ The conditional quantile $q_{\tau}(Y_t|X_t)$ is the solution of

$$q_{\tau}(Y_t|X_t) \in \operatorname*{arg\,min}_{q} \mathbb{E}\left[\rho_{\tau}\left(Y_t - g(X_t)\right)|X_t\right].$$

 \rightarrow minimize the pinball loss q_{τ} = τ -quantile prediction

 $^{?}$ non-strongly convex loss **i** strongly convex risk⁹ \rightarrow ok for fixed parameter

Let $\tau \in (0, 1)$. Let $(X_t, Y_t) \in \mathbb{R}^d \times \mathbb{R}$ be i.i.d. random pairs.

Goal: estimate the conditional τ -quantile of Y_t given X_t .

Popular solution: linear regression with the pinball loss by $\rho_{\tau} : u \in \mathbb{R} \to u(\tau - \mathbb{1}_{u < 0})$ The conditional quantile $q_{\tau}(Y_t|X_t)$ is the solution of

$$q_{\tau}(Y_t|X_t) \in \operatorname*{arg\,min}_{q} \mathbb{E}\left[\rho_{\tau}(Y_t - g(X_t))|X_t\right].$$

 \rightarrow minimize the pinball loss q_{τ} = τ -quantile prediction

 $\overset{?}{\downarrow}$ non-strongly convex loss $\overset{\bullet}{\bullet}$ strongly convex risk⁹ \rightarrow ok for fixed parameter

Let $\tau \in (0, 1)$. Let $(X_t, Y_t) \in \mathbb{R}^d \times \mathbb{R}$ be i.i.d. random pairs.

Goal: estimate the conditional τ -quantile of Y_t given X_t .

Popular solution: linear regression with the pinball loss by $\rho_{\tau} : u \in \mathbb{R} \to u(\tau - \mathbb{1}_{u < 0})$ The conditional quantile $q_{\tau}(Y_t|X_t)$ is the solution of

$$q_{\tau}(Y_t|X_t) \in \operatorname*{arg\,min}_{q} \mathbb{E}\left[\rho_{\tau}(Y_t - g(X_t))|X_t\right].$$

 \rightarrow minimize the pinball loss q_{τ} = τ -quantile prediction

 $\overset{?}{\downarrow}$ non-strongly convex loss $\overset{\bullet}{\bullet}$ strongly convex risk⁹ \rightarrow ok for fixed parameter

Let $\tau \in (0, 1)$. Let $(X_t, Y_t) \in \mathbb{R}^d \times \mathbb{R}$ be i.i.d. random pairs.

Goal: estimate the conditional τ -quantile of Y_t given X_t .

Popular solution: linear regression with the pinball loss by $\rho_{\tau} : u \in \mathbb{R} \to u(\tau - \mathbb{1}_{u < 0})$ The conditional quantile $q_{\tau}(Y_t|X_t)$ is the solution of

$$q_{\tau}(Y_t|X_t) \in \operatorname*{arg\,min}_{q} \mathbb{E}\left[\rho_{\tau}\left(Y_t - g(X_t)\right)|X_t\right].$$

 \rightarrow minimize the pinball loss q_{τ} = τ -quantile prediction

? non-strongly convex loss \mathbf{d} strongly convex risk⁹ \rightarrow ok for fixed parameter

Let $\tau \in (0, 1)$. Let $(X_t, Y_t) \in \mathbb{R}^d \times \mathbb{R}$ be i.i.d. random pairs.

Goal: estimate the conditional τ -quantile of Y_t given X_t .

Popular solution: linear regression with the pinball loss by $\rho_{\tau} : u \in \mathbb{R} \to u(\tau - \mathbb{1}_{u < 0})$ The conditional quantile $q_{\tau}(Y_t|X_t)$ is the solution of

$$q_{\tau}(Y_t|X_t) \in \operatorname*{arg\,min}_{q} \mathbb{E}\left[\rho_{\tau}\left(Y_t - g(X_t)\right)|X_t\right].$$

 \rightarrow minimize the pinball loss q_{τ} = τ -quantile prediction

? non-strongly convex loss d strongly convex risk⁹ \rightarrow ok for fixed parameter

Let $\tau \in (0, 1)$. Let $(X_t, Y_t) \in \mathbb{R}^d \times \mathbb{R}$ be i.i.d. random pairs.

Goal: estimate the conditional τ -quantile of Y_t given X_t .

Popular solution: linear regression with the pinball loss by $\rho_{\tau} : u \in \mathbb{R} \to u(\tau - \mathbb{1}_{u < 0})$ The conditional quantile $q_{\tau}(Y_t|X_t)$ is the solution of

$$q_{\tau}(Y_t|X_t) \in \operatorname*{arg\,min}_{q} \mathbb{E}\left[\rho_{\tau}(Y_t - g(X_t))|X_t\right].$$

 \rightarrow minimize the pinball loss q_{τ} = τ -quantile prediction

? non-strongly convex loss d strongly convex risk⁹ \rightarrow ok for fixed parameter

Experiment: $d_0 = 5, d = 100$

Figure 6: Log. of the ℓ_2 -error of $\bar{\theta}_t$

Figure 7: Cumulative risk

All the methods empirically get the fast rate 1/n for the ℓ_2 -error of the estimator... But only SAEW

- has the theoretical guarantee - has $\mathcal{O}(\log n)$ cumulative risk

Some future work:

- Is averaging an efficient acceleration procedure for EG^{\pm} ?
- Calibration of the parameters in the original online optimization setting
- Produce sparse estimators $\widehat{\theta}_{t-1}$
 - \rightarrow improve the dependency on the strong convexity parameter (only local)
- Oracle bound: no assumption on the sparsity of θ^*

Thank you !

REFERENCES

Bunea, F., A. Tsybakov, and M. Wegkamp. "Aggregation for Gaussian regression". In: *The Annals of Statistics* 35.4 (2007), pp. 1674–1697.

Cesa-Bianchi, N. and G. Lugosi. *Prediction, Learning, and Games*. Cambridge University Press, 2006.

Gaillard, P. and O. Wintenberger. "Sparse Accelerated Exponential Weights". Accepted at AISTAT'17. 2017.

Gerchinovitz, S. "Sparsity regret bounds for individual sequences in online linear regression". In: The Journal of Machine Learning Research 14.1 (2013), pp. 729–769.

Kivinen, J. and M. K. Warmuth. "Exponentiated Gradient Versus Gradient Descent for Linear Predictors". In: Information and Computation 132.1 (1997), pp. 1–63.

Rigollet, P. and A. Tsybakov. "Exponential screening and optimal rates of sparse estimation". In: *The Annals of Statistics* (2011), pp. 731–771.

Steinwart, I. and A. Christmann. "Estimating conditional quantiles with the help of the pinball loss". In: *Bernoulli* 17.1 (2011), pp. 211–225.

- Wintenberger, O. "Optimal learning with Bernstein Online Aggregation". In: Extended version available at arXiv:1404.1356 [stat. ML] (2014).
- Xiao, L. "Dual averaging methods for regularized stochastic learning and online optimization". In: Journal of Machine Learning Research 11 (2010), pp. 2543–2596.