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SETTING




THE FRAMEWORK OF THIS TALK

Step by step minimization of i.i.d. convex loss functions' ¢;,..., ¢, : RY — R.
Assumption 1 (strongly convex risk)

Ja> 0,0 €RI, VIR af|6— 03 <E[€(6) — £:(6)] -

Setting: for eacht=1,...,n
- the learner provides ;1 € RY based on past gradients Vés(@,1) fors<t—1
- the environment reveals V4¢(6:—1)

Goal: minimize the average risk:
Riskn (B:(n 1) ZE[&] Bi—1) — E[4](6%).

Remark 1
- non-Lipschitz gradients
- only the risk needs to be strongly convex (pinball loss)

1 Cesa-Bianchi and Lugosi, Prediction, Learning, and Games, 2006. 3
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Riskn (6. <ming —————=— UBy/ ——
iskn(0o:(n—1)) < mi { o  UBY/ —

where B > max|g),<au || V&(0)]]



THE FRAMEWORK OF THIS TALK

Step by step minimization of i.i.d. convex loss functions ¢1, ..., ¢y : R — R.
Assumption 1 (strongly convex risk)
Ja>0,0" €RI, VO €R?  af|6—0%|3 <E[6:(0) — £:(6")] .

0* is do-sparse [|0*|s < U

Setting: for eacht=1,...,n
- the learner provides ;1 € RY based on past gradients Vés(@,1) fors<t—1
- the environment reveals V4¢(6:—1)

Goal: minimize the average risk:

Riskn (8o.(1—1) ZE[&] bi_1) — E[e](67) .
Result
PN .| B%dg logd logn [logd
Riskn(00:(n—1y) < min {M, UB\/ o
where B > maxg),<ou || V4(0)]| .- Fast rate : better for large n, a

Slow rate : better for small n,



COMPARISON WITH OTHER SPARSE ALGORITHMS

Procedure Sequential Rate Polynomial
Lasso’ X % v
EWA + sparsity patern? X w X
SeqSEWS v fylogd x
£,-RDA method* v % v
SAEW v o led v

Bunea, Tsybakov, and Wegkamp, “Aggregation for Gaussian regression”, 2007.

Rigollet and Tsybakov, “Exponential screening and optimal rates of sparse estimation”, 2011.
Gerchinovitz, “Sparsity regret bounds for individual sequences in online linear regression”, 2013.
Xiao, “Dual averaging methods for regularized stochastic learning and online optimization”, 2010.
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CONVEX OPTIMIZATION IN THE #/1-BALL
WITH SLOW RATE




CONVEX OPTIMIZATION IN THE ¢;-BALL WITH SLOW RATE

Goal: perform online optimization in
B'\ (ecenterag) = {9 S Rd . ”9 - 6center”1 < 5}
We define the 2d corners of the ¢1-ball e, = fcenter = €(0,...,0,1,0,...,0)

The exponentially gradient forecaster (EGE)°

At each forecasting instance t > 1,
- assign to each corner e, the weight

exp (= 14| Ves(Bs—1) Ter)
52, exp (= 1300 Ve(Bs-1) ;)

Pk,t—1 =

- form parameter 8y = 329, Dr.r_1€p

Performance: bound on the average regret, if 0* € Bi(Ocenter, €) for n well-tuned
; A
>3 logd
th(ﬂq) —4(07) S 55\/i a
/' n
t=1
The learning rate n can be tuned online (doubling trick, n;).

5 Kivinen and Warmuth, “Exponentiated Gradient Versus Gradient Descent for Linear Predictors”, 1997. 6



PROOF

Lemma (Hoeffding)

If X is a random variable with |X| < B. Then,

—G nB
VneRr, EX < —7og([ AR =
1. Upper bound the instantaneous gradient

= TR defof 01 I PO
Ve (01—1)  Or—s = th,m(v&(et—w) ex)

k=1

fdl K
Hoe< g1 log <Z —nve ()T ) n WTB
k=1

def of P11 log( Prt —nve @) eh> +ﬂ
o

473)

~ B
= V&(Ot,q) ep+ — lOg Dﬁ il + % o

2. Sum over all t, the sum telescopes

" —~ ensen n
> (01) — Zwt Bi)" (b1 —07) < _max {z:va(et DRG= 1—ek)}
t=1

< max d{l logKJ L LB”} < log(2d) + 51
seen2d | M

Pr,0 4 n 4



FROM REGRET BOUND TO HIGH PROBABILITY BOUND

Theorem

Let 0 < & < 1, then if 0* € B1(0*,¢), EGT satisfies

strong convexity wB«/lo (d/9)
a||9n 1—9*H2 < [En](en 1) — E[¢2](67) = /

vn
1 o =
where 0, = — Or—
n—1 n;t‘\

We observe the slow rate on the risk of order UB+/log(d)/n.

Proof:
- Hoeffding inequality for martingal : with high probability

> E[6)(8i-1) — E[6(07) S D 4e(Bem1) — E[e:](6%) + v/nlog(1/5)
t=1

t=1

- Jensen’s inequality (convex i.i.d losses):

El6n] (B-1) — EE1(6°) <~ D" EI1(G-) — E(°)
t=1



ACCELERATION : FROM SLOW RATE TO
FAST RATE




ACCELERATION: REGULARLY RESTART THE ALGORITHM

G 0,
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ACCELERATION: FROM SLOW RATE 1/1/n TO FAST RATE 1/n

Algorithm

Parameters: U, B, o, § > 0 Initialization: Gcenter = 0 € RY, t = 1
For sessions i > 1,

- Start a new EGE in Bi(fcenter, U2~ ') for t > t;

- Get the high probability ¢,-ball for 6*

_ _ 1 !
11 — 67112 < d|jfics — 072 < 22 BVARG/D) _ ¢y
ay/t—t;

- Define t;,q > t; as the first time such that C(U, tr,,,) < U2~ ie, for

e L VAE G
i+1 j ~ Vo
- Bcenter G_fr+w—1
After n time steps, we will have the slow rate high probability bound
) o, U2-'B4/log(d/é
E[£n](Bn—1) — E[n](6:-1) S #
vV

but with U2~ ~ 98v/108(0/9)

ay/n
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ACCELERATION: FROM SLOW RATE 1/1/n TO FAST RATE 1/n

Algorithm (SAEW)

Parameters: U, B,a,8 > 0, dy > 1 Initialization: Gcenter = 0 € RY, t = 1
For sessions i > 1,

- Start a new EGE in Bi(fcenter, U2~ ') for t > t;

- Get the high probability ¢,-ball for 6*

- - 1o 'By/
H[()_.]m _ 9*“2 < dw”[““—\]n— _ 9*”2 < w =: C(U, t)2
) avi—F

where [f;_1]4, is the do-truncation of 6,
- Define t;,q > t; as the first time such that C(U, tr,,,) < U2=(#, ie, for

4dyBy/log(d/o
Vi =G~ — o —— (d/9)
(e
= Ocenter G_r,+q—1

After n time steps, we will have the slow rate high probability bound

E[én](én—O*E[gn](é\[—w) < U2-'By/log(d/é) < doB? log(d/s)

~

Vvn an

but with U2~ ~ LBV108(d/9)

ar/Nn



FROM SLOW RATE BOUND TO FAST RATE BOUND : ILLUSTRATION
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Figure 1: Logarithm of the ¢,-error of the averaged estimator.



RESULT: HIGH PROBABILITY BOUND ON THE RISK

Theorem

The average risk of SAEW is upper-bounded as

N 2 2
Riskrn(G:(n_1y) S min {UB,/ log(:/‘;) 908 | og(d/s) logn + (TU}

Remarks:
- Both rates are optimal (in some sense)
- From the strong convexity assumption, this also ensures

2 2
18— 0° B < mm{UB«/log(d/é doB doU }

n , log(d/d)logn +

- the boundness of the gradients B > maXxgep, (0,20) [IV£4i(0)]|oo can be weakened
to unkown B under the subgaussian condition
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Remarks:
- Both rates are optimal (in some sense)
- From the strong convexity assumption, this also ensures

|6 1—9*|I2<mm{UBVlog(d/5 doBZ
n 2 > \/ﬁ 5

where Bn_1 = (t; — ti_1) " 05 G for tj < n < tiyq
- the boundness of the gradients B > maXxgep, (0,20) [IV£4i(0)]|oo can be weakened
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SIMULATIONS

We compare three online optimization procedures:

- RDA®: ¢1-regularized dual averaging method

t

- 1 .

Ht:argmin{—E:VZ[(05,1)T9+ A6l + 012 }
0cRrI tszw Vi

N———— N—— N —
Linearized loss ¢qregularization  force strong-convexity

b Good performance for hand-written digits classification
Produces sparse estimators: but slow rate, or fast rate with
'® No sparse guarantees

- BOA’: exponential weights with second order regularization (=~ EGE with good
tuning and high probability properties).
il achieves fast rate for expert selection '® no fast rate in the ¢,-ball

- SAEW: our acceleration of BOA
All methods are tuned in hindsight with the best parameters on a grid.

Xiao, “Dual averaging methods for regularized stochastic learning and online optimization”, 2010

7 Wintenberger, “Optimal learning with Bernstein Online Aggregation”, 2014



LEAST SQUARE LINEAR REGRESSION

Let (Xt, Yt) € [-X, X]¢ x [=Y, Y] be i.id. random pairs (X, Y > 0).

Goal: estimate linearly Y: by approaching

6* € argmin E[(V; — XITG)Z]
oeRr?

The strong convexity assumption is achieved with a < Apin (E[XeX[T]).

7?4 ==
14 D
Experiment: X; ~ A(0, 1) for d = 500, n = 2000 g |
Ye=X0"+0.0e  with e~AN(0,1) iid  F %1 =
where dg = [|6*||o = 5, U = ||0*|l1 = 1with non-zero ‘ ‘ %
coordinates i.i.d. o« N(0,1), @ = 1. ADA BoA  saew

Figure 2: Boxplot (30 simulations)



ACCELERATION: IN PRACTICE

least square regression with dg = 5, d = 500, ¢ = 0.1

=
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Figure 3: Log of the ¢, error. Figure 4: Cumulative risk.

Remarks: the cumulative risks are at most of order:
RDA: o2d logn BOA: o%+/nlogd + logd SAEW: o2dg logd logn + logd

In practice: much better performance if we allow multiple pass on the training set.



CAN STILL BE USEFUL EVEN WITH dg = d

Simulation: least square regression with dg =2,d =2, 0 = 0.3
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Figure 5: Cumulative risk for square linear regression with d = dg = 2.



LEAST SQUARE LINEAR REGRESSION: IMPROVEMENT OF THE BOUND

Let X,Y > 0. Let (X¢, Ye) € [-X, X]¢ x [~Y, Y] be i.i.d. random pairs.

Theorem
SAEW applied with B = 2X(Y + 2XU) satisfies

Riskrn (80.(n—1)) < min {UX(Y+XU),/W,

(¥ + XV og 2 1o n+O[—Uz
an g5 g don | °

A better tunning of EG* with n; ~ 1/\/2; HV@S(@-,QH%,C alows to substituted B?
with X252 with
o’ =E[(Y: — X 0°)] .

in the instantaneous risk of ,_1.
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Let X,Y > 0. Let (X¢, Ye) € [-X, X]¢ x [~Y, Y] be i.i.d. random pairs.

Theorem

SAEW applied with B = 2X(Y + 2XU) satisfies

, +—

o 4 log(d/s) doX’s’ d  al?
Risk (fn_1) < logld/o d .
isk (fy—1) < min {n p o log 5 T dom?

A better tunning of EG* with n; ~ 1/\/2; HV@S(@-,QH%,C alows to substituted B?
with X252 with

o’ =E[(Y: — X 0°)] .
in the instantaneous risk of ,_1.

o6 Optimal rate for sparse least square regression.



CALIBRATION OF THE PARAMETERS

The algorithm needs to know : dg, U, B, o, §
¥ Runa meta-algorithm (BOA®) with parameters in a growing grid.

'® We leave the initial setting since we need
- to observe the gradients of all sub-algorithms.
- to clip the predictions é:LXt — [@:LXI][_WJ otherwise we pay the maximal
value of U considered in the final bound.
- we need strongly convex ¢ (instead of E[¢] only)
i This works to build an estimator for least square regression.

Theorem (Calibrated SAEW for Least Square Linear Regression)

The excess risk of the estimator produced by the meta-algorithm is of order

Y2 /(logd)(logn + logY) doX?c? /.
On(? log ( 0 ) * a*n o8 <d/()> ) '

Price of calibration Fast rate v

where o* is the largest stong-convexity parameter.

=20

Can we substitute o* with local strong convexity (cf. Lasso)?

8 Wintenberger, “Optimal learning with Bernstein Online Aggregation”, 2014.



QUANTILE LINEAR REGRESSION

Let 7 € (0,1). Let (X, Y¢) € RY x R be i.i.d. random pairs.

Goal: estimate the conditional 7-quantile of Y; given X;.

observation

NARVAYA

prévision - observation

Popular solution: linear regression with the pinball loss by p, : v € R — u(7 — 1,-0)
The conditional quantile g-(Yt|X¢) is the solution of

- (Ye|Xt) € argmin E[p- (Y: — Q(M))!Xd 5
g
— minimize the pinball loss g = 7-quantile prediction
non-strongly convex loss b strongly convex risk® — ok for fixed parameter

9 Steinwart and Christmann, “Estimating conditional quantiles with the help of the pinball loss”, 2011.

20
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QUANTILE REGRESSION

Experiment: dy = 5, d = 100

o
o
B4
o O
1
N x
Ty ts
5 S84
T g
EE 2
g =
o o _|
2 c®
(=4 -
T °
T T T T T T T T T T T T
0 2 4 6 8 10 0e+00 2e+04 4e+04 6e+04 B8e+04 1e+05
log(t) t
Figure 6: Log. of the £,-error of &; Figure 7: Cumulative risk

All the methods empirically get the fast rate 1/n for the £,-error of the estimator...
But only SAEW
- has the theoretical guarantee - has O(logn) cumulative risk



ONGOING QUESTIONS
?
g

Some future work:

- Is averaging an efficient acceleration procedure for EGE?
- Calibration of the parameters in the original online optimization setting

- Produce sparse estimators é},q
— improve the dependency on the strong convexity parameter (only local)

- Oracle bound: no assumption on the sparsity of 6*

THANK YOU !

22
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