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Motivation

As electricity is hard to store, balance between production and
demand must be maintained at any time.

Current solution.
Forecast consumption and adapt production accordingly

▶ As renewable energies are subject to climate, the production
becomes hard to adjust
▶ New communication tools (smart meters) will provide to data
access and instantaneous communication

Prospective solution.
Send incentive signals (electricity tariff variations) to manage
demand response

Problem
How	to	optimize	these	signals	learning

from	clients	behaviors?	
Learn	from	clients	behaviors	&	Optimize	tariffs	sending	

Exploration - Exploitation	
trade-off

Idea

Apply contextual-bandit theory to demand side management by
offering price incentives
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Inputs
Parametric context set 𝒳
Set of legible convex weights	𝒫
Transfer function ϕ: 	𝒳	×	𝒫	 → ℝk
Bound on mean consumptions C

Aim. Minimize	the	cumulative	loss	

Model	1

Model	2

Top: average of mean consumptions over 200 runs (full blue line); target consumption (dashed red line) and mean consumption associated with each
tariff (pastel). Bottom: proportions pm used over time for a single run.

Regret curves for each
of the 200 runs and
plots of c T� ln T	 and
co lnp T	for some well-
chosen constants c, co.

𝒫 restriction:	only	two	tariffs	at	the	same	round.	Population
split	into	100	equal	parts.	Target	creation.	smooth	attainable	targets.

Training	period:	a	year	of	data	using	historical	contexts	with	only	Normal	tariffs	picked.
Testing	period:	a	month	exploring	the	effects	of	tariffs	picking	the	pm according	to	the	algorithm. 

Modeling	of	the	electricity	consumption	

Target	Tracking	for	Contextual	Bandits	

Some exogenous factors (temperature, day, etc.) form, at an instance t, a context vector xm ∈ 𝒳.
The individual consumption of a customer getting the price level j ∈ {1, … , K} is ψ xm, j +
white	noise. A share pm,w of customers receives tariff j at t. The mean consumption observed for an
homogeneous population, with pm ∈ 𝒫 ⊂ py, … , pz ∈ 0,1 z	 ∑ p|�

| = 1}, equals

Ym,~� =� pm,wψ(xm, j)
z

w�y
+ noise.

Sub-Gaussian i.i.d scalar noises ey, … , em	
with 𝔼 ey = 0 and Var	 ey = 𝜎p

At 𝑡=1,2,… Observe a context xm ∈ 	𝒳 and a target cm ∈ 	 (0, C)
Choose an allocation of price levels pm ∈ 𝒫	
Observe a resulting mean consumption Ym,~� ∈ 	 (0, C)

Unknown	parameters
Transfer	parameter	θ ∈ 	ℝk
Covariance	matrix	Γ ∈ 	ℳz	 ℝ (Model	1)
or	Variance	σp (Model	2)	

Suffer a loss ℓm = Ym,~� − cm
p

L� =� Ym,~� − cm
p�

m�y
	

Assumption.
There is an unknown vector θ and a known function ϕ such that ∑ pm,wψ(xm, j)z

w�y = ϕ xm, pm �θ.

Sub-Gaussian i.i.d noise vectors εy, … , εm	
with 𝔼 εy = 0,… , 0 � and Var	 εy = Γ

Model 1. Tariff-dependent noise

Ym,~� = ϕ xm, pm �θ + pm�εm

Model 2. Global noise

Ym,~� = ϕ xm, pm �θ + em		

Consumption	at	half-an-hour	intervals	of
1	100	clients	subjected	to	Dynamic	Time	of	Use	energy	prices

three	tariffs:	Low,	Normal,	High	

With	ℓm,~ = 	𝔼 Ym,~ − cm
p|	past ,	

the	regret	𝑅� is	considered	R� = ∑ ℓm,~�
�
m�y − ∑ min

~∈𝒫
ℓm,~�

m�y

▸ Estimate	losses	and	get	a	confidence	bound	for	each	p thanks	to	Bm and	γ�

Theorem 1. For proper choices of confidence
levels αm,~ , Bm, γ� , with 𝑛 = ℴ(𝑇p/	�) with

ℓm,~ = ϕ xm, p �θ − cm
p + p�Γp ℓm,~ = ϕ xm, p �θ − cm

p + σp

For	both	models	
▸ Estimate	parameter	θ with	a	Ridge	regression	θ�m�y = arg	min	�� ∑ Y�,~� − ϕ x�, p� �θ� p��y

 �y + λ θ� p	
thus	θ�m�y = Vm�y�y ∑ Y�,~�ϕ x�, p�m�y

��y with	Vm�y	 = λIk +	∑ ϕ x�, p� ϕ x�, p� �m�y
��y

▸ Create	a	confidence	set	 θ�m�y − θ ¢�£¤
≤ Bm

Model	1 Model	2

Estimate Γ on the first n rounds

Γ�� = arg	min
¦	�

� Z��p − pm�Γ�
p�

��y
with 𝑍©� = 𝑌�,«¬ − 𝜙 𝑥�, 𝑝� �𝜃©± ²
For for 𝑝y, …𝑝± well chosen, Γ�� − Γ ³ ≤ γ�

Assumption. Attainability

and thus min
~∈𝒫

ℓm,~ = ℓ�,«¬⋆ = 𝜎p

ℓ�m,~ = ϕ xm, p �θ�m�y µ − cm
p
+ p�Γ��p

and ℓ�m,~ − ℓm,~ ≤ αm,~

ℓ¶m,~ = ϕ xm, p �θ�m�y − cm
p

and	 ℓ¶m,~ − ℓm,~ ≤ βm,~

pm ∈ arg	min
~∈𝒫

ℓ�m,~ − αm,~

▸ Select	price	level	optimistically

pm ∈ arg	min
~∈𝒫

ℓ¶m,~ − 𝛽m,~

R� ≲ lnp	(T)

Theorem 2. For proper choices of confidence
levels 𝛽m,~ , Bm and regularisation λ, with

R� ≲ T
p
�lnp𝑇/𝛿 ln 1/𝛿�

probability		at	least	1 − δ the	regret	is	
upper	bounded	as

probability	at	least	1 − δ the	regret	is
upper	bounded	as

A	generalized	additive	model	for	consumption
Ym,~� = fy temperature + fp position	in	the	year + f� hour + f¼ pm +	…+ 	noise

Temperature Position	in	
the	year	

Hour
Observation
Estimation

With X¾ ¾ explicative variables, 𝔼 Y = ∑ f¾(X¾)�
¾

▸ if X¾ is a discrete variable with mmodalities : f¾ x¾ = ∑ αw𝟏ÀÁ	�w
Â
w�y

▸ if X¾ is a continuous variable, f¾ is a spline:∁p-function defined piecewise by polynomials

▸ Select	customers	with	more	than	95%	of	data	available	and	consider	their	mean	consumption	
▸ Estimate	covariance	matrix	Γ
▸ Build	a	simulator	based	on	Generalized	Additive	Model	to	run	the	experiments

+ + +	… .							=

Realistic	simulator.	Context	+	Price	level	→	Mean	consumption	

There is a known transfer function ϕ and an unknown parameter θ such that 𝔼 Y = ϕ X �θ

∀t ≥ 1, ∃pm⋆ ∈ 𝒫, ϕ xm, pm⋆ �θ = cm

▸ Efficient	algorithm:	sub-linear	regret	
▸ Hard	computation:	non	convex	

minimization		problem

Low	Carbon	London	- UK	Power	Networks“Smart Meter	Energy	Consumption	Data	in	London	Households”	
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~ T ln(T)
~ ln2(T)
   Pseudo−regret


