
Internship Proposal on theoretical online/reinforcement learning
–

Internship description
Reinforcement Learning (RL) has become a fundamental paradigm for sequential decision-making under uncertainty,
enabling agents to learn optimal behaviors through trial-and-error interactions with their environment. However, there
remains a gap between theoretical analyses, which mostly focus on finite state and action spaces, and practical appli-
cations, which rely on large parametrized models.

The goal of this internship is to explore episodic reinforcement learning with parametric models. We will focus on the
multinomial logistic function approximation of the transition kernel (see [11] for details). In this setting, the probability
of transitioning from a state–action pair (xn−1, an−1) ∈ X × A to a new state xn ∈ X at time step n ∈ {1, . . . , N} is
modeled by a logistic model:
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where ϕ is a known feature map and θn ∈ Rd is an unknown parameter to be estimated as more data are collected.
The feature map may be obtained, for instance, by omitting the final layer of a deep neural network that has been
trained beforehand.

Existing work and provisional research directions Under this transition model, Hwang and Oh [8] and Li et al.
[11] have designed efficient algorithms for episodic reinforcement learning, achieving regret upper bounds of order
O(d

√
T ), where T is the number of episodes and d is the dimension of the feature maps. In this internship, we aim to

generalize their results by exploring one of the following possible research directions:

• Nonparametric models: Existing work has focused on finite-dimensional feature representations (d < ∞). When
d is infinite, both the computational complexity and the statistical guarantees (regret bounds) of existing algorithms
become vacuous. We aim to study the case where the features belong to an infinite-dimensional reproducing
kernel Hilbert space (RKHS). The goal is to leverage standard kernel techniques to replace d with an effective
dimension that captures the smoothness of the underlying function space (see Zenati et al. [18]).

• Convex objective: Let µn(x, a|π) ∈ ∆X×A denote the probability of being in state–action pair (x, a) when follow-
ing policy π. Standard reinforcement learning maximizes the expected reward maxπ

∑N
n=1⟨µn(·|π), rn⟩, where

rn ∈ RX×A are the reward vectors. In many applications, however, the objective is more general, as in the
Concave Utility Reinforcement Learning (CURL) framework [7, 17], which seeks to minimize a convex function
of the induced state–action distribution:

min
π

f(µ(·|π)).

Several machine learning problems can be cast as instances of CURL, including pure exploration [7, 13, 14],
imitation and apprenticeship learning [5, 10, 16, 1], mean-field control [2], mean-field games with potential re-
wards [9], and risk-averse RL [3, 15, 6]. While RL has seen major progress in recent years, the theoretical
understanding of CURL remains limited, mostly to finite state and action spaces. A promising direction for this
internship is to study CURL under parametrized models—of either the policy or the transition dynamics—starting
with the multinomial logistic approximation of the transition kernel.
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An interesting application of CURL is demand-side management, which aims to control a large population of
flexible electrical devices, such as water heaters, with the goal of making their aggregate electricity consumption
follow a desired target. This application is particularly relevant for supporting the transition to renewable energy
sources, whose production cannot be directly controlled. It is detailed in Moreno et al. [12] and could serve as a
potential use case for applying the methods developed during the internship.

• Robustness to misspecification: We aim to consider cases where the true transition model does not exactly follow
the logistic form (1) but can be well approximated by (1) up to some error ϵ. Indeed, for many practical scenarios
(for instance when the reinforcement learning algorithm comes from a deep neural architecture), the model will
not follow exactly (1). This will involve defining a reasonable error model, studying how this error propagates
through the Bellman operators and how this error can be estimated.

Provisional Internship Plan The internship will follow the provisional plan outlined below:
1. Literature review and problem modeling
2. Proposal and implementation of new algorithms. Application of the methods to simple synthetic examples (e.g.,

grid worlds in [4]) or to real-world problems (e.g., demand-side management in [12]).
3. Theoretical analysis of the proposed algorithms
4. Writing the internship report

The objective is to continue this work as part of a PhD.

Internship Information
The internship (and potential PhD) will be supervised by Nicolas Gast (GHOST team, LIG/Inria Grenoble) and Pierre
Gaillard (THOTH team, LJK/Inria Grenoble). This project is supported by the MIAI Cluster (Multidisciplinary Institute in
Artificial intelligence).

Location: Inria (655 Av. de l’Europe, 38330 Montbonnot-Saint-Martin) and/or IMAG (150 Pl. du Torrent, 38400 Saint-
Martin-d’Hères)
Duration: 4-6 months
Starting Date: March-May 2026
Required knowledge: Master’s level or third-year engineering school.
Profile: machine learning, probability, statistics, optimization. Having completed a course in reinforcement learning or
sequential learning (multi-armed bandits) is desirable.

Contact
Pierre Gaillard Email: pierre.gaillard@inria.fr
Nicolas Gast Email: nicolas.gast@inria.fr
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