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A further look at the forecasting of the electricity consumption by aggregation of specialized experts

1. Overview of the setting

1.1. Notations

We consider the sequential prediction of arbitrary individual sequences based on expert advice. This
paper is based on methods originally presented in [?] for the setting of electricity forcasting.

We have a set E = {1, . . . , N} of experts at our disposal. At each instance t = 1, . . . , T , some
experts are active and output predictions in a convex outcome space Y, typically R+. We denote by
Et ⊂ E the set of active experts and by fit the prediction of expert i if i ∈ Et. An aggregation rule
A then forms a mixture pt = (p1t, . . . , pNt) ∈ RN . Its prediction is given by

ŷt =
∑
i∈Et

pitfit .

The realized consumption yt is then revealed and instance t+ 1 starts.

We often restrict the prediction to convex weight vectors. That is, pt ∈ XEt where XEt is the
subset of RN where for all i ∈ E, pit > 0 ;

∑
j∈Et pjt = 1 and

∑
j /∈Et pjt = 0. X denotes XE .

1.2. Assessment of the quality of a sequence of predictions

To measure the accuracy of the prediction ŷt proposed at round t for the observation yt we consider
a loss function ` : R × R → R. At each time instance t, the mixture pt output by the rule is thus
evaluated by the loss function `t : X → R defined by

`t(p) = `

∑
j∈Et

pjfjt, yt


for all p ∈ X . Our goal is to design sequential aggregation rules A with a small average error,

errT (A) =
1

T

T∑
t=1

`t(pt) .

Considered loss functions

In our experiments we used three different loss functions. Typical aggregation rules put more weight
on more accurate experts, therefore their definition depends on the losses suffered by the experts in
the past. We will thus have three versions of each algorithm depending on the loss function used to
assess the quality of experts. The performance of each version will then be characterized by its average
error and a corresponding measure of dispersion, which may depend on the specific loss function at
hand.

• The square loss is defined for all x, y ∈ R+ by

`(x, y) = (x− y)2 .

In this case, instead of errT (A) we will use the root mean square error

rmseT (A) =
√
errT (A) =

√√√√ 1

T

T∑
t=1

(
ŷt − y

)2
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to report the quality of aggregation rule A according to the square loss. We can get the corre-
sponding dispersion with the delta method and Slutsky’s lemma (cf. Appendix A),

ŝT =

√√√√√√√√√√
1

T

T∑
t=1

((
ŷt − yt

)2 − 1

T

T∑
t′=1

(
ŷt′ − yt′

)2)2

4
1

T

T∑
t=1

(
ŷt − yt

)2 .

We report the 95% standard error 1.96 ŝT /
√
T in the tables.

• The absolute error is defined for all x, y ∈ R+ by

`(x, y) = |x− y| .

For this loss function, since we use

maeT (A) =
1

T

T∑
t=1

∣∣ŷt − yt∣∣ ,
to quantify the quality of an algorithm A, the corresponding measure of dispersion is defined as
the standard deviation of the sample,

σ̂T =

√√√√ 1

T

T∑
t=1

(∣∣ŷt − yt∣∣− 1

T

T∑
t′=1

∣∣ŷt′ − yt′∣∣
)2

.

We report the 95% standard error 1.96 σ̂T /
√
T in the tables.

• The absolute percentage of error is defined for all x, y ∈ R+ by

`(x, y) =
|x− y|
y

.

We use

mapeT (A) =
1

T

T∑
t=1

∣∣ŷt − yt∣∣
yt

to measure the error and the standard deviation of the sample,

σ̂T =

√√√√ 1

T

T∑
t=1

(∣∣ŷt − yt∣∣
yt

− 1

T

T∑
t′=1

∣∣ŷt′ − yt′∣∣
yt′

)2

,

to quantify the dispersion. We then report the 95% standard error 1.96 σ̂T /
√
T in the tables.

• The correlation is defined for an aggregation rule A outputting predictions ŷ1, . . . , ŷT as

corrT (A) =

T∑
t=1

(
ŷt − ŷ

)(
yt − y

)
√√√√ T∑

t=1

(
ŷt − ŷ

)2
T∑
t=1

(
yt − y

)2 ,

where y =
1

T

T∑
t=1

yt and ŷ =
1

T

T∑
t=1

ŷt .
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Reference oracles

Intuitively, if all experts are poor, there is no reason for our aggregation rule to get good results.
Hence, to evaluate the performance of our algorithms, we will compare their errors with the errors of
some so-called oracles. We present here the reference oracles that we considered and how they are
defined in the framework of specialized experts.

In the following, we define average errors errT (as above, we will rather consider rmseT =
√
errT

for the square loss).

• Fixed expert. We denote by δi the rule that always follows the prediction of expert i. Since it
is not well defined on all time instances, we only evaluate it on the instances when expert i is
active,

errT (δi) =
1∑T

t=1 1{i∈Et}

T∑
t=1

`(fit, yt)1{i∈Et} .

The best fixed expert oracle Oδ is then defined as

Oδ ∈ arg min
δi

err1
T (δi) .

• Fixed linear combination (definition 1). It corresponds to the use of a fixed linear weight vector
u ∈ RN , to be renormalized at each time instance so that it puts a probability mass of 1 on Et.
Formally, we generalize the definition of errT for all u ∈ RN as

err1
T (u) =

1∑T
t=1

∣∣u(Et)
∣∣ T∑
t=1

`t

(
u

u(Et)

) ∣∣u(Et)
∣∣ ,

where u(Et) =
∑
j∈Et

uj .

Note that we retrieve the previous definition for u = δi. The best fixed linear combination
(version 1) is then defined as

O1
RN ∈ arg min

u∈RN
err1

T (u) .

• Fixed linear combination (definition 2). This definition is similar to the previous one, with the
exception of a small twist in the normalization:

err2
T (u) =

1∑T
t=1

∣∣τt(u)
∣∣ T∑
t=1

`t

(
u

τt(u)

) ∣∣τt(u)
∣∣ ,

where τt(u) =

∑
j∈Et uj∑N
k=1 uk

.

The best fixed linear combination (version 2) is then defined as

O2
RN ∈ arg min

u∈RN
err2

T (u) .

Since Definition 1 is stable by homothetical changes (i.e., err1(u) = err1(λu)), it is easy
to see that minu err2 6 minu err1

u. However, in the simulations the same performance was
obtained for both oracles (this might be caused by the optimization technique used to compute
the oracles). This is why we report only a single such oracle value in the tables.
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• Fixed convex combination. It is a special case of the previous oracle (version 2) with an additional
convex constraint on the weight vectors:

errT (q) =
1∑T

t=1

∣∣τt(q)
∣∣ T∑
t=1

`t

(
q

τt(q)

) ∣∣τt(q)
∣∣ ,

where τt(q) =
∑
j∈Et

qj . The best fixed convex combination is given by

OX ∈ arg min
q∈X

err2
T (q) .

• Sequences of experts with few shifts. The activations and deactivations of experts prevent the
aggregation rules from picking a constant expert over time. We therefore authorize a few shifts
and consider the legal sequences with at most m shifts,

Lmδ =

{
(δi1 , . . . , δiT )

∣∣∣ ∀t , it ∈ Et and #{t, it 6= it+1} 6 m
}
.

We may define the best sequence of experts with at most m shifts as

Omδ ∈ arg min
A∈Lmδ

errT (A) .

• Sequences of convex combinations of experts with few shifts. It is a generalization of the previous
oracle to convex combinations. We define the set of legal sequences as

LmX =

{
(q1, . . . , qT )

∣∣∣ ∀t , qt ∈ XEt and #{t, qt 6= qt+1} 6 m
}
.

The oracle is then given by
OmX ∈ arg min

A∈LmX
errT (A) .

Reference aggregation rules

We also consider two simple reference aggregation rules which will be used as benchmarks.

• Uniform mixture. We denote by Um this strategy. It forms a uniform average of the predictions
of active experts,

ŷt(Um) =
1

|Et|
∑
i∈Et

fit .

• Uniform convex weight vector. We denote by Uc this strategy. It corresponds to the use of the
uniform combination 1N =

(
1/N, . . . , 1/N

)
. Note that it outputs the same predictions as the

uniform mixture, but its performance is assessed in a different manner; indeed,

errT (Um) =
1

T

T∑
t=1

`

(
1

|Et|
∑
i∈Et

fit, yt

)
,

while

errT (Uc) =
1∑T

t=1 1N (Et)

T∑
t=1

`

(
1

|Et|
∑
i∈Et

fit, yt

)
1N (ET ) .
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2. Experiments

2.1. Description of the data set

It consists in half-hourly observations of the French electricity consumption from September 1, 2007
to August 31, 2008 (henceforth referred to as the prediction set). We have 24 experts at our disposal;
they can be grouped into three families. The units are in Gigawatts (GW). Since the square loss and
the absolute loss are not scale-independent, the parameters may depend on the unit chosen for these
two loss functions (in contrast to what happens for the absolute percentage of error).

Number of days D 320

Time intervals Every 30 minutes

Time instances T 15 360 (= 320× 48)

Number of experts N 24 (= 15 + 8 + 1)

Unit GW

Median of the yt 56.33

Bound B on the yt 92.76

Table 1: Some characteristics of the observations yt (half-hourly mean consumptions) of the considered
data set.

Considered experts

The experts have been constructed thanks to a training set formed by pairs of realized energy con-
sumptions and of some contextual variables observed during a given period of time before the one
corresponding to the prediction set. The size and the nature of the training set may depend on the
expert. The three families of considered experts are listed below.

• Parametric model. Implemented in EDF R&D prediction system as Eventail. By changing the
parameters we got 15 experts in this family.

• Semi-parametric model. Generative additive model (GAM). We obtained 8 experts.

• Functional model. 1 expert.

Reference performance

In Table 2, we report the performance of the benchmark procedures. The performance of the best
convex and linear weight vectors are obtained by repeatedly performing an algorithm of Byrd et al.
[?], a local optimization method which allows box constraints; initial values are sampled uniformly
at random in X at the beginning of each new attempt (wether convex or linear oracles are to be
computed). It is implemented in R with the command optim in combination with the parameter
“L-BFGS-B.” The performance of the best compound expert is obtained by dynamic programming;
see Appendix B for detailed explanations.
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Benchmark procedure Optimized in rmse × 103 mae × 103 mape × 102 corr %

Uniform mixture Um 724± 11 545± 7 0.960± 0.012 99.8

Uniform convex weight vector Uc 748± 11 564± 7 0.960± 0.012 99.8

Best single expert Oδ Alla 782± 10 602± 8 1.050± 0.010 99.2

rmse 658± 9 501± 6 0.875± 0.010 99.8

Best convex weight vector OX mae 660± 14 500± 10 0.872± 0.017 99.8

mape 662± 9 502± 7 0.868± 0.011 99.8

rmse 625± 7 481± 5 0.857± 0.009 99.8

Best linear weight vector ORN
b mae 627± 7 480± 5 0.856± 0.010 99.8

mape 633± 8 484± 5 0.848± 0.009 99.8

Best compound expert Omδ rmse

Size at most m = 50 534± . 416± . 0.745± . .

Size at most m = 200 414± . 319± . 0.573± . .

Size at most m = T − 1 = 15 359 223± . 118± . 0.211± . .

Best compound expert Omδ mae

Size at most m = 50 541± . 412± . 0.735± . .

Size at most m = 200 418± . 316± . 0.566± . .

Size at most m = T − 1 = 15 359 223± . 118± . 0.211± . .

Best compound expert Omδ mape

Size at most m = 50 545± . 413± . 0.734± . .

Size at most m = 200 421± . 317± . 0.563± . .

Size at most m = T − 1 = 15 359 223± . 118± . 0.211± . .

aThe same expert achieves the best performance for all loss functions.
bWe recall that O1

RN and O2
RN reach similar performance on this data set.

Table 2: Performance of reference oracles and strategies on the data set.

8 Pierre Gaillard, Yannig Goude, and Gilles Stoltz



A further look at the forecasting of the electricity consumption by aggregation of specialized experts
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Figure 1: [Left figure] Average errors and rmses of the experts (y-axis) sorted according to their rmses

(x-axis). [Right figure] Frequencies of activity of the experts (y-axis) according to their rmses (x-axis). The

Eventail experts are indexed by ©, the GAM experts by 4, and the functional expert by +.

2.2. Performance of the considered aggregation rules

The considered aggregation rules can be clustered into three families: exponentially weighted average
(EWA), specialist, and fixed-share aggregation rules. We respectively denote by Wη, Sη, and Fηα
their basic versions and by Wgrad

η , Sgrad
η , and Fgrad

ηα their gradient versions. For more details on the
aggregation rules, the reader is referred to [?].

Adaptation to an operational constraint

In [?], EWA and fixed-share aggregation rules are implemented with an operational constraint. It
consists in forecasting simultaneously every day at 12:00 the next 48 time instances. We extended the
specialist and EWA aggregation rules to this constraint in a generic manner (cf. Algorithm 1). For
fixed-share aggregation rules, we kept the extension proposed in [?]. In the following, we always deal
with the operational extensions of the aggregation rules and we keep the previous notations to denote
them.

Algorithm 1 Extension of an aggregation rule A to operational forecasting.

Input: aggregation rule A
Initialization: uniform initial weight vector w1 ∈ X

for instance t from 1 to T do

predict ŷt ←
1∑

i∈Et wit

∑
j∈Et

wjtfjt

if t = 48k for some k
wt+1 ← pt+1

(
A
)

// synchronize, see footnote a

else

wt+1 ← wt // do not update
end if

end for

apt+1(A) is the convex weight vector chosen by A after observing y1, . . . , yt and the corresponding experts predictions
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Maximal number of shifts

A
ve

ra
g
e
 e

rr
o
rs

0 10 100 1000 10000

0
.2

0
.6

1
.0

RMSE

MAE

MAPE (x100)

Figure 2: Evolution of the average errors of the best compound experts Omδ (y-axis) according to the
number of shifts m (x-axis).

Performance for constant parameters

In Tables 3, 5, and 4, we report the performance of the considered aggregation rules for constant
parameters. We initialized the weights with a uniform distribution on the active experts. The param-
eters are optimized on a grid, according to the best performance obtained with the loss function used
to build the rule.

Table 3 (resp., Table 4) describes the performance of Wη and Wgrad
η (resp., of Sη and Sgrad

η ) for the
best constant parameter η on the grid

Λ =

{
m · 10k, m ∈

{
1, . . . , 9

}
and k ∈

{
−7, . . . , 1

}}
.

The performance of Wη (resp., Wgrad
η ) should be compared to the one of the best fixed expert Oδ

(resp., of the best convex weight vector OX ).

Table 5 reports the errors of fixed-share type algorithms for the best constant pairs of parameters
(η, α) on the grid

ΛF =

{(
m·10k, α

)
, m ∈

{
1, . . . , 9

}
, k ∈

{
−5, . . . , 3

}
, and α ∈

{
0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1

}}
.
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Aggregation rule Version Best η rmse × 103 mae × 103 mape × 102 corr %

rmse 1 · 10−4 718± 12 539± 7 0.953± 0.012 99.8

Wη mae 2 · 10−4 721± 11 541± 7 0.956± 0.012 99.8

mape 9 · 10−3 720± 12 541± 7 0.955± 0.012 99.8

rmse 2 629± 8 483± 6 0.859± 0.011 99.8

Wgrad
η mae 4 · 10−2 629± 8 481± 6 0.857± 0.011 99.8

mape 3 631± 9 481± 6 0.857± 0.011 99.8

Table 3: Performance of W and Wgrad with the best constant parameters on the grid Λ.

Aggregation rule Version Best η rmse × 103 mae × 103 mape × 102 corr %

rmse 1 · 10−4 718± 12 539± 7 0.953± 0.013 99.8

Sη mae 4 · 101 687± 10 512± 7 0.912± 0.012 99.8

mape 8 · 10−3 720± 12 541± 7 0.955± 0.012 99.8

rmse 3 · 10−2 631± 9 482± 8 0.861± 0.011 99.8

Sgrad
η mae 4 · 10−2 630± 8 481± 6 0.858± 0.011 99.8

mape 2 630± 8 481± 6 0.856± 0.011 99.8

Table 4: Performance of Sη and Sgrad
η with the best constant parameters on the grid Λ.

Aggregation rule Version Best
(
η, α

)
rmse × 103 mae × 103 mape × 102 corr %

rmse (1400, 0.05) 632± 11 471± 7 0.832± 0.012 99.8

Fηα mae (100, 0.01) 636± 13 468± 7 0.828± 0.012 99.8

mape (9000, 0.01) 636± 13 468± 7 0.828± 0.012 99.8

rmsea (1, 0.01) 599± 9 450± 6 0.798± 11 99.9

Fgrad
ηα mae (0.5, 0.01) 622± 10 464± 7 0.820± 11 99.8

mape (9, 0.01) 625± 10 468± 7 0.828± 11 99.8

aThis version reaches very good results. It is however very unstable and sensitive to noise and has basically similar
performance as mae or mape version.

Table 5: Performance of Fηα and Fgrad
ηα with the best constant parameters on the grid ΛF .
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Performance of adaptive aggregation rules

In Tables 6, 7, and 8, we report the performance of the aggregation rules when performing an online
calibration of the parameters.

We present in Algorithm 2 the method used to extend the EWA and specialist aggregation rules into
adaptive algorithms. In the experiments, we started around the theoretical optimal value, Λ = {1/B}.
Since the average error is not necessarily a convex function of the parameter, we must deal carefully
with the initialization. Too small seed values lead to long convergence time and performance close to
the performance of Um. On the contrary, too large parameters lead to instability and may converge
to an optimum which is only locally optimal.

When the optimal parameter η? reached the lower (resp., upper) bound of Λ, we enlarged the grid
by adding the values η?/2, η?/4, and η?/8 (resp., 2η?, 4η?, and 8η?). It is of course not the only way
to enlarge the grid Λ but it seems a good trade-off between complexity and performance. Indeed, we
tried to increase the grid with more values each time, but the benefit was not considerable. We also
tested different values for the increase factor and 2 gave good results.

Algorithm 2 Extension of a family of aggregation rules (Aη) abiding by the operational constraint
to an adaptive aggregation rule.

Input: initial grid Λ of possible parameters, family of algorithms (Aη) abiding by the operational
constraint

Initialization: η? ← randomly sampled ∈ Λ // see footnote a

for instance t from 1 to T do

predict ŷt ← ŷt (Aη?) // see footnote b

if t = 48k for some k update

η? ∈ arg min
η∈Λ

errt (Aη)

if η? ∈ ∂Λ perform logarithmic enlargement of Λ // see footnote c

end if

end for

aRemember that the most of the aggregation rules use a uniform average of the predictions of active experts until
they get access to a feedback (i.e., until instance t = 48 when the operational constraint needs to be abided by).

bŷt(Aη) is the prediction of aggregation rule Aη (with constant parameter η) after observing the sequence y1, . . . , yt
and the corresponding experts predictions; remember that Aη abides by the operational constraint and thus cannot
necessarily use the whole set of past observations.

c∂Λ denotes the borders of Λ.

Since it is bounded in [0, 1], we can consider a fixed grid for the mixing rate α of fixed-share type
aggregation rule. We take

α ∈
{

0 , 0.005 , 0.01 , 0.05 , 0.1 , 0.2 , 0.5 , 1

}
.

The adaptive version of fixed-share type aggregation rules then follows, by considering an adaptive
grid for η as we did before and by choosing at each round the best constant couple of parameters
(η, α) in hindsight in the current grid.
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Aggregation rule Version rmse × 103 mae × 103 mape × 102 corr %

rmse 724± 11 553± 7 0.979± 0.013 99.8

Family W mae 728± 13 549± 8 0.976± 0.013 99.8

mape 724± 12 545± 8 0.969± 0.013 99.8

rmse 640± 9 490± 7 0.874± 0.011 99.8

Family Wgrad mae 638± 9 487± 6 0.868± 0.011 99.8

mape 634± 9 486± 6 0.861± 0.011 99.8

Table 6: Performance of the adaptive versions of W and Wgrad.

Aggregation rule Version rmse × 103 mae × 103 mape × 102 corr %

rmse 723± 11 552± 7 0.977± 0.013 99.8

Family S mae 726± 12 549± 8 0.975± 0.015 99.8

mape 725± 12 547± 8 0.970± 0.013 99.8

rmse 640± 9 490± 7 0.874± 0.011 99.8

Family Sgrad mae 646± 10 491± 7 0.874± 0.012 99.8

mape 652± 10 494± 7 0.880± 0.012 99.8

Table 7: Performance of the adaptive versions of S and Sgrad.

Aggregation rule Version rmse × 103 mae × 103 mape × 102 corr %

rmse 658± 12 488± 7 0.865± 0.012 99.8

Family F mae 664± 12 496± 7 0.877± 0.012 99.8

mape 667± 12 493± 7 0.869± 0.012 99.8

rmse 623± 11 463± 7 0.822± 0.012 99.8

Family Fgrad mae 637± 10 477± 7 0.844± 0.012 99.8

mape 656± 12 485± 7 0.856± 0.012 99.8

Table 8: Performance of the adaptive versions of F and Fgrad.
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3. Ridge regression aggregation rule

We consider an additional aggregation rule aiming at coming close to the performance of the best fixed
linear expert ORN . However, no theoretical bound in the context of specialized experts is associated
with it yet. The pseudo-code is given in Algorithm 3.

Algorithm 3 Ridge regression aggregation rule Rλ and Rgrad

λ

Input: regularization parameter λ

Initialization: u1 = (1/N, . . . , 1/N)

for instance t from 1 to T do

predict ŷt ←
1

τt(ut)

∑
j∈Et

ujtfjt

ut+1 ← arg min
u∈Rd

T∑
s=2

`s

(
u

τs(u)

) ∣∣τs(u)
∣∣+ λ ‖u‖22 // see footnote a

end for

aRgrad
λ corresponds to the replacement of the loss function `s by the pseudo-loss function ˜̀

s defined for
all u ∈ RN by ˜̀

s(u) = ∇`s(us) · u, where ∇`s denotes a subgradient of `s.

Its performance for the best fixed parameter λ on the grid

ΛR =
{

10i, i ∈ {−6, . . . , 7}
}

is reported in Table 9.

Aggregation rule Version Best λ rmse × 103 mae × 103 mape × 102 corr %

rmse 1 · 103 650± 9 502± 7 0.898± 0.011 99.8

Rλ mae 1 · 103 681± 9 527± 7 0.950± 0.013 99.8

mape 1 · 102 661± 10 504± 7 0.897± 0.012 99.8

rmse

Rgrad
λ mae Poor throughout this table

mape

Table 9: Performance of Rλ with the best constant parameters on the grid ΛR.

Ce n’est pas la bonne façon de faire une descente de gradient avec Ridge. Regarder la méthode
proposée dans [..., demander à Séb.] ou y réfléchir.

14 Pierre Gaillard, Yannig Goude, and Gilles Stoltz



A further look at the forecasting of the electricity consumption by aggregation of specialized experts

4. Random Forests

We adopt a stochastic approach in this section. The electricity consumption (Yt) ∈ RT and the expert
advice (Fjt) ∈ RN×T are now modeled as random processes. They may depend on contextual variables
(Xt) ∈ Rd×T that can be observed before the prediction is formed. We denote by (Fcontext

t ) and (Fexp
t )

two filtrations of the past information, defined for all t > 1 by

Fcontext
t = σ

({
(Xs, Ys) , 1 6 s 6 t− 1

}
∪
{
Xt

})
,

Fexp
t = σ

({
(Fjs, Ys) , 1 6 s 6 t− 1, 1 6 j 6 N

}
∪
{
Fjt, 1 6 j 6 N

})
.

The expert advice Fjt are assumed to be Fcontext
t –measurable. Hence, Fexp

t is contained in Fcontext
t .

We furthermore assume that the electricity consumption Yt can be written as

Yt = Et[Yt] + εt ,

where Et[ · ] = E
[
· |Fcontext

t

]
denotes the conditional expectation given the past Fcontext

t and each
εt ∼ N

(
0, σ2

)
is a Gaussian random noise independent from Fcontext

t .

In the model above, we can use the random forest regression method for three different goals. First,
we aim at building a new stochastic expert that estimates Et

[
Yt
]
; we could then add this predictor in

our set of experts. Then, we could compare the performance of the aggregation rules of the previous
sections with stochastic methods that estimate at each time instance E

[
Yt|Fexp

t

]
. Finally, it could be

interesting to create a new aggregation rule that takes into account the contextual information (Xt)
before proposing a mixture, as the performance of the experts may actually depend on the contextual
variables (Xt).

A brief description of random forest regression algorithm

Before we do so, we propose a brief overview of random forests. Random forests have been proposed
by Leo Breiman [?]. They are implemented in R with the package randomForest. For more details
about the implementation and the use of the package R, the reader is referred to [?].

We have at our disposal a training data set (Xt, Yt)t∈S0 of pairs of observed contextual variables Xt

and output variables Yt, where the set S0 is formed by all training instances. The contextual variables
take values in C. They may be multivariate and consist of M > 1 real or categorical features. A
random forest is a collection of tree predictors hk : C → R, for k = 1, . . . ,K, where x denotes the
observed input. The random forest prediction is the unweighted average over the collection,

h : x 7→ 1

K

K∑
k=1

hk(x) .

Let T0 = |S0| be the size of our whole training set. A tree predictor is built in the following way.
We first proceed by bootstrapping; that is, we choose a smaller training set Sk for this particular

tree by sampling T0 times –uniformly at random and with replacement– in S0. About a third of the
available data is hence put aside and can be used as a testing set for this tree.

Then, we let the tree grow, by going down from the root to the leaves as follows. For each node
of the tree, we randomly choose m ' M/3 features on which to base the decision at that node and
choose the best split among these features1. The tree grows until the number of contextual variables
Xt per terminal node is small enough (6 5).

1The bagging procedure proposed by Breiman [?] is the special case where m = M . Its drawback is however to create
more correlated trees and to increase the variance of the final prediction.
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A given tree finally predicts, for the contextual variable x, as the unweighted average over the
outputs Yt of pairs (Xt, Yt) whose contextual variables belong to the same leaf as x.

Random forests define some notion of proximity between the contextual variables. After the trees
are grown, we may run the data on them. We then define the proximity between two instances t1 and
t2 as

prox(t1, t2) =
1

K

K∑
k=1

1{contextual variables Xt1 and Xt2 are in the same leaf in tree k} .

4.1. Random Forests as a way to construct new experts based on contextual data

We consider here random forests as a way to estimate Et
[
Yt
]

and to produce some new experts (Fjt),
with j > N and 1 6 t 6 T .

The training set consists of the input–output pairs (Xt, Yt) from September 1, 2002 to August
31, 2007. The considered contextual variables are calendar variables (type of day –see Table 13–,
season, and so on), weather variables (temperature, nebulosity, wind, etc.), and time series variables
(consumption of the last day). We refer the interested reader to page 28 for a more detailed description
of the data.

We deal independently with each half-hour consumption and hence consider 48 separate time
series. The basic random forest predictor is denoted by RF0. We report in Figure 3 its performance
on the prediction set, that is, from September 1, 2007 to August 31, 2008. This predictor is however
a bit too unspecific and requires some improvements driven by our data in order to exhibit better
performance. We hence built new predictors RF1–RF4, which are presented below in an increasing
order of sophistication. Their features are summarized in Table 10.Understand

when huge
errors occur
and correct
it • Online training set: This improvement, corresponding to the predictors RF1–RF4, consists in

taking into account also the data of the prediction set available so far, that is, until the day
before. It is motivated by the fact that RF0 reaches poor results for unexplored area, like at
the end of December 2007 when the energy consumption was larger then ever before. E.g., RF1

predicts the energy consumption at time instance t by

Ŷt =
1∑

s∈At prox(t, s)

∑
s∈At

prox(t, s)Ys ,

where At denotes all the time instances corresponding to the same hour as t in the training set
and in the prediction set available so far. The rules RF2–RF4 are described below.

• Linear model: It consists in predicting a linear model of some m 6 M contextual variables
instead of simply computing a weighted average of the past observations Ys. This way, the
predictor should be able to better extrapolate the information gained so far to new unexplored
area. We denote by φ : {1, . . . ,m} → {1, . . . ,M} the injective mapping determining the m
attributes considered in the linear model. The predictor then resorts, at time instance t, to

Ŷt =
m∑
n=1

Xφ(n)tânt + âm+1t , (Linear Model)

where (ât) ∈ arg min
a∈Rm+1

∑
s∈St

prox(t, s)

(
Ys −

m∑
n=1

Xφ(n)san − am+1

)2

.

We constructed two such predictors. For the first one, RF2, we took m = 1 and considered only
the energy consumption before the last time update (i.e., last midday), while for the second
one, RF3, we took m = 2 and considered also the temperature. Their results are reported in
Figure 3.
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• Bias correction: since the energy consumption is not really a stationary process but suffers from
some drift (towards higher consumptions), the predictions happen to be biased. We may want
to adjust them. To do so we may estimate the current bias before the prediction is formed and
correct it. Formally, we consider a ridge-like correction:

Ŷ ′t = θ̂tŶt , (Bias correction)

where

θ̂t = arg min
θ∈R

∑
s∈St

(
Ys − θŶs

)2
=

∑
s∈St XsYs∑
s∈St X

2
s

is the estimation of the current (multiplicative) bias and St = [[σ(t)− h, σ(t)]] denotes a sliding
time window of length h and ending at the last time update σ(t) due to the operational constraint.
Other estimates of the bias, such as θ̂t = 1/|St|

∑
s∈St Ys/Xs, exhibit a similar performance.

Predictor Basic Properties Online training set Linear Model Bias correction

RF0 ×
RF1 × ×
RF2 × × ×
RF3 × × ×
RF4 × × × ×

Table 10: Properties of the random forest predictors.

4.2. Random Forests as a way to construct new experts based on expert advice
only

We use here the random forests to estimate E
[
Yt|Fexp

t

]
at each time instance; that is, we build some

estimate Ŷt+1 from the expert advice Fjs. The considered process does however not return a convex
combination. Its performance can be compared to the performance of the aggregation rules considered
in the previous section. It exhibits poor results (rmse of the order of 900).

4.3. Random Forests as a stochastic aggregation rule

The idea is to consider contextual variables (Xt) available at the beginning of each round and whose
values is a good indicator on the expected performance of the different experts.

At instance t, we denote by Ŷt the prediction of this aggregation rule and by L̂t = `(Ŷt, Yt) and
Lit = `(Fit, Yt) the losses respectively suffered by it and by expert i. We assume that the losses Lit
can be modeled as

Lit = Et[Lit] + ε′it ,

where ε′it ∼ N (0, σ′i
2) is a Gaussian noise independent from the past (i.e., from Fcontext

t ).

At instance t, we get an estimation ̂̀it of the conditional expectation of the loss suffered by expert i.
This estimation can be got thanks to any regression algorithm such as random forests. We suppose
that it can be decomposed as ̂̀

it = Et[Lit] + εit ,

where εit ∼ N
(
0, σ2

t

)
is a Gaussian random noise independent from the past Fcontext

t and from the
other noises (εjt)j 6=i and (ε′jt) .
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Figure 3: Some graphics resuming the behaviour of random forest predictors. For more details on the
description of the data, see page 28.

More specifically, in our experiments, we build a basic random forest using the information available
so far as a training set (Xs, Ys)16s6t−1. The estimate of the loss of expert i is then given by

̂̀
it =

1∑t−1
s=1 prox(s, t)

t−1∑
s=1

prox(s, t)Lis . (1)

We deduce the stochastic aggregation rule stated Algorithm 4.
Trouver une façon de faire une descente de gradient. L’algo est pour l’instant à comparer à EWA, ce serait bien d’en avoir un comparable à EG.

Une meilleure complexité en N ?

Theorem 1. Under the previous assumptions, the regret of the random forests aggregation rule de-
scribed above, computed with the sequence of learning rates (ηt), can be bounded by

T∑
t=1

Et
[
L̂t

]
− min

16j6N
Et[Ljt] 6 N2

(
T∑
t=1

σt +
1

Nηt

)
.
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Algorithm 4 Random forests aggregation rule (AggRF)

Input: sequence of learning rates (ηt), possibly constant

for instance t from 1 to T do

Construct the random forest with the data (Xs, Ys)s6t−1 observed so far
for expert j from 1 to N do

observe Fjt
get ̂̀jt // estimate with the forest constructed above using (1)

wjt ← e−ηt
̂̀
jt // update

end for

predict ŷt ←
1∑

i∈Et wit

∑
j∈Et

wjtFjt

observe yt
end for

The best theoretical value is ηt = +∞ in view of this bound. It amounts to give a weight of 1
to the best expected expert and 0 to all other experts; that is, to follow the expert with the smallest
estimate ̂̀jt of expected loss. The bound then becomes

T∑
t=1

Et
[
L̂t

]
− min

16j6N
Et[Ljt] 6 N2

T∑
t=1

σt

(and can easily be improved into a bound linear in N). However, for ηt ' (1/N)
∑T

t=1 σt, we loose no
more than a constant factor in T with respect to this theoretical optimal bound while the practical
performance may be improved as can be seen in Table 12.

The bound is written with a parameter ηt that can evolve with the time t. However, in the
experiments, we only use fixed parameters η. In a second step, it would be interesting to study an
on-line calibration of the parameter ηt, as we did for the other aggregation rules.

The performance of the random forest aggregation rule –described in Algorithm 4– for various
choices of fixed parameter η is summarized in Table 11. The performance obtained for the best choice
of η in the grid

ΛRF =

{
m · 10k, m ∈

{
1, . . . , 9

}
and k ∈

{
−6, . . . ,∞

}}
is summarized in Table 11.

η 10−4 10−3 10−2 10−1 1 101 102 103 104

rmse× 103 724 724 721 705 679 692 735 743 743

Table 11: Performance of the random forest aggregation rule, for various choices of constant values of
the learning parameter η. The best performance is actually obtained for η = 2 (value not reported).

Proof. Let t > 1. We define

rt = Et
[
L̂t

]
− Et[Lj∗t] ,
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best η rmse × 103 mae × 103 mape × 102 corr %

Empirical: 2 676± 13 506± 7 0.895± 0.012 99.8

Theoretical: ∞ 743± 20 547± 8 0.972± 0.014 99.8

Table 12: Comparison of the performance of the AggRF with the empirical best constant parameter
η on the grid ΛRF (see Table 11) and with the theoretical best η (i.e., η =∞).

where j∗ ∈ arg min
16j6N

Et[Ljt]. We aim at proving that rt 6 3N2σt/
√

2π.

By convexity of the loss function ` in its first argument, and by conditional independence of (Ljt)

and (̂̀it) given Fcontext
t , we have

rt 6 Et

 N∑
j=1

e−ηt
̂̀
jt∑N

i=1 e
−ηt ̂̀itLjt

− Et[Lj∗t] // by convexity of `

= Et

 N∑
j=1

e−ηt
̂̀
jt∑N

i=1 e
−ηt ̂̀it Et[Ljt]− Et[Lj∗t]

 // by independence of (Ljt) and
(̂̀
it

)
given Fcontext

t

= Et

 N∑
j=1

Et[Ljt]− Et[Lj∗t]

1 +
∑

i 6=j e
−ηt(̂̀it−̂̀jt)


6 Et

 N∑
j=1

Et[Ljt]− Et[Lj∗t]

1 + eηt(
̂̀
jt−̂̀j∗t)

 //we lower bounded the denominator

We now use the decomposition of the ̂̀jt and the fact that by definition, Et[Ljt]−Et[Lj∗t] > 0, to get
the bound

rt = Et

 N∑
j=1

Et[Ljt]− Et[Lj∗t]

1 + eηt(Et[Ljt]−Et[Lj∗t]+εjt−εj∗t)

 6 N Et
[

max
x∈R+

x

1 + eηt(x−ε
′′
t )

]
,

where ε′′t =
N∑
j=1

|εjt|. Since ηt > 0, the function

x 7−→ x

1 + eηt(x−ε
′′
t )

is bounded over R+. Its maximum is given by a well-know function, the Lambert W function (or
Omega function), which is the inverse mapping of the function x ∈ R+ 7→ xex. Therefore,

rt 6 N Et

W
(
e−1+ηtε′′t

)
ηt

 .
Now, W is increasing and satisfies the following two inequalities,

∀x > 1, W (ex) 6 x ,

∀x 6 1, W (ex) 6 W (e) = 1 ,
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Figure 4: Cumulated squared losses of the different mixture algorithms for their best fixed parameters.
We remark that the performance of the specialist and EWA forecasters coincide almost exactly.

so that

Et
[
W
(
e−1+ηtε′′t

)]
6 Et

[
W
(
e−1+ηtε′′t

)
1{ε′′t >2/ηt} +W

(
e−1+ηtε′′t

)
1{ε′′t <2/ηt}

]
6 Et

[(
−1 + ηtε

′′
t

)
1{ε′′t >2/ηt} + 1{ε′′t <2/ηt}

]
6 Et

[
ηt ε
′′
t 1{ε′′t >2/ηt} + 1

]
6 ηt Et

[
ε′′t
]

+ 1 . // since ε′′t > 0

This leads to the bound

rt 6 N

(
Et
[
ε′′t
]

+
1

ηt

)
= N

(
N Et

[
|ε|
]

+
1

ηt

)
,

where ε ∼ N
(
0, σ2

t

)
and where the equality holds by definition of ε′′t . We also use that by the Cauchy-

Schwarz inequality, Et[|ε|] 6
√
Et[ε2] = σt. Hence, rt 6 N (Nσt + 1/ηt) ; summing this inequality over

t concludes the proof.
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Appendix A

In this appendix, we justify the measure of dispersion considered for the square loss. Let X be a

random variable with mean µ = E
[
X
]

and standard deviation σ =
√

Var
(
X
)
. Let (X1, . . . , XT ) be a

sequence of independent random variables identically distributed according to the distribution of X.

We aim at giving a measure of dispersion for
√
E
[
X
]
. According to the central limit theorem, we

have
√
T

(
XT − µ

σ

)
 N

(
0, 1
)
,

as T →∞, where XT denotes the empirical mean, XT =
1

T

T∑
t=1

Xt .

The delta method then yields

√
T

(√
XT −

√
µ

)
 N

(
0,
(

1/2
√
µ
)2
σ2

)
,

which entails,

√
T

(√
XT −

√
µ
)

σ/2
√
µ

 N
(
0, 1
)
.

Furthermore, by the method of moments, we have

ŝT ·
2
√
µ

σ

P−→ 1 ,

where ŝT is defined as

ŝT =

√√√√√√ 1

T

T∑
t=1

(
Xt −XT

)2

4XT

.

Hence, Slutsky’s lemma yields

√
T

(√
XT −

√
µ

ŝT

)
 N (0, 1) .

This leads to an asymptotically (1− α)-confidence interval for
√
E
[
X
]
,

I =

[√
XT ±

zα√
T
ŝT

]
,

where zα denotes the α-quantile of the normal distribution.
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Appendix B

We detail here how the performance of the best compound expert with at most m shifts, Omδ , can
be obtained by forward dynamic programming. The idea is to update at each time instance t, for
each active expert i and each number of shifts m, the cumulative loss L(m, i, t) suffered until round t
(round t included) by the best compound expert with at most m shifts and ending with expert i. The
final loss of Omδ will then be given by

errT (Omδ ) =
1

T
min
m′6m

min
j∈ET

L(m′, j, T ) .

Algorithm 5 Best compound expert with at most m shifts, Omδ .

Input: observations (yt), expert advice (fit), active sets (Et), loss function `

Initialization: L(0, i, 0)← 0 for all i ∈ {1, . . . , N}
for instance t from 1 to T do

for all number of shifts m ∈ {0, . . . , t− 1} and experts i ∈ Et update

L(m, i, t)← min

{
L(m, i, t− 1), min

j∈Et−1\{i}
L(m− 1, j, t− 1)

}
+ `
(
fit, yt

)
end for

end for

return
1

T
min
m′6m

min
j∈ET

L(m′, j, T )
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Appendix C

In this appendix, we provide the proof of an improved regret bound in the case of specialized experts.
The original proof was proposed by Blum and Mansour [?, Section 6]. It relies on an EWA algorithm
run with penalized losses (see Algorithm 6). We use the short-hand notation `jt = `(fjt, yt) to denote
the loss suffered by expert j at time instance t > 1. We furthermore assume that the loss function
` is convex in its first argument and has the interval [0, 1] as its range. It is important that ` takes
its values in [0, 1] because of the inequalities (5) and (6). When ` has values in a different interval
[m,M ], the values of m and M need to be known beforehand so that the normalized loss function
(`−m)/(M −m) can be considered instead of `.

Algorithm 6 The Blum-Mansour improved EWA forecaster for specialized exerts.

Initialization: uniform weight vector p1 ∈ X
for instance t from 1 to T do

predict ŷt ←
∑
j∈Et

pjtfjt

incur loss ̂̀t ← `(ŷt, yt)
for expert i from 1 to N update

wit ← e−ηi
∑t
s=1(`is−e−ηi ̂̀s)1{i∈Es}

pit+1 ←
wit (1− e−ηi)1{i∈Et+1}∑

j∈Et+1
wjt (1− e−ηj )1{j∈Et+1}

end for

end for

Theorem 2. If the loss function ` is convex in its first argument and has range in [0, 1], the regret of
the Blum and Mansour aggregation rule described above can be bounded by

T∑
t=1

(̂̀
t − `it

)
1{i∈Et} 6

lnN

ηi
+ ηi

T∑
t=1

1{i∈Et} .

Corollary 3. The choice of ηi =

√
lnN∑T

t=1 1{i∈Et}
in Theorem 2 yields the bound

∀i ∈ {1, . . . , N} ,
T∑
t=1

(̂̀
t − `it

)
1{i∈Et} 6 2

√√√√lnN
T∑
t=1

1{i∈Et} .

Proof. The main idea of the proof is to control w1t+· · ·+wNt; in particular, we will prove by induction
that for all t > 0,

N∑
i=1

wit 6 N . (2)

This will be enough to draw the conclusion. Indeed, we will get in particular that wiT 6 N for all
experts i; or, put differently,

−ηi
T∑
t=1

(
`it − e−ηi ̂̀t)1{i∈Et} 6 lnN .

Then, since e−x > 1− x, for all x ∈ R, we have

T∑
t=1

(
(1− ηi) ̂̀t − `it) 1{i∈Et} 6 lnN

ηi
,
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T∑
t=1

(̂̀
t − `it

)
1{i∈Et} 6

lnN

ηi
+ ηi

T∑
t=1

̂̀
t 1{i∈Et} ,

which yields the stated regret bound by bounding the ̂̀t by 1.

It therefore only remains to prove (2), which we do by induction on t. By definition of the weights,
we have

N∑
i=1

wit =
N∑
i=1

wit−1 exp

(
−ηi

(
`it − e−ηi ̂̀t)1{i∈Et}) (3)

=
N∑
i=1

wit−1 exp
(
−ηi`it1{i∈Et}

)
exp
(
ηie
−ηi ̂̀

t1{i∈Et}

)
. (4)

By the convexity of x 7→ eηx in [0, 1], for all η ∈ R, we get for all x ∈ [0, 1],

eηx 6 (1− x) e0 + xeη = 1− x
(
1− eη

)
.

This leads to the following two inequalities, that are valid for all x ∈ [0, 1] and η > 0,

e−ηx 6 1−
(
1− e−η

)
x , (5)

eηx 6 1−
(
1− e−η

)
eηx . (6)

Hence, (4) entails

N∑
i=1

wit 6
N∑
i=1

wit−1

(
1−

(
1− e−ηi

)
`it1{i∈Et}

)(
1 +

(
1− e−ηi

)
eηi e−ηi ̂̀t1{i∈Et})

6
N∑
i=1

wit−1

(
1 +

(
1− e−ηi

)(̂̀
t − `it

)
1{i∈Et}

)
.

The convexity of the loss function yields ̂̀
t 6

N∑
j=1

pjt`jt , which entails

N∑
i=1

wit −
N∑
i=1

wit−1 6
N∑
i=1

wit−1

(
1− e−ηi

)
1{i∈Et}︸ ︷︷ ︸

pitZt

(̂̀
t − `it

)

6
N∑
i=1

pitZt

 N∑
j=1

pjt`jt − `it


= Zt

N∑
i=1

pit

N∑
j=1

pjt`jt − Zt
N∑
i=1

pit`it = 0 ,

where Zt =
∑
j∈Et

wjt−1

(
1− e−ηj

)
1{j∈Et} is the normalization factor in the definition of pt.

This leads to (2) and hence concludes the proof.

Pierre Gaillard, Yannig Goude, and Gilles Stoltz 25



A further look at the forecasting of the electricity consumption by aggregation of specialized experts

Appendix D

We consider the same setting and notation as in Appendix C. We bound the cumulated loss of an
aggregation rule with respect to a given expert j by the variation of the observed losses suffered by
this expert. The proof was proposed by Hazan and Kale [?]. The considered aggregation rule is a
version of EWA computed with penalized losses. At time instance t, the weight of expert i is updated
as

pit+1 ←
exp

(
−η
∑t

s=1
˜̀
is

)
Wt

,

where Wt =
∑N

j=1 exp
(
−η
∑t

s=1
˜̀
js

)
is the normalization factor and ˜̀

it = `it + 2η`2it, is the penalized

instantaneous loss suffered by expert i at round t.

Theorem 4. For all η > 0, if the loss function ` is convex in its first argument and is such that
0 6 2ηmaxi,t `it 6 1, the regret of EWA run over the penalized losses ˜̀

it = `it + 2η`it can be bounded
for all experts j ∈ {1, . . . , N} by

T∑
t=1

̂̀
t −

T∑
t=1

`jt 6
lnN

η
+ 2η`2jt ;

that is,
T∑
t=1

̂̀
t 6

lnN

η
+ min

j∈{1,...,N}

{
T∑
t=1

`jt + 2η`2jt

}
.

Proof. With the convention that an empty sum is null, we remark that W0 = N . We now lower and
upper bound ln (WT /W0). First,

ln
WT

W0
> ln

exp
(
−η
∑T

t=1
˜̀
jt

)
N

= −ηmin
j

T∑
t=1

˜̀
jt − lnN . (7)

Second, using that e−x 6 1− x+ x2/2 for all x > 0, we see that for all 1 6 t 6 T ,

ln
Wt

Wt−1
= ln

N∑
j=1

pjte
−η ˜̀

jt 6 ln

 N∑
j=1

pjt

(
1− η ˜̀

jt +
η2

2
˜̀2
jt

)
6 −η

N∑
j=1

pjt ˜̀jt +
η2

2

N∑
j=1

pjt ˜̀
2
jt .

Hence, by summing over t, we get

ln
WT

W0
6 −η

T∑
t=1

N∑
j=1

pjt ˜̀jt +
η2

2

N∑
j=1

pjt ˜̀
2
jt . (8)

Combining (7) and (8) then leads to 2

T∑
t=1

N∑
j=1

pjt ˜̀jt 6
lnN

η
+
η

2

N∑
j=1

pjt ˜̀
2
jt + min

j

T∑
t=1

˜̀
jt .

2This bound is generic and is called a second-order bound on the regret.
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We now show that the above second-order bound on penalized losses entails the desired result. Indeed,
it can be rewritten as

T∑
t=1

N∑
j=1

pjt
(
`jt + 2η`2jt

)
6

lnN

η
+
η

2

N∑
j=1

pjt
(
`jt + 2η`2jt

)2
+ min

j

T∑
t=1

˜̀
jt .

Now, since 2η`jt 6 1 and since the losses are nonnegative, we remark that

η

2

(
`jt + 2η`2jt

)2
6
η

2
(`jt + `jt)

2 = 2η`2jt .

Substituting this bound, we end up with

T∑
t=1

N∑
j=1

pjt`jt 6
lnN

η
+ min

j

T∑
t=1

˜̀
jt ,

which, by convexity of the loss in its first argument, concludes the proof.
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Appendix E

Description of the calendar data used in the random forest section.

Offset

0 Winter hour

1 Summer hour, spring period

10 Summer hour, autumn period

2, 3, 4 Winter break

5, 6, 7, 8, 9 Summer break

DayType

0 Monday

1 Tuesday, Wednesday, Thursday

2 Friday

3 Saturday

4 Sunday

5 Summer Sunday

6 August Sunday

7 December Sunday

8 Transition between a Sunday and a Monday bank holiday

9 Bank holidays

10 Bridge days

11, 12, 13 Christmas ±1

14, 15, 16 New Year ±1

17 Saturday or bank holidays +1

Table 13: Description of the calendar contextual variables Offset and DayType.

28 Pierre Gaillard, Yannig Goude, and Gilles Stoltz



A further look at the forecasting of the electricity consumption by aggregation of specialized experts

Appendix F – Random Forests

Introduction

Les random forests sont une modification du bagging 3 qui construit une grande collection d’arbres de
prédiction décorrélés, avant de les moyenner. Les arbres sont construits profondément, ils ont donc
tendance à surapprendre les données. Ils ont un biais faible mais une forte variance. Les moyenner
permet, s’ils sont non corrélés, de diminuer la variance, sans augmenter le biais.

Donnons l’intuition. Si les prédictions des arbres sont identiquement distribuées, de variance
σ2, avec un coefficient de corrélation deux à deux ρ, la variance de la moyenne arithmétique de K
prédictions est alors,

σ̄2 =
1

K2

(
Kσ2 +K(K − 1)ρσ2

)
= ρσ2 +

1− ρ
K

σ2 .

Quand le nombre K d’arbres dans la forêt augmente, le second terme disparâıt mais le premier reste.
La corrélation ρ entre les arbres, si elle est trop forte, limite l’intérêt de moyenner. L’idée des random
forests est de diminuer la variance σ̄2, en décorrélant autant que possible les arbres les uns des autres
sans trop augmenter leur variance σ2. Cela se fait, à l’aide de sélections aléatoires des covariables sur
lesquelles on coupe au niveau des nœuds des arbres.

Les arbres construits sont très similaires aux arbres CART. On remarque néanmoins deux légères
différences. Dans CART, au niveau d’un nœud, on sélectionne la meilleure coupe parmi toutes les
variables contextuelles, et non parmi un sous-ensemble aléatoire. Cet ajout n’a été motivé que par
le fait que la forêt contienne plusieurs arbres que l’on veut les plus indépendants possible les uns des
autres. Dans les random forests, il n’y a de plus pas d’étape d’élagage (pruning) après la construction
de l’arbre, comme dans CART. Cela avait en effet pour fonction de diminuer la variance, ce que l’on
fait déjà ici par le bagging.

Références bibliographiques

La méthode a été introduite par Leo Breiman [?] bien que de nombreuses idées soient apparues
plus tôt dans la littérature, comme le bagging [?], ou les arbres CART. Elle est implémentée en R

avec le paquet randomForest, maintenu par Andy Liaw, disponible sur le site du CRAN. Le site web
http://www.stat.berkeley.edu/~breiman/RandomForests donne accès à de la documentation, du
code et de nombreux rapport techniques. Une explication détaillée dans le cadre des algorithmes
de classification ou de régression est disponible dans le livre [?]. Les preuves de convergence ne
sont pas évidentes et sont souvent obtenues pour des modèles simplifiés et éloignés de ce qui est
considéré en pratique. Dans le cadre de la régression, [?] a tenté d’expliquer les random forests
par leur similitudes avec les K plus proches voisins. Plus récemment, [?] ont prouvé des théorèmes
de convergence universelle pour les algorithmes de moyennage, dont les random forests sont un cas
particulier.

Le cadre théorique

On dispose d’un ensemble d’entrâınement (Xt, Yt)t∈S0 , qui est modélisé par un processus supposé
indépendant et identiquement distribué de loi P. Pour t > 0, Xt = (Xt1, . . . , XtM ) est la réalisation
au temps t des M variables contextuelles, observables, pouvant expliquer la sortie Yt ∈ R. Chaque

3Abbréviation de “bootstrapping and averaging”. Méthode qui consiste à construire une collection de prédicteurs
faibles en ne sélectionnant qu’une partie de l’ensemble d’entrâınement pour chacun d’eux (bootstrapping) avant de les
moyenner (averaging).
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covariable Xtm, 1 6 m 6 M , est à valeurs dans un ensemble Xm, qui est soit muni d’un ordre total,
comme R par exemple, soit fini (ensemble de catégories).

L’objectif est, à partir de l’observation des variables contextuelles X, de prévoir la sortie Y d’un
nouveau couple (X,Y ) tiré selon P, en faisant la plus petite erreur quadratique possible. Les random
forests proposent une solution efficace à ce problème, présenté comme l’algorithme 7.

Algorithm 7 Régression par Random Forest

Entrées : (Xt, Yt)t∈S0 , ensemble d’entrâınement ; x ∈ C, covariables pour la valeur à prévoir ; K,
nombre d’arbres dans la forêt ; m, nombre de covariables sélectionnées à chaque coupe ; nfeuille, nombre
de covariables Xt de l’ensemble d’entrâınement maximal par feuille.

Pour k de 1 à K, construire l’arbre Tk ainsi :

1. Choisir un ensemble d’entrâınement pour cet arbre (bootstrapping) :
Sk ← Tirer N fois avec remise et uniformément dans S0

2. Initialiser : Tk ← racine contenant tout l’ensemble bootstrap S0

3. Tant que Tk contient une feuille ayant plus de nfeuille données faire

a. M ′ ← choisir uniformément m parmi les M covariables
b. Choisir la meilleure variable et la meilleure coupe parmi les m covariables

(j?, c?) = arg min
j∈M ′, c∈Cj

min
a∈R2

2∑
l=1

∑
Xi∈cl

(Yi − al)2 ,

où Cj est l’ensemble des façons de couper les données présentes en deux ensembles ordonnés
si un ordre est disponible pour j.

c. Transformer la feuille en un nœud avec deux feuilles. Associer à chaque feuille respective-
ment les ensembles de variables contextuelles c?1 et c?2 et les données d’entrâınement cor-
respondantes.

4. Faire descendre x dans l’arbre jusqu’à une feuille d’ensemble de covariable associé Fk(x) et
prévoir

hk(x)← 1
|Fk(x)|

∑
t:Xt∈Fk(x) Yt

Renvoyer : h(x) = 1
K

∑K
k=1 hk(x)

Trouver la bonne coupe

Chaque nœud interne d’un arbre des forêts aléatoires divise l’ensemble des données en deux. Un point
essentiel lors de la construction des arbres est de déterminer la bonne partition qui regroupe au mieux
les données selon la variable à expliquer Yt. Pour diminuer la complexité du problème, on ne considère
que les coupes se faisant le long d’une seule variable contextuelle. Notons Cj , l’ensemble des partitions
possibles selon la covariable j. Si celle-ci est réelle, on ne considère dans Cj que les partitions en deux
intervalles.

On peut définir l’erreur quadratique d’une couple covariable–partition (j, c) ∈ {1, . . . ,M}×Cj , où
c = (c1, c2) est une partition de l’ensemble Xm des covariables en deux, par

E(j, c) = min
a∈R2

2∑
l=1

∑
Xi∈cl

(Yi − al)2 .

Le meilleur couple covariable–partition d’un sous ensemble de variables contextuelles M ′, est alors
donné par le couple minimisant son erreur quadratique,

(j?, c?) = arg min
j∈M ′, c∈Cj

E(j, c) .

30 Pierre Gaillard, Yannig Goude, and Gilles Stoltz



A further look at the forecasting of the electricity consumption by aggregation of specialized experts

Pour chaque variable contextuelle, à valeurs dans un ensemble ordonné, la détermination d’une
meilleure coupe se fait très rapidement (sa complexité est linéaire en le nombre de données présentes)
grâce à l’égalité

arg min
a∈R

∑
Xi∈I

(Yi − a)2 =

 1

#{i,Xi ∈ I}
∑
Xi∈I

Yi

 .

Cependant, si la covariable j prend ses valeurs dans un ensemble de q catégories non ordonnées, il y
a 2q−1 − 1 partitions possibles de l’espace en deux groupes, et le calcul devient vite impossible quand
q est grand. La méthode consiste à ordonner les catégories par la moyenne des sorties Yi appartenant
à cette catégorie. On coupe alors comme si on avait une variable ordonnée. On est ramené à une
complexité linéaire en q ! On peut montrer que cela donne bien la coupe optimale [?]. Bien qu’intuitive
la preuve est loin d’être triviale.

Proximités

Les random forests induisent une notion de proximité entre les entrées Xt. C’est l’un des outils les
plus utiles de la méthode. Intuitivement, si deux ensembles de covariables Xt1 et Xt2 tombent souvent
dans les mêmes feuilles des arbres, on peut supposer qu’elles expliquent la sortie Y de façon similaire.
Plus formellement, après que les arbres de la forêt ont été construits, on fait descendre toutes les
données au niveau des feuilles et on définit la proximité entre deux observations t1 et t1 par

prox(Xt1 , Xt2) =
1

K

K∑
k=1

1{Xt1 et Xt2 tombent dans la même feuille dans l’arbre k} .

On remarque que la prévision des random forests,

hK(x) =
1

K

K∑
k=1

1

#Fk(x)

∑
t:Xt∈Fk(x)

Yt ,

est proche de

1∑K
k=1 #Fk(x)

K∑
k=1

∑
t:Xt∈Fk(x)

Yt =
1∑

t∈S0
prox(x, Xt)

∑
t∈S0

prox(x, Xt)Yt

∈ arg min
a∈R

∑
s∈St

prox(t, s) (Ys − a)2 ,

où l’égalité procède d’une simple récriture utilisant la définition de la proximité et où la réécriture
comme un argmin est obtenue par une minimisation de la perte carrée pondérée par la proximité.
C’est cette idée, que nous avons suivi, pour construire le prédicteur RF1 et ses dérivés de la partie 4.1.

En pratique

Dans mes implémentations des random forests, j’ai pris :
nfeuille = 3

m = bM/3c ' 19
K = 400
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