Forecasting electricity consumption by
aggregating experts; how to design a good set of
experts

Pierre Gaillard and Yannig Goude

Abstract Short-term electricity forecasting has been studied for years at EDF and
different forecasting models were developed from various fields of statistics or
machine learning (functional data analysis, time series, non-parametric regression,
boosting, bagging). We are interested in the forecasting of France’s daily electricity
load consumption based on these different approaches. We investigate in this em-
pirical study how to use them to improve prediction accuracy. First, we show how
combining members of the original set of forecasts can lead to a significant improve-
ment. Second, we explore how to build various and heterogeneous forecasts from
these models and analyze how we can aggregate them to get even better predictions.

1 Introduction

Electricity consumption forecasting is a crucial matter for electricity providers like
EDF to maintain the equilibrium between production and demand. Overestimating
the consumption leads to overproduction, which has a negative environmental im-
pact and implies unnecessary loss of benefits for the company. On the other hand,
underestimating the consumption may cause a shortage of energy and black outs.
In the past years EDF R&D has therefore developed several competitive forecast-
ing models achieving around 1.4% error in MAPE (the average of percentage errors,
see (2) for a formal definition) at the daily horizon. However the electrical scene
in France is constantly evolving (nuclear power, electric cars, air conditioning are
developing for instance) and the opening of the electricity market induces potential
customer losses. Therefore the historical models have to be regularly reconsidered
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and challenged. As daily forecasts are the main inputs for optimizing the production
units we consider in this paper the goal of improving short-term (daily) forecasting
of France’s electricity consumption.

As the historical French electricity provider, EDF has investigated the issue of
load forecasting for years and developed models from a wide range of statistical or
machine learning methods. Among many, we consider in this study three approaches
presented below. They were chosen for two main reasons. First, they have a good
forecasting accuracy. Second, they are derived from quite different statistical frame-
works, which results in a sort of heterogeneity. The first model is a non-parametric
model based on regularized regression on spline basis (see Wood [28]). It will be re-
ferred to next as the generalized additive model (GAM). This model has performed
well on France’s load consumption signal (see Pierrot and Goude [25]), on EDF
portfolio data (see Wood et al. [29]) and was proven to be a good competitor on US
data (see Nedellec et al. [24]). The second model is based on curve linear regression
(CLR) via dimension reduction. It is introduced and applied to electricity consump-
tion forecasting in Cho et al. [10, 11]. The third and last model, kernel wavelet
functional (KWF), is detailed in Antoniadis et al. [2, 3, 4]. It combines clustering
functional data and detection of similar patterns in functional processes based on a
wavelet distance. These three approaches are based on extremely different insights
and we expect it can induce different behaviors that an aggregation algorithm can
take advantage of in some online fashion. The GAM model captures non-linear
relationships between electricity load and the different covariates driving it (tem-
perature, fare effects...) and provides smooth estimates of these transfer functions
without any transformation of the original data. The CLR model performs a data-
driven dimension reduction as well as a data transformation so that the relationship
between the transformed data is linear and can be captured by simple multivariate
regression models. The KWF approach is non-parametric and does not use any ex-
ogenous variable but the past consumption. It is particularly robust to special days
(bank holidays, holiday seasons) and meteorological forecasts errors. In the GAM
setting, observations (half-hourly electricity load and covariates) are considered as
finite dimensional whereas in the CLR and the KWF approaches, daily electricity
load is the realization of a functional process.

As we have at our disposal three forecasting models, a straightforward ques-
tion is how to combine them to produce accurate forecasts. The art of combining
forecasts has been extensively studied for the past four decades (see the review
of Clemen [12]) and the empirical literature is voluminous. However, few real-
world empirical studies consider the framework of individual sequences to design
the aggregation rules. Some of them include for instance climate prediction [23],
air-quality prediction [21, 22], quantile prediction of daily call volumes entering
call center [6], or electricity consumption [13]. The vast majority of these studies
focuses however on the aggregation rules and how to weight the experts. Little con-
sideration goes into designing the set of experts to include in the combination. Aiolfi
et al. in their technical report [1] studied the construction of a varied enough set of
experts by considering the combination of linear autoregressive models with non-
linear models (logistic smooth transition autoregressive and neural networks). They
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however did not consider the same aggregation rules as we do: because of the small
length of their time series, none of their rules had time to learn the weights and the
best results were obtained using uniform aggregation scheme.

We now describe the methodology followed in this study. We aim first at design-
ing a set of base forecasting methods (henceforth referred to as experts) by using the
three models described above. We show how an aggregation rule that sequentially
outputs forecasts of the electricity consumption for the next instances can signif-
icantly improve upon these experts. The aggregation rules and the framework of
prediction with expert advice is detailed in Section 2. Then, we propose different
strategies to design a larger set of experts from the three initial experts and give a
detailed analysis of the corresponding combined forecasts.

2 Sequential aggregation of experts

The content of this section reviews the framework of sequential prediction with ex-
pert advice, a setting which received considerable attention in the past twenty years
(see the monograph by Cesa-Bianchi and Lugosi [9]). It considers an online learn-
ing scenario in which a forecaster has to guess element by element future values
of an observed time series. To form its prediction it receives and combines before
each instance the opinions of a finite set of experts. This framework makes possible
to consider several stochastic models with extremely different assumptions in a sin-
gle approach. To do so, it adopts the deterministic and robust point of view of the
literature of individual sequences. It is thus particularly adapted to our application.

2.1 Mathematical context

We now present the mathematical setting of prediction with expert advice. We sup-
pose that at each time instance ¢t = 1,...,T the next outcome y; of a sequence of
observations yy,...,yr, like half-hourly electricity consumptions, is to be predicted.
We assume that the observations are all bounded by some positive constant B, so that
y: € [0, B]. Before each time instance 7, a finite number K of experts provide forecasts
x; = (X14,...,XKk,) € [0,B]K of the next observation y,. A forecaster is then asked to
form its own prediction with knowledge of the past observations y‘l_1 =V1yeey Vi1
and of the past expert advice &} = xi,...,x;. Let denote by - the inner product in
RX. Formally the forecaster forms a mixture p, = (P ,.. ., Pk) € RX and predicts
V=D, k= ):sz1 Dk Xr; by linearly combining the predictions of the experts.
The accuracy of a prediction x proposed by an expert or by the aggregation rule
at time instance ¢ for the outcome y, is measured through a convex loss function ;.
In this paper, we consider the special case of the square loss 4, (x) = (y; —x)%. The
analysis can however be easily extended to any convex loss function. On instance
t, expert k suffers loss 4 (xx,) = (y; —xx,)> and the aggregation rule incurs loss
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4:(%) = (y; —;)*. The goal of the forecaster is to design aggregation rules (that
is, applications .« : (x|, ytfl) — p,) with small average error. The latter can be
decomposed as

1
T

=

=1 qes =1

-~ . 1 ¢
(e =) inf {T Z (o —Q'xt)z} +Rr, (1)

where S is some closed and bounded subset of RX: and this defines the regret Rr.
As we explain next this decomposition highlights the well-known trade-off between
approximation error and estimation error. Because these two terms add up to the
error incurred by the aggregation rule they act as two opposing forces.

The first term in (1) is the error encountered by the best constant weight vector
chosen in hindsight in a closed and bounded set § C RX. This best mixture is called
an oracle. Its performance is the target that the aggregation rule intends to reach and
is thus used as a benchmark value to be compared to the performance of an aggrega-
tion rule. Several oracles can be defined according to the set S the aggregation rule
aims at competing with. We can list several oracles: the best expert oracle suffers
ming—y,. x ):,TZ 1 — xkﬁt)z; the best convex weight vector corresponds to the best el-
ementin S =Ag = {qg € R§ : ¥;,q; = 1}; and finally the best linear oracle is defined
by S = Bk (r) the ball of radius r in RX. The larger the set S we aim at competing
with, the smaller the first term in (1) is, but the harder it is for the aggregation rule
to remain competitive. The second term grows in general. This approximation error
is closely related to the expert forecasts. It decreases with increasing heterogeneity
of the expert set.

The second term Ry is the estimation error. It evaluates the ability of the aggre-
gation rule to retrieve online the oracle, i.e., the best possible mixture. If the aggre-
gation rule is well designed, R will vanish to O as the length T of the experiment
grows to infinity.

We assume in this paper that we have an efficient aggregation rule and we focus
on reducing the approximation error; indeed many efficient aggregation rules are
already well-known— see Section 2.2, but the approximation error is often left out
of the debate.

2.2 Aggregation rules

Experiments are performed by considering four different aggregation rules: the ex-
ponentially weighted average forecaster (EWA), the fixed share forecaster (FS), the
ridge regression forecaster (Ridge), and the polynomially weighted average fore-
caster with multiple learning rates (ML-Poly). EWA, FS, and Ridge are described
in the book of Cesa-Bianchi and Lugosi [9] for constant values of their learning
parameters. Devaine et al. [13] already applied EWA and FS to short-term load
forecasting. They suggested in Section 2.4 an empirical tuning of the learning pa-
rameters which comes with no theoretical guarantees but works empirically well. It
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consists of optimally choosing the learning parameters on adaptive finite grids. Ex-
cept for ML-Poly which already comes with its own learning parameter calibration
rule, the parameters are tuned online following the method of Devaine et al. [13].

The exponentially weighted average forecaster (EWA) is an online convex ag-
gregation rule introduced in learning theory by Littlestone and Warmuth [20] and
by Vovk [27]. At time instance ¢, it assigns to expert k the weight

e NI b (ks)

K e NI bslxis)

Pkt =

which is exponentially small in the cumulative loss suffered so far by the expert.
When the learning parameter 1) is properly tuned, it has a small average regret
Rr=0 (1 / VT ) with respect to the best fixed expert oracle— see Cesa-Bianchi
and Lugosi [9].

The fixed share forecaster (FS) is due to Herbster and Warmuth [18]. It has the
property to compete not only with the best fixed expert but with the best sequence
of experts that may change a small number of times. It is particularly interesting
when dealing with non stationary environments, in which the best expert should
regularly be reconsidered. The fixed share forecaster considers a learning parameter
7N as well as a mixing parameter ¢ € [0, 1] that evaluates the number of changes in
the oracle sequence of experts we are competing with.

We now provide a short mathematical description of the fixed share aggregation
rule. The initial weight distribution is uniform p; = (1/K,...,1/K). Then, at each
instance ¢, the weights are updated twice. First, a loss update takes into account the
new loss incurred by each expert,

Prs_re” ME1 (s

{)\kaf = N r—1 .
Zlel pi’t_le_nzszlgs(xi,s)

Second a mixing-update ensures that each expert gets a minimal weight @/K by
assigning
ﬁk,t = (l - a){}\kt + OC/K.

This update captures the possibility that the best expert may have switched at time
instance 7. The fixed share forecaster was proven to have nice theoretical properties
and vanishing average regret Ry with respect to sequences of experts with few shifts.
For more details about the fixed share aggregation rule the reader is referred to Cesa-
Bianchi and Lugosi [9, Section 5.2].

The polynomially weighted average forecaster with multiple learning rates
(ML-Poly) is obtained via a version of the polynomially weighted average fore-
caster detailed in Cesa-Bianchi and Lugosi [8], see also Cesa-Bianchi and Lugosi [9,
Section 2.1]. The multiple learning rate version is due to Gaillard et al. [17] whose
implementation is recalled in Algorithm 1. Gaillard et al. [17] proved the regret
bound Ry = O(1/v/T) with respect to the best fixed expert. ML-Poly is particularly
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Algorithm 1 The polynomially weighted average forecaster with multiple learning
rates (ML-Poly)

Initialization: p; = (1/K,...,1/K) and Ry = (0,...,0)

For each instancet =1,2,...,T
0. pick the learning rates

M =1/ (14223 (66 — )%
1. form the mixture P, defined component-wise by
Prt = Mg—1 (Rk,t—l)Jr / M '(Rr—l)+
where o denotes the vector of non-negative parts of the components of a
2. output prediction y;, = p, - @;
3. for each expert k update the regret
Rk,t =Rp; 1+ 4 (yr) —4 (xk,t)

Algorithm 2 The ridge regression forecaster (Ridge)

Parameter: A >0
Initialization: py = (1/K,...,1/K)

For each instancet =1,2, ..., T
1. form the mixture p, defined by

-1
D, = argmin{z s —u-a,)’ + A |U_Po|§}

weRK | s=1

2. output prediction y; = p, - @;

interesting since despite the theoretical tuning of the learning parameters, it achieves
as good performance as the other ones. It runs also much faster than the empirical
tuning described by Devaine et al. [13] and used for the other rules which needs to
run as many times the aggregation rule as the size of the parameter grid.

The ridge regression forecaster (Ridge) is presented in Algorithm 2. It was intro-
duced in a stochastic setting by Hoerl and Kennard [19]. It forms at each instance
the linear combination of experts minimizing a L,-regularized least-square criterion
on past data. It was first studied in the context of prediction with expert advice by
Azoury and Warmuth [5] and Vovk [26] and was proved to enjoy nice theoretical
properties, namely a regret bound Ry = o(1) as T — e with respect to the best lin-
ear oracle. Once again, the learning parameter A of the ridge regression aggregation
rule has to be calibrated online. This tuning can be done using the methodology
detailed in Devaine et al. [13, Section 2.4].

Ridge forms linear mixtures. The weights may be negative and not sum to one,
while the other three aggregation rules restrict themselves to convex combination
of experts. In other words they only propose weight vectors p, € Ax where Ax =
{x e Rf : Y;x; = 1}. While linear aggregation rules might have more flexibility
to detect correlation between experts and therefore often reach better performance,
convex aggregation offers easy interpretation and safe predictions. Indeed convex
weight vectors only assign non-negative weights to experts and their predictions
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always lie in the convex hull of experts predictions. Thus if all the experts are known
to perform well, the aggregation rule will do so as well.

The gradient trick. In the versions described above, EWA, FS, and ML-Poly com-
pete only with the best fixed expert oracle. In Equation (1) they cannot per se ensure
vanishing average regret Ry with respect to the best fixed convex combination (i.e.,
S = Ag). But it exists a standard reduction from the problem of competing with the
best convex combination oracle to the goal of competing with the best fixed expert.
This reduction is a well-known trick in the literature of individual sequences and
is known as the gradient trick. The theoretical proof of this reduction is beyond
the scope of this empirical research and is detailed in Cesa-bianchi and Lugosi [9,
Section 2.5].

We only provide a brief description of the gradient trick. For each time instance ¢,
we denote by f; : p € Ak — 4 (p- ;) € R, the function which evaluates the losses
incurred by the weight vectors at time instance . When the loss functions ¢, are
convex and (sub)differentiable, the functions f; are convex and (sub)differentiable
over Ak. That is the case for instance for the square loss. We denote by Vf; the
(sub)gradient function of f;. The gradient trick relies then in not directly running the
aggregation rule with the loss functions ¢; but with modified gradient loss functions
fi :p € Ak > V£,(P,) - p. In other words, the aggregation rules are run the same way
by replacing the loss 4 (;) incurred by the algorithm by f;(p,) and the loss £ (x,)
suffered by expert k by f; (), where & € Ak is the Dirac mass on k. Experiments
of the next section are run using the gradient trick.

3 Experiments

We now describe the data we are dealing with and how we intend to build new
experts from the three forecasting models described in the introduction. We then
report the results obtained by mixing the different sets of experts as well as the
performance of three reference oracles (best experts, best convex combination, best
linear combination). As explained in Section 2 the performance of these oracles cor-
responds to the one aggregation rules hope to reach. Remember that the fixed share
aggregation rule does not only compete with the best fixed convex combination but
has a more ambitious goal. It aims at coming close to the performance of the best
sequence of convex combinations that vary slowly enough. The results obtained by
this more complex oracle will however not be reported in this research and we will
only compare the performance of the fixed share aggregation rule to the best fixed
convex combination of experts.
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3.1 Presentation of the data set

We consider an electricity forecasting data set which corresponds to an updated
version of the one analyzed by Devaine et al. [13]. It contains half-hourly measure-
ments of the total electricity consumption of the EDF market in France from January
1, 2008 to June 15, 2012, together with several covariates, including temperature,
cloud cover, wind, etc. Our goal is to forecast the consumption every day at 12:00
for the next 24 hours; that is, for the next 48 time instances.

Atypical days are excluded from the data set. They correspond to public holidays
as well as the days before and after them. Besides, the data set is cut into two subsets.
A training set of 1452 days from January 1, 2008 to August 31,2011 is used to build
the forecasting methods. The performance of the methods is then measured using
the testing set of 244 days between September 1, 2011 to June 15, 2012. Prediction
accuracy is measured in megawatts (MW) by the root mean squared error (RMSE)

and by the absolute percentage of error (MAPE)

l ZT: e — Y1l 2)
T =1 N
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Fig. 1 [left] The observed half-hourly electricity consumptions between January 1, 2008 to June
15,2012. An overall trend as well as a yearly seasonality can be pointed out in the data. The electri-
cal heating in winter has a major impact in France on the electricity consumption. Approximately
the last year is used to test the methods. [right] The observed half-hourly electricity consumptions
during a typical week. A weekly pattern can be observed with a reduction of consumption during
the week-end.



Forecasting electricity consumption by aggregating experts 9

Operational forecasting purposes require the predictions to be made simultane-
ously at 12:00 for the next 24 hours (or equivalently for the next 48 half-hourly
time instances). Aggregation rules can be adapted to this constraint via a generic
extension detailed in Devaine et al. [13, Section 5.3].

3.2 Combining the three initial models

From each of the three forecasting models described in the introduction, one expert
is obtained: one from the generalized additive model (GAM), one from the curve
linear regression (CLR) and a last one from the kernel approach based on wavelets
(KWF). The experts are trained using the total training set from January 1, 2008
to August 31, 2011 described in the previous section. We calibrate the methods as
presented in [4, 11, 25]. This starting set of three experts is denoted in the rest of the
paper by Ej.

Table 1 reports the performance obtained by mixing the three experts in Ep. It
describes also the reference results of the corresponding benchmark oracles: the
best expert in Ey, the best convex combination and the best linear combination. The
best convex combination and the best linear combination obtain similar results with
RMSEs of 629 MW. Due to confidentiality constraints, we cannot provide detailed
characteristics of the observed electricity consumptions. The relative performance
of the methods can be enjoyed by noting that MAPEs are around 1%. A significant
improvement in performance can be noted in comparison to the best expert which
obtains 744 MW. This motivates the necessity of mixing these models whose fore-
casts bring different information.

EWA, FS, and ML-Poly are designed to compete with the best convex combina-
tion of experts while Ridge aims at approaching the performance of the best linear
combination. The latter suffer RMSEs between 624 MW and 638 MW, which cor-
responds to reductions of the RMSE of approximatively 15% compared to the best
expert RMSE.

To quantify if our improvements are significant, we computed the dispersion of
the errors among time instances of the aggregation rules and of the oracles— see
technical report from Gaillard et al. [16, Section 1.2] for details. The dispersion is
measured by the 95% standard error

2
~ ~\2
%23;1 (()’t *)’t)z - %):;T=1 ()’t *)’r) )
~\2
%Z?:] (Yt —yz)
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)

that is, the half-width of the 95% symmetric confidence interval of the error around
the RMSEs reported in Tables 1 to 6. The 95% standard error of the RMSEs are
around ten megawatts while the 95% standard error of the MAPE are approxima-
tively 0.02%. Hence any reduction of the RMSE of more than 10 MW can be con-
sidered significant in the following.
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Fig. 2 Time evolution of the weight vectors formed by ML-Poly [top] and Ridge [bottom]. We
remark that the weights assigned by ML-Poly are always non-negative and sum to 1. Ridge can
form negative weights.
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Fig. 3 Time evolution of cumulative residual of the three experts in Ey and of the considered ag-
gregation rules. The aggregation rules have smaller gradient in comparison to the experts. Besides
it can be noticed that Ridge behaves very differently when compared to the other aggregation rules.

Figure 2 reports the time evolution of the weights formed by ML-Poly and Ridge.
The weight vectors created by Ridge converge but that is not obvious with ML-Poly.
Stability is beneficial in an industrial context where weights have to be interpreted
and understood by human beings. The weights formed by EWA and FS behave
similarly to the ones of ML-Poly and are thus not reported here.

In the next section we will investigate how more experts can be designed based
on these three models in order to improve further the predictions.
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Fig. 4 Hourly and monthly RMSE of the first three experts and two aggregation rules described
in Table 6. Because they obtain similar results to the ML-Poly aggregation rule, the EWA and the
fixed share aggregation rules are not reported here.

3.3 Creating new experts

We aim now at reducing the approximation error in Equation (1), i.e., at improving
the performance of the oracles, by adding new experts to our initial set Ey. If the
new experts are not different enough from the base ones, the approximation term
will not decrease; and worse, the right-most term in (1), the sequential estimation
error, may increase, as the aggregation rule will have to face more experts. Note that
none of the newly constructed experts will significantly outperform the performance
of the best expert in Ey, which achieves a RMSE of 744 MW and a MAPE of 1.29%.
The benchmark performance of the best expert oracle thus remains the same for all
considered extended sets of experts in this study.

3.3.1 Bagging

The first method that we investigate is inspired from bagging, a machine learn-
ing method that combines bootstrapping with aggregating. It was introduced by
Breiman [7] in order to improve the stability and the accuracy of a forecasting
model. As most averaging methods it is known to reduce the variance and to avoid
over-fitting. We aim at creating new experts by bootstrapping and at averaging on-
line the newly constructed set of experts by running the aggregation rules.

Given a forecasting model, a bootstrapped expert is obtained by estimating the
model on a random training strict subset S, (that does not include the whole training
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set Sp of n = 1452 days). The training set Sj, is generated by sampling n days from
So uniformly and with replacement. As the sampling is performed with replacement,
some days may be present multiple times in S,. Breiman [7] pointed out that it leaves
out e~ ! ~ 37% of the days.

The bootstrap procedure is repeated 20 times using each of the three models at
hand: GAM, CLR, and KWF. We name E; the set of 60 new experts, thus created.
In our experiments we used 20 bootstrapped replicates of each model. This does
not mean that more or fewer replicates would have led to worse performance. We
wanted to add enough replicates to get sufficient variety but in the other hand we did
not want to have too many bootstrapped experts in comparison to the experts we will
build in the following sections. We tested several values and 20 expert replicates for
each model seemed to be a reasonable trade off.

The performance of aggregation rules and oracles on Ey U E is reported in Ta-
ble 2. The best linear combination oracle achieves a RMSE of 571 MW, which is a
slightly better performance than the one of the best convex combination oracle, that
equals 601 MW. This can be explained by two facts. First, the new experts might
be biased. As their weights do not need to sum to one, linear mixtures correct better
such bias. Second, as many experts are built using the same method, there are impor-
tant correlations between them that can be better modeled using negative weights.
However Ridge seems to have a hard time estimating the linear oracle and the per-
formance is not much improved compared to Table 1. The empirical gain is about
10 MW for all aggregation rules. The improvement is thus not really significant.

3.3.2 Specialization

We start this section with the intuition that we need variety in our set of experts. We
try to reuse the idea of bootstrapping to create new experts by modifying the train-
ing set. However, instead of sampling days uniformly in the training set £y, we aim
at assigning weights to training days with the goal to maximize the variety among
themselves. To do so, we choose weights according to the values of the correspond-
ing covariates (temperature, nebulosity, wind, type of day, ...). Specialized experts
are created this way to some specific scenarios like heatwave, cold spell, sunny days
or cloudy days. Hopefully if we choose different enough scenarios, these experts
may catch different effects in the consumption that we might combine by aggregat-
ing them.

We now describe how to design such new experts. We suppose that we have at
our disposal a forecasting model such that, during the training of the model, we
can assign different weights to the elements of the training data. This is the case
for GAM, CLR, and KWF for example. We assume that we also have access to
an exogenous variable Z € [0,1] like the temperature or the nebulosity which was
normalized in [0, 1]. Given this model and this exogenous variable Z, we build two
specialized experts: the first one by assigning to the day d the weight (1 — Zd)z, the
second one with the choice Zﬁ. We thus get one expert focusing on high values of Z,
and another one focusing on low values. The form of these weights was set empiri-
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cally but we might want to replace it by many other forms. For instance, we had first
looked at weights in {0, 1} so as to select days according to a threshold on Z. How-
ever this led to unstable experts and poor performance. We chose four covariables
all based on temperature scenarios: the average, maximum, and minimum tempera-
ture of the day, and the variation of temperature with the previous day. We thus got
8 (= 4 scenarios x 2 experts: hight and low) specialized experts by using each of
the three models: GAM, CLR, and KWF. We call Ej this set of 24 (= 8 experts x 3
methods) experts. The performance obtained by mixing the experts in Ep U E is
reported in Table 3. We observe a better performance for all aggregation rules with
respect to bagging although we consider fewer additional experts.

Note that we showed the interest of specialized experts when they are combined
with initial experts. The individual performance of specialized experts is often poor.
They do not necessarily perform better than initial experts even when they are eval-
uated only on the data they should be specialized to.

3.3.3 Temporal double-scale model

Now we study another way of constructing new experts by considering a temporal
two-scale model. We follow the methodology detailed in Nedellec et al. [24] of the
team TOLOLO for the “Kagle Global Energy Forecasting Competition 2012: Load
Forecasting”.

To forecast the short-term load with the canonical generalized additive model
(GAM), the electricity consumption is usually explained by a single model includ-
ing all the covariates (meteorological, and calendar ones) together with the recent
consumption. The consumption Y; is here decomposed into two parts: a medium-
term part ¥ including meteorological and calendar effects and a short-term part ¥,
containing what could not be captured in large temporal scales, ¥, = ¥/ + Y. The
short-term part ¥;* basically consists of capturing local effects like extreme weather,
network reconfigurations and so on. The modeling approach is thus divided into two
estimation steps. First, we fit a mid-term generalized additive model including the
meteorological and calendar covariates only. Second, we perform a residual analysis
and we correct online the forecasts by using the observed consumptions of the last
30 days. This short-term readjusting is done by fitting another generalized additive
model on the residuals.

The set containing this new expert is called £3 and the performance obtained by
combining this new expert with the three experts in E is reported in Table 4. We
observe RMSEs around 600 MW for all aggregation rules, which is a significant im-
provement considering that we add only one expert. The extension to other methods,
like CLR and KWEF, of this new way of creating experts is left for future work.
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Table 1 Performance of oracles and aggregation rules using the set of experts Ey: GAM, CLR,
and KWF.

Oracles and aggregation rules RMSE (MW)  MAPE (%)

Best expert 744 1.29
Best convex combination 629 1.06
Best linear combination 629 1.06
EWA 624 1.07
FS 625 1.05
ML-Poly 626 1.05
Ridge 638 1.06

Table 2 Performance of oracles and aggregation rules using the set of experts Eg U Ej: GAM,
CLR, KWF as well as the 60 bootstrapped experts.

Oracles and aggregation rules RMSE (MW)  MAPE (%)

Best convex combination 601 1.01
Best linear combination 571 0.99
EWA 614 1.01
FS 619 1.03
ML-Poly 612 1.02
Ridge 629 1.05

Table 3 Performance of oracles and aggregation rules using the set of experts Eg U Ep: GAM,
CLR, KWF as well as the 24 specialized experts.

Oracles and aggregation rules RMSE (MW)  MAPE (%)

Best convex combination 604 1.02
Best linear combination 582 0.99
EWA 609 1.01
FS 610 1.02
ML-Poly 602 1.00

Ridge 613 1.01
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3.3.4 Boosting

In this section we investigate a final method to create new experts. We take now
inspiration from boosting methods, like the AdaBoost algorithm of Freund and
Schapire [15], that aims at correcting the mistakes of weak learners (or experts).
The experts constructed in this section will be referred to as boosted experts.

Suppose that we have an expert that at an instance ¢ of the training data esti-
mates the consumption y; by x;. We want to build another expert predicting x/. Then
reminding that our final aim is to aggregate well these predictions, it is irrelevant
wether the second expert does not predict well y, as soon as it counterbalances the
error made by the original expert x;. Improving the performance of the best convex
combination should indeed only improve the prediction of the mixture. We can thus
try to build the second expert so that the constant mixture yx; + (1 — y)x, performs
well for some ¥ € [0, 1]. This can be done by training the second experts not directly
on the observed consumption y, but on the modified one y, = (y; — yx;) /(1 — ). We
can create several new experts by considering different values for y € [0, 1]. Small
values might lead to experts too similar from the original one, while larger values
may create unstable experts.

We create 45 (= 5 x 3 x 3) new experts by using ¥ € {0.5,0.6,0.7,0.8,0.9}, each
of the three initial experts in Ey are used as the original expert x; and each of the
three models (GAM, CLR, and KWF) are used to create the modified experts x,. We
denote by E4 the set of 45 experts thus constructed.

We report in Table 5 the performance obtained by mixing experts in Eg U E4. We
did not consider ¥ < 0.5 because the created experts were too similar to the original
ones. Considering all v € {0.1,...,0.9} does not affect the results (neither improve
nor worsen them). The step size 0.1 of the grid was chosen arbitrarily and the inves-
tigation of different values is left for future research. The best convex combination
oracle achieves a RMSE of 528 MW and the best linear combination oracle suffers
a RMSE of 543 MW. The performance of EWA and F'S is not much improved com-
pared to previous experiments. They both incur RMSEs of 609 MW. But ML-Poly
and Ridge suffer rmses under 580 MW, which is a significant improvement.

3.3.5 Combining the full set of experts

Table 6 reports the performance obtained by mixing all the experts created in the pre-
vious sections. We have now 133 experts at our disposal: 3 experts from in the start-
ing set Ey, 60 bootstrapped experts in Ey, 24 specialized experts in E,, 45 boosted
experts in E4 and 1 temporal two-scale model in E3. The best linear combination
and the best convex combination perform better. But at the same time it is harder to
compete with them. Thus while the performance of aggregation rules is improved,
the gap between oracles and aggregation rules is increased as well.

Ridge suffers in Table 6 a RMSE of 557 MW while it got 638 MW when mixing
only the three experts in Ey (see Table 1). The several refinement of the set of experts
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Table 4 Performance of oracles and aggregation rules using the set of experts Eg U E3: only four
experts.

Oracles and aggregation rules RMSE (MW)  MAPE (%)

Best convex combination 596 1.00
Best linear combination 595 1.00
EWA 601 1.01
FS 599 1.00
ML-Poly 605 1.01
Ridge 605 1.00

Table 5 Performance of oracles and aggregation rules using the set of experts Eg U E4: GAM,
CLR, KWF as well as the 45 boosted experts.

Oracles and aggregation rules RMSE (MW)  MAPE (%)

Best convex combination 543 0.93
Best linear combination 528 0.92
EWA 609 0.99
FS 609 0.99
ML-Poly 588 1.00
Ridge 578 0.98

Table 6 Performance of oracles and aggregation rules using the full set of experts Eg UE UE> U
E4UE5: all the 133 constructed experts.

Oracles and aggregation rules RMSE (MW)  MAPE (%)

Best convex combination 521 0.95
Best linear combination 479 0.84
EWA 578 0.95
FS 581 0.95
ML-Poly 565 0.95

Ridge 557 0.95
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Fig. 5 Evolution of the performance according to the number of aggregated experts with ML-Poly
[top] and Ridge [bottom].

thus reduced its RMSE by approximatively 13%. Similarly, the errors of EWA and
FS were improved by about 7% while ML-Poly got a 10% reduction.

Figure 5 provides the RMSESs according to the number of experts aggregated with
ML-Poly and Ridge. The experts included in the mixture were chosen by induction
on the number of experts by following a forward approach. The induction was ini-
tialized with the expert which performed the best (744 MW). Suppose we had a set
of K experts, the expert K 4 1 was the one among the remaining experts that got the
best results when it was mixed with the K experts using the considered rule. The
procedure was stopped when all the 133 experts were used in the aggregation. The
symbols in the figures represent the category (bootstrapped, specialized, boosting,
etc.) of the last added expert.

Figure 5 shows the usual trade-off between having enough experts and over-
fitting. If we could select a good subset of experts to include in the mixture we
could reduce the RMSE under the 530 MW bar by using Ridge (and approxima-
tively under 545 MW by using ML-Poly). A suitable number of experts seems to
lie between 15 to 90 experts. In future work, a pruning step, that would remove the
less important experts before combining the forecasts of the remaining ones, might
thus be a good option. Eban et al. [14] investigated in the framework of prediction
of individual sequences a setting with many experts and few prediction instances.
They remarked that trimming the worst experts often improves performance and
suggested a procedure to do so online.
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Note that the weights formed by ML-Poly and Ridge were different enough in
Figure 2. The aggregation rules might thus capture different information and we
may thus try to combine them in a second layer. The simple uniform average of
the forecasts of these two rules incurs a RMSE of 541 MW, while using one of the
fancier sequential aggregation rules for the second layer gets us around 548 MW.

Hour Month

RMSE (MW)
400 500 600 700 800 900
400 500 600 700 800 900

2 6 10 14 18 22 Sep Nov Jan Mar May

best.expert ------ best.convex — — - best.linear —+— MLpol ridge

Fig. 6 Hourly and monthly RMSEs of the three benchmark oracles and of ML-Poly and Ridge
described in Table 6.

Figure 6 plots the hourly and monthly RMSEs of the two best aggregation rules
and the RMSEs of the benchmark oracles described in Table 6. It shows that the
aggregation rules always outperform in average the best single expert at all 48 half-
hours of the day and at all 10 months of the testing set. In addition, we note a
significant improvement of the performance at 12:30. This can be explained by the
update of the weights, which occurs at noon. The best expert oracle, which is built
with a version of GAM, does not favor any hour of the day. The figure with monthly
averaged RMSEs shows that aggregation rules do not only focus in improving fore-
casts when the task is easy. The best expert oracle is indeed outperformed every
month, including November or February, which are month that are notoriously dif-
ficult to predict. Second, it illustrates that aggregation rules have a short learning
period. They indeed encounter almost no regret during September and October with
respect to all oracles although they just started to learn on September 1.
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Fig. 7 RMSEs suffered by combining experts in Ey, Eg UE}, ..., EgUE4 by using ML-Poly and
Ridge. The performance of the best expert in Ey, and the final performance obtained by mixing all
the experts in Eg U - - - U E4 (referred to as *All sets’) are also reported.

4 Conclusion

We presented in this paper an extensive application of aggregation rules from the
literature of individual sequences to short-term electrical consumption forecasting.
We focused on building an efficient set of experts from three initial ones, where
the efficiency is viewed in terms of what these new experts bring to the combined
forecasts. In other terms, we assumed that we had an efficient aggregation rule and
focused more on reducing the approximation error, that is, the first term in (1). We
noticed that despite the vast literature on combining forecasts (including empirical
studies) rare papers dealt with this important topic. We proposed different strategies
to generate experts from the three initial approaches: KWF, GAM, and CLR. We
then quantified the gains in terms of forecast accuracy of the combined forecasts
on the test set (about 10 month of half-hourly data). A summary of our results is
presented in Figure 7 for the two best aggregation rules: ML-Poly and Ridge. Com-
bining all the experts that we generated with 4 different strategies, we achieved a
25% gain over the best expert (around 200 MW in RMSE), which is a significant
gain considering that the three original experts had already been refined and worked
extremely well (they are not week learners as in classical boosting). This gain can be
decomposed into two parts: roughly half of it comes from combining three heteroge-
neous initial experts, the other half is due to the construction of new experts. Among
the four proposed strategies, our boosting trick and what we call specialized experts
bring the most important improvements. We believe that these strategies could be
applied to other forecasting problems and there is still some work to derive theo-
retical guarantees for these tricks. We also observe that aggregating rules are quite
robust to adding new experts, and it is clear in Figure 5 that combining forecasts
does not suffer much from over fitting. Nevertheless, these results suggest that there



20

Pierre Gaillard and Yannig Goude

is a way for improving the aggregation rules accuracy by adding a pruning step that
could select the best set of experts in some online fashion.
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