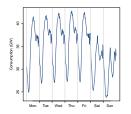


Forecasting the electricity consumption by aggregating specialized experts

Pierre Gaillard (EDF R&D, ENS Paris)

with Yannig Goude (EDF R&D) Gilles Stoltz (CNRS, ENS Paris, HEC Paris)

June 2013 - WIPFOR



Goal

Short-term (one-day-ahead) forecasting of the French electricity consumption

Many models developed by EDF R&D: parametric, semi-parametric, and non-parametric

Evolution of the electrical scene in France \Rightarrow existing models get questionable

Adaptive methods of models aggregation

Specialized experts

Setting - Sequential prediction with expert advice

Each instance t

Setting

- Each expert suggests a prediction x_{i,t} of the consumption y_t
- We assign weight to each expert and we predict

$$\widehat{y}_t = \widehat{p}_t \cdot \boldsymbol{x}_t \left(= \sum_{i=1}^N \widehat{p}_{i,t} \boldsymbol{x}_{i,t} \right)$$

Our goal is to minimize our cumulative loss

Specialized experts

Setting - Sequential prediction with expert advice

Each instance t

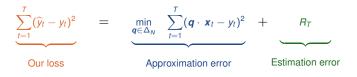
Setting

- Each expert suggests a prediction x_{i,t} of the consumption y_t
- We assign weight to each expert and we predict

$$\widehat{y}_t = \widehat{p}_t \cdot \boldsymbol{x}_t \left(= \sum_{i=1}^N \widehat{p}_{i,t} \boldsymbol{x}_{i,t} \right)$$

Our goal is to minimize our cumulative loss

Agorithms oco Minimizing both approximation and estimation error



Approximation error

- \Rightarrow good heterogeneous set of experts
- Ex: specializing the experts, bagging, boosting, ...

Estimation error

- \Rightarrow efficient algorithm for aggregating specialized experts
- Ex: Exponentially weighted average, Exponentiated Gradient, Ridge, ...

Prediction Learning and Games, Cesa-Bianchi and Lugosi, 2006

I. Aggregating algorithms

Prediction Learning and Games, Cesa-Bianchi and Lugosi, 2006

June 2013 - WIPFOR

Exponentially weighted average forecaster (EWA)

Each instance t

- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign to expert *i* the weight

$$\widehat{\rho}_{i,t} = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} (x_{i,s} - y_s)^2\right)}{\sum_{j=1}^{N} \exp\left(-\eta \sum_{s=1}^{t-1} (x_{j,s} - y_s)^2\right)}$$

- and we predict
$$\widehat{y}_t = \sum_{i=1}^{N} \widehat{p}_{i,t} x_{i,t}$$

Our cumulated loss is upper bounded by

$$\sum_{t=1}^{T} (\widehat{y}_t - y_t)^2 \leq \min_{i=1,...,d} \sum_{t=1}^{T} (x_{i,t} - y_t)^2 + \underbrace{\Box \sqrt{T \log N}}_{\text{Estimation error}}$$

Exponentially weighted average forecaster (EWA)

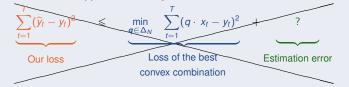
Each instance t

- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign to expert *i* the weight

$$\widehat{\rho}_{i,t} = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} (x_{i,s} - y_s)^2\right)}{\sum_{j=1}^{N} \exp\left(-\eta \sum_{s=1}^{t-1} (x_{j,s} - y_s)^2\right)}$$

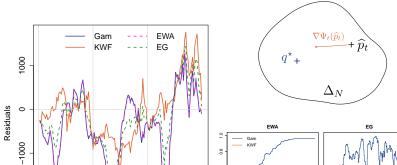
- and we predict
$$\widehat{y}_t = \sum_{i=1}^{N} \widehat{p}_{i,t} x_{i,t}$$

Our cumulated loss is upper bounded by



-2000

Gam



9.0 Weights

0.4

0.2 0.0 Oct Nov Dec lan Mar Ave \$

Oct Nov Dec Jan Mar Avr

Algorithms 000

Motivation of convex combinations

Algorithms

Specialized experts

Exponentiated gradient forecaster (EG)

Each instance t

- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign to expert *i* the weight

$$\widehat{p}_{i,t} \propto exp\left(-\eta \sum_{s=1}^{t-1} \ell_{i,s}
ight)$$

- and we predict
$$\widehat{y}_t = \sum_{i=1}^N \widehat{p}_{i,t} x_{i,t}$$

Our cumulated loss is then bounded as follow

$$\underbrace{\sum_{t=1}^{T} (\widehat{y}_t - y_t)^2}_{\text{Our loss}} \leqslant \underbrace{\min_{\boldsymbol{q} \in \Delta_N} \sum_{t=1}^{T} (\boldsymbol{q} \cdot \boldsymbol{x}_t - y_t)^2}_{\text{Loss of the best}} + \underbrace{\Box \sqrt{T \log N}}_{\text{Estimation error}}$$

where $\ell_{i,s} = 2(\hat{y}_s - y_s)x_{i,s}$

Idea of proof

edi

$$\sum_{t=1}^{T} (\widehat{y}_t - y_t)^2 - (\boldsymbol{q}^* \cdot \boldsymbol{x}_t - y_t)^2 \leqslant \sum_{t=1}^{T} \underbrace{2(\widehat{\boldsymbol{p}}_t \cdot \boldsymbol{x}_t - y_t)\boldsymbol{x}_t}_{\boldsymbol{\ell}} \cdot (\widehat{\boldsymbol{p}}_t - \boldsymbol{q}^*)$$
$$= \sum_{t=1}^{T} \boldsymbol{\ell}_t \cdot (\widehat{\boldsymbol{p}}_t - \boldsymbol{q}^*)$$
$$\leqslant \sum_{t=1}^{T} \widehat{\boldsymbol{p}}_t \cdot \boldsymbol{\ell}_t - \min \sum_{t=1}^{T} \boldsymbol{\ell}_{i,t}$$

II. A good set of experts

June 2013 - WIPFOR

Consider as heterogeneous experts as possible

Some ideas to get more variety inside the set of experts

- Consider heterogeneous prediction methods
 - Gam: semi-parametric method Generalized Additive Models, Wood, 2006
 - KWF: functional method based on similarity between days Clustering functional data using Wavelets, Antoniadis and al, 2013
- Create new experts from the same method thanks to boosting, bagging
- Vary the considered covariate: weather, calendar, ...
- Specializing the experts: focus on specific situation (cloudy days,...) during the training

Algorithms

The dataset includes 1 696 days from January 1, 2008 to June 15, 2012

- The electricity consumption of EDF customers
- Side information
 - weather: temperature, nebulosity, wind
 - temporal: date, EJP
 - loss of clients

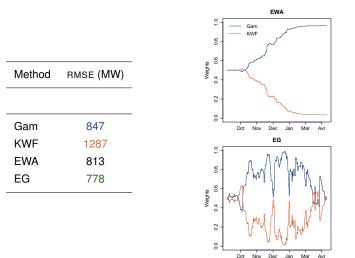
We remove uncommon days (public holidays $\pm 2)$ i.e., 55 days each year.

We split the dataset in two subsets

- Jan. 2008 Aug. 2011: training set to build the experts
- Sept. 2011 Jun. 2012: testing set

Algorithms 000 Specialized experts

Performance of the forecasting methods and of the aggregating algorithms



Specializing the experts to diversify

Idea

Focus on specific scenarios during the training of the methods

Meteorological scenarios

- High / low temperature
- High / low variation of the temperature (since the last day, during the day)

Other scenarios

- High / low consumption
- Winter / summer

Such specialized experts suggest prediction only the days corresponding to their scenario

Algorithms 000 Specialized experts

Specializing a method in cold days

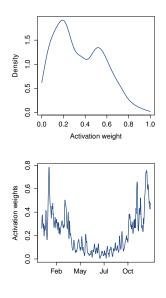
At day t, we consider

 T_t = average temperature of the day

We normalize T_t on [0, 1] and we choose for each day the weight

 $w_t = (1 - T_t)^2$

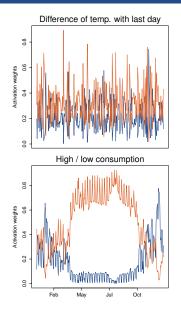
We then train our forecasting method using the prior weights w_t on the training days

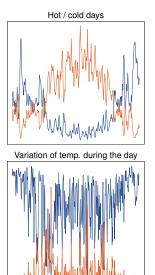


eDF

Specialized experts

Weights given in 2008 for several specializing scenarios





Oct

Jul

Feb

May

en

Aggregating experts that specialize

Setting

Each day some of the experts are active and output predictions (according to their specialization) while other experts do not

When the expert *i* is non active, we do not have access to its prediction

A solution is to assume that non active experts output the same prediction \hat{y}_t as we do and solve the fixed-point equation

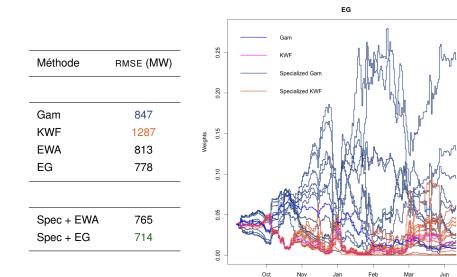
$$\widehat{y}_t = \sum_{j \text{ active }} \widehat{p}_{j,t} \, x_{j,t} + \sum_{i \text{ non active }} \widehat{p}_{i,t} \, \widehat{y}_t$$

Can be extended to activation functions of the experts $\in [0,1]$

Forecasting the electricity consumption by aggregating specialized experts, Devaine and al., 2013

Algorithms 000 Specialized experts

Performance of algorithms with specialized experts

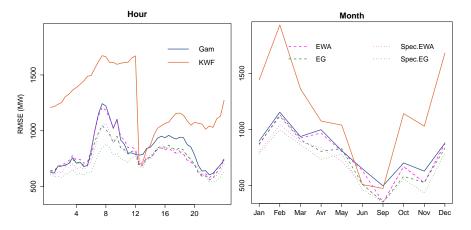


ENS

Algorithms

Specialized experts

Performance of algorithms with specialized experts



ENS