Forecasting the electricity consumption by aggregating specialized experts

Pierre Gaillard (EDF R&D, ENS Paris)

with Yannig Goude (EDF R&D)
Gilles Stoltz (CNRS, ENS Paris, HEC Paris)

June 2013 – WIPFOR
Goal

Short-term (one-day-ahead) forecasting of the French electricity consumption

Many models developed by EDF R&D: parametric, semi-parametric, and non-parametric

Evolution of the electrical scene in France
⇒ existing models get questionable

Adaptive methods of models aggregation
Setting – Sequential prediction with expert advice

Each instance t
- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign weight to each expert and we predict

$$\hat{y}_t = \hat{p}_t \cdot x_t \left(= \sum_{i=1}^{N} \hat{p}_{i,t} x_{i,t} \right)$$

Our goal is to minimize our cumulative loss

$$\sum_{t=1}^{T} (\hat{y}_t - y_t)^2$$

Our loss

$$\min_{i=1, \ldots, N} \sum_{t=1}^{T} (x_{i,t} - y_t)^2$$

Loss of the best expert

$$R_T$$

Estimation error

Good set of experts

Good aggregating algorithm
Setting – Sequential prediction with expert advice

Each instance t
- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign weight to each expert and we predict

$$\hat{y}_t = \hat{p}_t \cdot x_t \quad \left(= \sum_{i=1}^{N} \hat{p}_{i,t} x_{i,t} \right)$$

Our goal is to minimize our cumulative loss

$$\sum_{t=1}^{T} (\hat{y}_t - y_t)^2 = \min_{q \in \Delta_N} \sum_{t=1}^{T} (q \cdot x_t - y_t)^2 + R_T$$

- Our loss
- Loss of the best convex combination
- Estimation error

Good set of experts
- As varied as possible

Good aggregating algorithm
Minimizing both approximation and estimation error

\[\sum_{t=1}^{T} (\hat{y}_t - y_t)^2 = \min_{q \in \Delta_N} \sum_{t=1}^{T} (q \cdot x_t - y_t)^2 + R_T \]

Our loss

Approximation error

Estimation error

Approximation error

⇒ good heterogeneous set of experts

Ex: specializing the experts, bagging, boosting, . . .

Estimation error

⇒ efficient algorithm for aggregating specialized experts

Ex: Exponentially weighted average, Exponentiated Gradient, Ridge, . . .

Prediction Learning and Games, Cesa-Bianchi and Lugosi, 2006
I. Aggregating algorithms

Prediction Learning and Games, Cesa-Bianchi and Lugosi, 2006
Exponentially weighted average forecaster (EWA)

Each instance t
- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign to expert i the weight

$$\hat{p}_{i,t} = \frac{\exp \left(-\eta \sum_{s=1}^{t-1} (x_{i,s} - y_s)^2 \right)}{\sum_{j=1}^{N} \exp \left(-\eta \sum_{s=1}^{t-1} (x_{j,s} - y_s)^2 \right)}$$

- and we predict $\hat{y}_t = \sum_{i=1}^{N} \hat{p}_{i,t} x_{i,t}$

Our cumulated loss is upper bounded by

$$\sum_{t=1}^{T} (\hat{y}_t - y_t)^2 \leq \min_{i=1,\ldots,d} \sum_{t=1}^{T} (x_{i,t} - y_t)^2 + \sqrt{T \log N}$$

- Our loss
- Loss of the best expert
- Estimation error
Exponentially weighted average forecaster (EWA)

Each instance t
- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign to expert i the weight

$$\hat{p}_{i,t} = \frac{\exp(-\eta \sum_{s=1}^{t-1} (x_{i,s} - y_s)^2)}{\sum_{j=1}^{N} \exp(-\eta \sum_{s=1}^{t-1} (x_{j,s} - y_s)^2)}$$

- and we predict $\hat{y}_t = \sum_{i=1}^{N} \hat{p}_{i,t} x_{i,t}$

Our cumulated loss is upper bounded by

$$\sum_{t=1}^{T} (\hat{y}_t - y_t)^2 \leq \min_{q \in \Delta_N} \sum_{t=1}^{T} (q \cdot x_t - y_t)^2 + \text{Estimation error}$$
Motivation of convex combinations

\[\nabla \psi_t(\hat{p}_t) + \hat{p}_t \]

\[q^* + \]

\[\Delta_N \]
Exponentiated gradient forecaster (EG)

Each instance t
- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign to expert i the weight
 \[
 \hat{p}_{i,t} \propto \exp\left(-\eta \sum_{s=1}^{t-1} \ell_{i,s}\right)
 \]
 where $\ell_{i,s} = 2(\hat{y}_s - y_s)x_{i,s}$
- and we predict $\hat{y}_t = \sum_{i=1}^{N} \hat{p}_{i,t}x_{i,t}$

Our cumulated loss is then bounded as follow

\[
\sum_{t=1}^{T} (\hat{y}_t - y_t)^2 \leq \min_{q \in \Delta_N} \sum_{t=1}^{T} (q \cdot x_t - y_t)^2 + \Box \sqrt{T \log N}
\]

Our loss
Loss of the best convex combination
Estimation error

Idea of proof

\[
\sum_{t=1}^{T} (\hat{y}_t - y_t)^2 - (q^* \cdot x_t - y_t)^2 \leq \sum_{t=1}^{T} (\hat{p}_t \cdot x_t - y_t)x_t \cdot (\hat{p}_t - q^*)
\]

\[
= \sum_{t=1}^{T} \ell_t \cdot (\hat{p}_t - q^*)
\leq \sum_{t=1}^{T} \hat{p}_t \cdot \ell_t - \min_i \sum_{t=1}^{T} \ell_{i,t}
\]
II. A good set of experts
Consider as heterogeneous experts as possible

Some ideas to get more variety inside the set of experts

- Consider heterogeneous prediction methods
 - **Gam**: semi-parametric method
 - **KWF**: functional method based on similarity between days
 Clustering functional data using Wavelets, Antoniadis and al, 2013

- Create new experts from the same method thanks to boosting, bagging
- Vary the considered covariate: weather, calendar, ...
- **Specializing the experts**: focus on specific situation (cloudy days,...) during the training
The dataset

The dataset includes 1,696 days from January 1, 2008 to June 15, 2012

- The **electricity consumption** of EDF customers
- **Side information**
 - weather: temperature, nebulosity, wind
 - temporal: date, EJP
 - loss of clients

We remove uncommon days (public holidays ±2) i.e., 55 days each year.

We split the dataset in two subsets

- Jan. 2008 – Aug. 2011: **training set** to build the experts
Performance of the forecasting methods and of the aggregating algorithms

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gam</td>
<td>847</td>
</tr>
<tr>
<td>KWF</td>
<td>1287</td>
</tr>
<tr>
<td>EWA</td>
<td>813</td>
</tr>
<tr>
<td>EG</td>
<td>778</td>
</tr>
</tbody>
</table>
Specializing the experts to diversify

Idea
Focus on specific scenarios during the training of the methods

Meteorological scenarios
- High / low temperature
- High / low variation of the temperature (since the last day, during the day)

Other scenarios
- High / low consumption
- Winter / summer

Such specialized experts suggest prediction only the days corresponding to their scenario
At day t, we consider

$$T_t = \text{average temperature of the day}$$

We normalize T_t on $[0, 1]$ and we choose for each day the weight

$$w_t = (1 - T_t)^2$$

We then train our forecasting method using the prior weights w_t on the training days.
Weights given in 2008 for several specializing scenarios

- **Difference of temp. with last day**
- **Hot / cold days**
- **High / low consumption**
- **Variation of temp. during the day**

![Graphs showing the weights for different scenarios](image-url)
Aggregating experts that specialize

Setting

Each day some of the experts are active and output predictions (according to their specialization) while other experts do not

When the expert \(i \) is non active, we do not have access to its prediction

A solution is to assume that non active experts output the same prediction \(\hat{y}_t \) as we do and solve the fixed-point equation

\[
\hat{y}_t = \sum_{j \text{ active}} \hat{p}_{j,t} x_{j,t} + \sum_{i \text{ non active}} \hat{p}_{i,t} \hat{y}_t
\]

Can be extended to activation functions of the experts \(\in [0, 1] \)

Forecasting the electricity consumption by aggregating specialized experts, Devaine and al., 2013
Performance of algorithms with specialized experts

<table>
<thead>
<tr>
<th>Méthode</th>
<th>RMSE (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gam</td>
<td>847</td>
</tr>
<tr>
<td>KWF</td>
<td>1287</td>
</tr>
<tr>
<td>EWA</td>
<td>813</td>
</tr>
<tr>
<td>EG</td>
<td>778</td>
</tr>
</tbody>
</table>

| Spec + EWA | 765 |
| Spec + EG | 714 |

Diagram:

- **Gam**
- **KWF**
- **EWA**
- **EG**
- **Specified Gam**
- **Specified KWF**

Weights range from 0.00 to 0.25.
Performance of algorithms with specialized experts

Hour

- **Gam**
- **KWF**

<table>
<thead>
<tr>
<th>Hour</th>
<th>RMSE (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>500</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>12</td>
<td>1500</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>28</td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>20</td>
</tr>
</tbody>
</table>

Month

- **EWA**
- **EG**
- **Spec.EWA**
- **Spec.EG**

<table>
<thead>
<tr>
<th>Month</th>
<th>RMSE (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>500</td>
</tr>
<tr>
<td>Feb</td>
<td>1000</td>
</tr>
<tr>
<td>Mar</td>
<td>1500</td>
</tr>
<tr>
<td>Avr</td>
<td>4</td>
</tr>
<tr>
<td>May</td>
<td>8</td>
</tr>
<tr>
<td>Jun</td>
<td>12</td>
</tr>
<tr>
<td>Sep</td>
<td>16</td>
</tr>
<tr>
<td>Oct</td>
<td>20</td>
</tr>
<tr>
<td>Nov</td>
<td>500</td>
</tr>
<tr>
<td>Dec</td>
<td>1000</td>
</tr>
</tbody>
</table>