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Setting Algorithms Specialized experts
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Short-term (one-day-ahead) forecasting ofthe French electricity consumption

Many models developed by EDF R&D: paramet-ric, semi-parametric, and non-parametric
Evolution of the electrical scene in France
⇒ existing models get questionable


Adaptive methods ofmodels aggregation
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Setting Algorithms Specialized experts

Setting – Sequential prediction with expert advice
Each instance t
- Each expert suggests a prediction xi,t of the consumption yt- We assign weight to each expert and we predict

ŷt = p̂t · xt
(

=
N∑
i=1
p̂i,txi,t

)

Our goal is to minimize our cumulative loss
T∑
t=1

(ŷt − yt)2︸ ︷︷ ︸
Our loss

= min
i=1,...,N

T∑
t=1

(xi,t − yt)2︸ ︷︷ ︸
Loss of the best expert

+ RT︸ ︷︷ ︸
Estimation error

Good set of experts Good aggregatingalgorithm
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Setting – Sequential prediction with expert advice
Each instance t
- Each expert suggests a prediction xi,t of the consumption yt- We assign weight to each expert and we predict

ŷt = p̂t · xt
(

=
N∑
i=1
p̂i,txi,t

)

Our goal is to minimize our cumulative loss
T∑
t=1

(ŷt − yt)2︸ ︷︷ ︸
Our loss

= min
q∈∆N

T∑
t=1

(q · xt − yt)2︸ ︷︷ ︸
Loss of the best

convex combination

+ RT︸ ︷︷ ︸
Estimation error

Good set of expertsAs varied as possible Good aggregatingalgorithm
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Minimizing both approximation and estimation error
T∑
t=1

(ŷt − yt)2︸ ︷︷ ︸
Our loss

= min
q∈∆N

T∑
t=1

(q · xt − yt)2︸ ︷︷ ︸
Approximation error

+ RT︸ ︷︷ ︸
Estimation error

Approximation error
⇒ good heterogeneous set of expertsEx: specializing the experts, bagging, boosting, . . .

Estimation error
⇒ efficient algorithm for aggregating specialized expertsEx: Exponentially weighted average, Exponentiated Gradient, Ridge, . . .

Prediction Learning and Games, Cesa-Bianchi and Lugosi, 2006
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Exponentially weighted average forecaster (EWA)
Each instance t
- Each expert suggests a prediction xi,t of the consumption yt- We assign to expert i the weight

p̂i,t =
exp
(
−η
∑t−1

s=1(xi,s − ys)2
)∑N

j=1 exp
(
−η
∑t−1

s=1(xj,s − ys)2
)

- and we predict ŷt =
∑N

i=1 p̂i,txi,t

Our cumulated loss is upper bounded by
T∑
t=1

(ŷt − yt)2︸ ︷︷ ︸
Our loss

6 min
i=1,...,d

T∑
t=1

(xi,t − yt)2︸ ︷︷ ︸
Loss of the best expert

+ �
√
T logN︸ ︷︷ ︸

Estimation error
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Proof
Lemme (Hoeffding)
Let X be a random variable taking values in [a, b]. Then for any s ∈ R,

lnE [esX] 6 sE [X] +
s2(b− a)

8
1. Upper bound the instantaneous loss (̂xt − yt)2(

p̂t · xt − yt
)2 by convexity

6 p̂t · (xt − yt)2

by Hoeffding
6 −

1
η
ln
 d∑
j=1
p̂j,te−η(xj,t−yt)2

+
η

8
= −

1
η
ln
( p̂i,t
p̂i,t+1 e

−η(xi,t−yt)2
)

+
η

8
= (xi,t − yt)2 +

1
η
ln p̂i,t+1

p̂i,t
+
η

8
2. Summing over all t and telescoping

T∑
t=1

(̂xt − yt)2 − (xi,t − yt)2 6 1
η
ln���p̂i,T+1

p̂i,1 +
ηT
8 =

√
T
8 lnN for η =

√8 lnN/T
7
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Exponentially weighted average forecaster (EWA)
Each instance t
- Each expert suggests a prediction xi,t of the consumption yt- We assign to expert i the weight

p̂i,t =
exp
(
−η
∑t−1

s=1(xi,s − ys)2
)∑N

j=1 exp
(
−η
∑t−1

s=1(xj,s − ys)2
)

- and we predict ŷt =
∑N

i=1 p̂i,txi,t

Our cumulated loss is upper bounded by
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T∑
t=1

(ŷt − yt)2︸ ︷︷ ︸
Our loss

6 min
q∈∆N

T∑
t=1

(q · xt − yt)2︸ ︷︷ ︸
Loss of the best

convex combination

+ ?︸ ︷︷ ︸
Estimation error
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Motivation of convex combinations
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Exponentiated gradient forecaster (EG)
Each instance t
- Each expert suggests a prediction xi,t of the consumption yt- We assign to expert i the weight

p̂i,t ∝ exp
(
−η
∑t−1

s=1`i,s
) where `i,s = 2(ŷs − ys)xi,s

- and we predict ŷt =
∑N

i=1 p̂i,txi,t

Our cumulated loss is then bounded as follow
T∑
t=1

(ŷt − yt)2︸ ︷︷ ︸
Our loss

6 min
q∈∆N

T∑
t=1

(q · xt − yt)2︸ ︷︷ ︸
Loss of the best

convexe combination

+ �
√
T logN︸ ︷︷ ︸

Estimation error

Idea of proof∑T
t=1 (ŷt − yt)2 − (q? · xt − yt)2 6

∑T
t=1 2(p̂t · xt − yt)xt︸ ︷︷ ︸ ·(p̂t − q?)

=
∑T

t=1 `t ·
(
p̂t − q?

)
6

∑T
t=1 p̂t · `t −mini

∑T
t=1 `i,t 10
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Online tuning of the learning parameter η
The optimal value of the parameter

η? = �

√ lnN
T

is not necessarly known in advance if we do not know the horizon T .Hence η has to be online calibrated.
Theoretical way. Use time varying parameters η̂t =

√ ln N
t

Practical way. Consider a grid Λ of potential parameters
Initialize: Λ = {1}
At each instance t
- Choose η̂t the best parameter in Λ so far- If it is on a border, increase Λ exponentially
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Fast rate?
The results stated above still stand for any bounded loss functionconvex in our prediction ` : (x, y) 7→ `(x, y)

T∑
t=1

`(ŷt, yt) 6 min
q∈∆N

T∑
t=1

`(q · xt, yt) + �
√
T logN

If the loss function ` is η-exp-concave ie. x 7→ e−η`(x,y) is concave for all ythen by computing a weighted average on the whole simplex
p̂t ∝

∫
∆N

qe−η
∑t−1

s=1 `(q·xt,yt)dµ(q)

one can get
T∑
t=1

`(ŷt, yt) 6 min
q∈∆N

T∑
t=1

`(q · xt, yt) + �
N ln T
η

Example. The square loss x 7→ (x − y)2 is 1/2-exp-concave on [0, 1]2.
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Other notions of regret?
Shifting regret

T∑
t=1

`(ŷt, yt) 6 min
q1, . . . , qTst [. . . ] 6 m

T∑
t=1

`(qt · xt, yt) + �

√
mT ln NT

m

Adaptive regret
max

s−r+16τT

{ s∑
t=r

`(ŷt, yt) − min
q∈∆d

s∑
t=r

`(q · xt, yt)
}
6 �

√
τT ln(NτT)

Discounted regret
max∑
t γt6TT

{ T∑
t=1

γt`(ŷt, yt) − min
q∈∆d

T∑
t=1

γt`(q · xt, yt)
}
6 �

√
TT ln(NTT)

Cesa-Bianchi, Gaillard, Lugosi, and Stoltz, NIPS 2012
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Fixed-Share algorithm, Herbster & Warmuth 1998

Each instance t
- Each expert suggests a prediction xi,t of the consumption yt- We assign to expert i the weight

p̂i,t = (1− α)v̂i,t + α/N

- We predict ŷt =
∑N
i=1 p̂i,txi,t- We observe yt and update the pre-weight

v̂j,t+1 =
p̂j,t e−η `j,t∑d
i=1 p̂i,t e−η `i,t where `i,s = 2(ŷs − ys)xi,s
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Consider as heterogeneous experts as possible

Some ideas to get more variety inside the set of experts
Consider heterogeneous prediction methods
Create new experts from the same method thanks to boosting,bagging
Vary the considered covariate: weather, calendar, . . .
Specialize the experts: focus on specific situation (cloudy days,. . . )during the training

16
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The dataset

The dataset includes 1 696 days from January 1, 2008 to June 15, 2012
The electricity consumption of EDF customersSide information
- weather: temperature, nebulosity, wind- temporal: date, EJP- loss of clients

We remove uncommon days (public holidays±2) i.e., 55 days each year.
We split the dataset in two subsets

Jan. 2008 – Aug. 2011: training set to build the expertsSept. 2011 – Jun. 2012: testing set

17
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The dataset
Load in training and testing sets Load in 2008

Load during a week Load according to the temperature (oC)

18



Setting Algorithms Specialized experts

Consider heterogeneous prediction methods

We kept 2 experts
- Gam – semi-parametric method
Wood, 2006
- KWF – functional method based on similarity between daysIt does not use the temperature !
Antoniadis, Brossat, Cugliari, and Poggi, COMPSTAT, 2010

Other considered methods
- Gam mid-term + short-term
- Boosting
- Random forests
- Regression trees


Too similar with previ-ous methods

19
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Performance of the forecasting methods and of the
aggregating algorithms

Method RMSE (MW)

Best expert 847
Best convex vector 778

EWA 813
EG 778
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Specializing the experts to diversify
Idea
Focus on specific scenarios during the training of the methods

Meteorological scenarios
High / low temperature
High / low variation of the temperature (since the last day, duringthe day)

Other scenarios
High / low consumption
Winter / summer

Such specialized experts suggest prediction only the dayscorresponding to their scenario
21
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Specializing a method in cold days

At day t, we consider
Tt = average temperature of the day
We normalize Tt on [0, 1] and we choosefor each day the weight

wt = (1− Tt)2
We then train our forecasting methodusing the prior weights wt on the train-ing days
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Weights given in 2008 for several specializing scenarios
Difference of temp. with last day
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Aggregating experts that specialize
Setting
Each day some of the experts are active and output predictions(according to their specialization) while other experts do not

When the expert i is non active, we do not have access to its prediction
A solution is to assume that non active experts output the sameprediction ŷt as we do and solve the fixed-point equation

ŷt =
∑
j active

p̂j,t xj,t +
∑

i non active
p̂i,t ŷt

Can be extended to activation functions of the experts ∈ [0, 1]
Devaine, Gaillard, Goude, and Stoltz, Machine Learning, 2013
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Performance of algorithms with specialized experts
2 base experts + 24 specializedexperts
Method RMSE (MW)

Best expert 804
Best convex vector 729

EWA (2 experts) 813
EG (2 experts) 778

EWA (26 experts) 765
EG (26 experts) 714
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Performance of algorithms with specialized experts
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