

Forecasting the electricity consumption by aggregating specialized experts

Pierre Gaillard (EDF R&D, ENS Paris)

with Yannig Goude (EDF R&D) Gilles Stoltz (CNRS, ENS Paris, HEC Paris)

June 2013 - STAT

Goal

Short-term (one-day-ahead) forecasting of the French electricity consumption

Many models developed by EDF R&D: parametric, semi-parametric, and non-parametric

Evolution of the electrical scene in France \Rightarrow existing models get questionable

Adaptive methods of models aggregation

Algorithms

Specialized experts

Setting – Sequential prediction with expert advice

Each instance t

- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign weight to each expert and we predict

$$\widehat{y}_t = \widehat{p}_t \cdot \boldsymbol{x}_t \left(= \sum_{i=1}^N \widehat{p}_{i,t} \boldsymbol{x}_{i,t} \right)$$

Our goal is to minimize our cumulative loss

Algorithms

Specialized experts

Setting - Sequential prediction with expert advice

Each instance t

- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign weight to each expert and we predict

$$\widehat{y}_t = \widehat{p}_t \cdot \boldsymbol{x}_t \left(= \sum_{i=1}^N \widehat{p}_{i,t} \boldsymbol{x}_{i,t} \right)$$

Our goal is to minimize our cumulative loss

Algorithms

Specialized experts

Minimizing both approximation and estimation error

Approximation error

 \Rightarrow good heterogeneous set of experts Ex: specializing the experts, bagging, boosting, ...

Estimation error

 \Rightarrow efficient algorithm for aggregating specialized experts Ex: Exponentially weighted average, Exponentiated Gradient, Ridge, \dots

Prediction Learning and Games, Cesa-Bianchi and Lugosi, 2006

I. Aggregating algorithms

Prediction Learning and Games, Cesa-Bianchi and Lugosi, 2006

June 2013 - STAT

Specialized experts

Exponentially weighted average forecaster (EWA)

Each instance t

- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign to expert *i* the weight

$$\widehat{\rho}_{i,t} = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} (x_{i,s} - y_s)^2\right)}{\sum_{j=1}^{N} \exp\left(-\eta \sum_{s=1}^{t-1} (x_{j,s} - y_s)^2\right)}$$

- and we predict $\widehat{y}_t = \sum_{i=1}^{N} \widehat{p}_{i,t} x_{i,t}$

Our cumulated loss is upper bounded by

$$\sum_{t=1}^{T} (\widehat{y}_t - y_t)^2 \leqslant \min_{i=1,...,d} \sum_{t=1}^{T} (x_{i,t} - y_t)^2 + \Box \sqrt{T \log N}$$
Our loss
Loss of the best expert
Estimation error

Proof

Lemme (Hoeffding)

Let X be a random variable taking values in [a, b]. Then for any $s \in \mathbb{R}$,

$$\ln \mathbb{E}\left[e^{sX}\right] \leqslant s\mathbb{E}\left[X\right] + \frac{s^2(b-a)}{8}$$

1. Upper bound the instantaneous loss $(\widehat{x}_t - y_t)^2$

$$\begin{aligned} \left(\widehat{\boldsymbol{p}}_{t} \cdot \boldsymbol{x}_{t} - \boldsymbol{y}_{t} \right)^{2} & \stackrel{\text{by convexity}}{\leq} & \widehat{\boldsymbol{p}}_{t} \cdot (\boldsymbol{x}_{t} - \boldsymbol{y}_{t})^{2} \\ & \stackrel{\text{by Hoeffding}}{\leq} & -\frac{1}{\eta} \ln \left(\sum_{j=1}^{d} \widehat{\boldsymbol{p}}_{j,t} e^{-\eta(\boldsymbol{x}_{j,t} - \boldsymbol{y}_{t})^{2}} \right) + \frac{\eta}{8} \\ & = & -\frac{1}{\eta} \ln \left(\frac{\widehat{\boldsymbol{p}}_{i,t}}{\widehat{\boldsymbol{p}}_{i,t+1}} e^{-\eta(\boldsymbol{x}_{i,t} - \boldsymbol{y}_{t})^{2}} \right) + \frac{\eta}{8} \\ & = & (\boldsymbol{x}_{i,t} - \boldsymbol{y}_{t})^{2} + \frac{1}{\eta} \ln \frac{\widehat{\boldsymbol{p}}_{i,t+1}}{\widehat{\boldsymbol{p}}_{i,t}} + \frac{\eta}{8} \end{aligned}$$

2. Summing over all t and telescoping

$$\sum_{t=1}^{T} (\widehat{x}_t - y_t)^2 - (x_{i,t} - y_t)^2 \leqslant \frac{1}{\eta} \ln \frac{\widehat{p}_{i,\tau+1}}{\widehat{p}_{i,1}} + \frac{\eta T}{8} = \sqrt{\frac{T}{8} \ln N} \quad \text{for } \eta = \sqrt{\frac{8 \ln N}{T}}$$

Specialized experts

Exponentially weighted average forecaster (EWA)

Each instance t

- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign to expert *i* the weight

$$\widehat{\rho}_{i,t} = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} (x_{i,s} - y_s)^2\right)}{\sum_{j=1}^{N} \exp\left(-\eta \sum_{s=1}^{t-1} (x_{j,s} - y_s)^2\right)}$$

- and we predict $\hat{y}_t = \sum_{i=1}^{N} \hat{p}_{i,t} x_{i,t}$

Our cumulated loss is upper bounded by

Specialized experts

Motivation of convex combinations

Algorithms

Specialized experts

Exponentiated gradient forecaster (EG)

Each instance t

- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign to expert *i* the weight

$$\widehat{p}_{i,t} \propto exp\left(-\eta \sum_{s=1}^{t-1} \ell_{i,s}\right)$$

- and we predict
$$\widehat{y}_t = \sum_{i=1}^N \widehat{p}_{i,t} x_{i,t}$$

Our cumulated loss is then bounded as follow

$$\underbrace{\sum_{t=1}^{T} (\widehat{y}_t - y_t)^2}_{\text{Our loss}} \leqslant \underbrace{\min_{q \in \Delta_N} \sum_{t=1}^{T} (q \cdot x_t - y_t)^2}_{\text{Loss of the best}} + \underbrace{\Box \sqrt{T \log N}}_{\text{Estimation error convexe combination}}$$

where $\ell_{i,s} = 2(\hat{y}_s - y_s)x_{i,s}$

Idea of proof

$$\sum_{t=1}^{T} (\widehat{y}_t - y_t)^2 - (q^* \cdot x_t - y_t)^2 \leqslant \sum_{t=1}^{T} 2(\widehat{p}_t \cdot x_t - y_t)x_t \cdot (\widehat{p}_t - q^*)$$
$$= \sum_{t=1}^{T} \ell_t \cdot (\widehat{p}_t - q^*)$$
$$\leqslant \sum_{t=1}^{T} \widehat{p}_t \cdot \ell_t - \min_i \sum_{t=1}^{T} \ell_{i,t}$$

Specialized experts

Online tuning of the learning parameter η

The optimal value of the parameter

$$\eta^{\star} = \Box \sqrt{\frac{\ln N}{T}}$$

is not necessarly known in advance if we do not know the horizon T. Hence η has to be online calibrated.

Theoretical way. Use time varying parameters $\hat{\eta}_t = \sqrt{\frac{\ln N}{t}}$

Practical way. Consider a grid Λ of potential parameters

Initialize: $\Lambda = \{1\}$

At each instance t

- Choose $\widehat{\eta}_t$ the best parameter in Λ so far
- If it is on a border, increase Λ exponentially

Fast rate?

Algorithms

Specialized experts

The results stated above still stand for any bounded loss function convex in our prediction $\ell : (x, y) \mapsto \ell(x, y)$

$$\sum_{t=1}^{T} \ell(\hat{y}_t, y_t) \leq \min_{\boldsymbol{q} \in \Delta_N} \sum_{t=1}^{T} \ell(\boldsymbol{q} \cdot \boldsymbol{x}_t, y_t) + \Box \sqrt{T \log N}$$

If the loss function ℓ is η -exp-concave ie. $x \mapsto e^{-\eta \ell(x,y)}$ is concave for all y then by computing a weighted average on the whole simplex

$$\widehat{p}_t \propto \int_{\Delta_N} q e^{-\eta \sum_{s=1}^{t-1} \ell(\boldsymbol{q} \cdot \boldsymbol{x}_t, y_t)} d\mu(\boldsymbol{q})$$

one can get

$$\sum_{t=1}^{T} \ell(\widehat{y}_{t}, y_{t}) \qquad \leqslant \qquad \min_{\boldsymbol{q} \in \Delta_{N}} \quad \sum_{t=1}^{T} \ell(\boldsymbol{q} \cdot \boldsymbol{x}_{t}, y_{t}) \quad + \Box \frac{N \ln T}{\eta}$$

Example. The square loss $x \mapsto (x - y)^2$ is 1/2-exp-concave on $[0, 1]^2$.

 $\frac{NT}{m}$

Other notions of regret?

Shifting regret

$$\sum_{t=1}^{T} \ell(\hat{y}_t, y_t) \leq \min_{\substack{\boldsymbol{q}_1, \dots, \boldsymbol{q}_T \\ \text{st}[\dots] \leq m}} \sum_{t=1}^{T} \ell(\boldsymbol{q}_t \cdot \boldsymbol{x}_t, y_t) + \Box \sqrt{mT \ln q_t}$$

Adaptive regret

$$\max_{s-r+1 \leqslant \tau_T} \left\{ \sum_{t=r}^{s} \ell(\widehat{y}_t, y_t) - \min_{\boldsymbol{q} \in \Delta_d} \sum_{t=r}^{s} \ell(\boldsymbol{q} \cdot \boldsymbol{x}_t, y_t) \right\} \leqslant \Box \sqrt{\tau_T \ln(N\tau_T)}$$

Discounted regret

$$\max_{\sum_{t} \gamma_t \in \mathcal{T}_T} \left\{ \sum_{t=1}^T \gamma_t \ell(\widehat{y}_t, y_t) - \min_{\boldsymbol{q} \in \Delta_d} \sum_{t=1}^T \gamma_t \ell(\boldsymbol{q} \cdot \boldsymbol{x}_t, y_t) \right\} \leqslant \Box \sqrt{\mathcal{T}_T \ln(N\mathcal{T}_T)}$$

Cesa-Bianchi, Gaillard, Lugosi, and Stoltz, NIPS 2012

Specialized experts

Fixed-Share algorithm, Herbster & Warmuth 1998

Each instance t

- Each expert suggests a prediction $x_{i,t}$ of the consumption y_t
- We assign to expert *i* the weight

$$\widehat{p}_{i,t} = (1 - \alpha)\widehat{v}_{i,t} + \alpha/N$$

- We predict $\widehat{y}_t = \sum_{i=1}^{N} \widehat{p}_{i,t} x_{i,t}$
- We observe y_t and update the pre-weight

$$\widehat{v}_{j,t+1} = \frac{\widehat{p}_{j,t} e^{-\eta \ell_{j,t}}}{\sum_{i=1}^{d} \widehat{p}_{i,t} e^{-\eta \ell_{i,t}}}$$

where
$$\ell_{i,s} = 2(\widehat{y}_s - y_s)x_{i,s}$$

II. A good set of experts

June 2013 - STAT

Consider as heterogeneous experts as possible

Some ideas to get more variety inside the set of experts

- Consider heterogeneous prediction methods
- Create new experts from the same method thanks to boosting, bagging
- Vary the considered covariate: weather, calendar, ...
- Specialize the experts: focus on specific situation (cloudy days,...) during the training

The dataset includes 1 696 days from January 1, 2008 to June 15, 2012

- The electricity consumption of EDF customers
- Side information
 - weather: temperature, nebulosity, wind
 - temporal: date, EJP
 - loss of clients

We remove uncommon days (public holidays ± 2) i.e., 55 days each year.

We split the dataset in two subsets

- Jan. 2008 Aug. 2011: training set to build the experts
- Sept. 2011 Jun. 2012: testing set

Specialized experts

The dataset

Load according to the temperature (°C)

Consider heterogeneous prediction methods

We kept 2 experts

- Gam semi-parametric method Wood, 2006
- KWF functional method based on similarity between days It does not use the temperature !

Antoniadis, Brossat, Cugliari, and Poggi, COMPSTAT, 2010

Other considered methods

- Gam mid-term + short-term
- Boosting
- Random forests
- Regression trees

Too similar with previous methods

Specialized experts 00000000000

Performance of the forecasting methods and of the aggregating algorithms

EWA

Avr

			Gam KWF
Method	rmse (MW)	eights 0.6	
Best expert	847	6 ⁻ 9 -	have been a second seco
Best convex vector	778	0	Oct Nov Dec Jan Mar Av
		- ç-	
EWA	813		I MUN WINN
EG	778	Weights	
		- 0 8-	W/L/4

0.0

Oct Nov Dec Jan Mar Avr

Specializing the experts to diversify

Idea

Focus on specific scenarios during the training of the methods

Meteorological scenarios

- High / low temperature
- High / low variation of the temperature (since the last day, during the day)

Other scenarios

- High / low consumption
- Winter / summer

Such specialized experts suggest prediction only the days corresponding to their scenario

Specialized experts

Specializing a method in cold days

At day t, we consider

 T_t = average temperature of the day

We normalize T_t on [0, 1] and we choose for each day the weight

 $W_t = (1 - T_t)^2$

We then train our forecasting method using the prior weights w_t on the training days

Algorithms 000000000 Specialized experts

Weights given in 2008 for several specializing scenarios

Aggregating experts that specialize

Setting

Each day some of the experts are active and output predictions (according to their specialization) while other experts do not

When the expert *i* is non active, we do not have access to its prediction

A solution is to assume that non active experts output the same prediction \hat{y}_t as we do and solve the fixed-point equation

$$\widehat{y}_t = \sum_{j \text{ active}} \widehat{p}_{j,t} x_{j,t} + \sum_{i \text{ non active}} \widehat{p}_{i,t} \widehat{y}_t$$

Can be extended to activation functions of the experts $\in [0,1]$

Devaine, Gaillard, Goude, and Stoltz, Machine Learning, 2013

Specialized experts

Performance of algorithms with specialized experts

Specialized experts

Performance of algorithms with specialized experts

