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Abstract

Mirror descent with an entropic regularizer is known to achieve shifting regret
bounds that are logarithmic in the dimension. This is done using either a carefully
designed projection or by a weight sharing technique. Via a novel unified analysis,
we show that these two approaches deliver essentially equivalent bounds on a no-
tion of regret generalizing shifting, adaptive, discounted, and other related regrets.
Our analysis also captures and extends the generalized weight sharing technique
of Bousquet and Warmuth, and can be refined in several ways, including improve-
ments for small losses and adaptive tuning of parameters.

1 Introduction

Online convex optimization is a sequential prediction paradigm in which, at each time step, the
learner chooses an element from a fixed convex set S and then is given access to a convex loss
function defined on the same set. The value of the function on the chosen element is the learner’s
loss. Many problems such as prediction with expert advice, sequential investment, and online re-
gression/classification can be viewed as special cases of this general framework. Online learning
algorithms are designed to minimize the regret. The standard notion of regret is the difference
between the learner’s cumulative loss and the cumulative loss of the single best element in S. A
much harder criterion to minimize is shifting regret, which is defined as the difference between the
learner’s cumulative loss and the cumulative loss of an arbitrary sequence of elements in S. Shifting
regret bounds are typically expressed in terms of the shift, a notion of regularity measuring the length
of the trajectory in S described by the comparison sequence (i.e., the sequence of elements against
which the regret is evaluated). In online convex optimization, shifting regret bounds for convex sub-
sets S ⊆ R

d are obtained for the projected online mirror descent (or follow-the-regularized-leader)
algorithm. In this case the shift is typically computed in terms of the p-norm of the difference of
consecutive elements in the comparison sequence —see [1, 2] and [3].

We focus on the important special case when S is the simplex. In [1] shifting bounds are shown for
projected mirror descent with entropic regularizers using a 1-norm to measure the shift.1 When the
comparison sequence is restricted to the corners of the simplex (which is the setting of prediction
with expert advice), then the shift is naturally defined to be the number of times the trajectory moves

∗Ecole Normale Supérieure, Paris – CNRS – INRIA, within the project-team CLASSIC
1Similar 1-norm shifting bounds can also be proven using the analysis of [2]. However, without using

entropic regularizers it is not clear how to achieve a logarithmic dependence on the dimension, which is one of
the advantages of working in the simplex.
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to a different corner. This problem is often called “tracking the best expert” —see, e.g., [4, 5, 1, 6, 7],
and it is well known that exponential weights with weight sharing, which corresponds to the fixed-
share algorithm of [4], achieves a good shifting bound in this setting. In [6] the authors introduce a
generalization of the fixed-share algorithm, and prove various shifting bounds for any trajectory in
the simplex. However, their bounds are expressed using a quantity that corresponds to a proper shift
only for trajectories on the simplex corners.

In this paper we offer a unified analysis of mirror descent, fixed share, and the generalized fixed
share of [6] for the setting of online convex optimization in the simplex. Our bounds are expressed
in terms of a notion of shift based on the total variation distance. Our analysis relies on a generalized
notion of shifting regret which includes, as special cases, related notions of regret such as adaptive
regret, discounted regret, and regret with time-selection functions. Perhaps surprisingly, we show
that projected mirror descent and fixed share achieve essentially the same generalized regret bound.
Finally, we show that widespread techniques in online learning, such as improvements for small
losses and adaptive tuning of parameters, are all easily captured by our analysis.

2 Preliminaries

For simplicity, we derive our results in the setting of online linear optimization. As we show in the
supplementary material, these results can be easily extended to the more general setting of online
convex optimization through a standard linearization step.

Online linear optimization may be cast as a repeated game between the forecaster and the environ-
ment as follows. We use ∆d to denote the simplex

{
q ∈ [0, 1]d : ‖q‖1 = 1

}
.

Online linear optimization in the simplex. For each round t = 1, . . . , T ,
1. Forecaster chooses p̂t = (p̂1,t, . . . , p̂d,t) ∈ ∆d

2. Environment chooses a loss vector ℓt = (ℓ1,t, . . . , ℓd,t) ∈ [0, 1]d

3. Forecaster suffers loss p̂
⊤
t ℓt .

The goal of the forecaster is to minimize the accumulated loss, e.g., L̂T =
∑T

t=1 p̂
⊤
t ℓt. In the now

classical problem of prediction with expert advice, the goal of the forecaster is to compete with the

best fixed component (often called “expert”) chosen in hindsight, that is, with mini=1,...,T

∑T
t=1 ℓi,t;

or even to compete with a richer class of sequences of components. In Section 3 we state more
specifically the goals considered in this paper.

We start by introducing our main algorithmic tool, described in Figure 1, a share algorithm whose
formulation generalizes the seemingly unrelated formulations of the algorithms studied in [4, 1, 6]. It
is parameterized by the “mixing functions” ψt : [0, 1]

td → ∆d for t > 2 that assign probabilities to
past “pre-weights” as defined below. In all examples discussed in this paper, these mixing functions
are quite simple, but working with such a general model makes the main ideas more transparent. We
then provide a simple lemma that serves as the starting point2 for analyzing different instances of
this generalized share algorithm.

Lemma 1. For all t > 1 and for all qt ∈ ∆d, Algorithm 1 satisfies

(
p̂t − qt

)⊤
ℓt 6

1

η

d∑

i=1

qi,t ln
vi,t+1

p̂i,t
+
η

8
.

Proof. By Hoeffding’s inequality (see, e.g., [3, Section A.1.1]),

d∑

j=1

p̂j,t ℓj,t 6 −1

η
ln




d∑

j=1

p̂j,t e
−η ℓj,t


+

η

8
. (1)

By definition of vi,t+1, for all i = 1, . . . , d we then have
∑d

j=1 p̂j,t e
−η ℓj,t = p̂i,t e

−η ℓi,t/vi,t+1,

which implies p̂
⊤
t ℓt 6 ℓi,t + (1/η) ln(vi,t+1/p̂i,t) + η/8. The proof is concluded by taking a

convex aggregation with respect to qt.

2We only deal with linear losses in this paper. However, it is straightforward that for sequences of η–exp-
concave loss functions, the additional term η/8 in the bound is no longer needed.
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Parameters: learning rate η > 0 and mixing functions ψt for t > 2

Initialization: p̂1 = v1 = (1/d, . . . , 1/d)

For each round t = 1, . . . , T ,

1. Predict p̂t ;

2. Observe loss ℓt ∈ [0, 1]d ;

3. [loss update] For each j = 1, . . . , d define

vj,t+1 =
p̂j,t e

−η ℓj,t

∑d
i=1 p̂i,t e

−η ℓi,t
the current pre-weights, and vt+1 = (v1,t+1, . . . , vd,t+1);

Vt+1 =
[
vi,s
]
16i6d, 16s6t+1

the d× (t+ 1) matrix of all past and current pre-weights;

4. [shared update] Define p̂t+1 = ψt+1

(
Vt+1

)
.

Algorithm 1: The generalized share algorithm.

3 A generalized shifting regret for the simplex

We now introduce a generalized notion of shifting regret which unifies and generalizes the notions of
discounted regret (see [3, Section 2.11]), adaptive regret (see [8]), and shifting regret (see [2]). For
a fixed horizon T , a sequence of discount factors βt,T > 0 for t = 1, . . . , T assigns varying weights
to the instantaneous losses suffered at each round. We compare the total loss of the forecaster with
the loss of an arbitrary sequence of vectors q1, . . . , qT in the simplex ∆d. Our goal is to bound the
regret

T∑

t=1

βt,T p̂
⊤
t ℓt −

T∑

t=1

βt,T q⊤
t ℓt

in terms of the “regularity” of the comparison sequence q1, . . . , qT and of the variations of the
discounting weights βt,T . By setting ut = βt,T q⊤

t ∈ R
d
+, we can rephrase the above regret as

T∑

t=1

‖ut‖1 p̂⊤
t ℓt −

T∑

t=1

u⊤
t ℓt . (2)

In the literature on tracking the best expert [4, 5, 1, 6], the regularity of the sequence u1, . . . ,uT is
measured as the number of times ut 6= ut+1. We introduce the following regularity measure

m(uT
1 ) =

T∑

t=2

DTV(ut,ut−1) (3)

where for x = (x1, . . . , xd),y = (y1, . . . , yd) ∈ R
d
+, we define DTV(x,y) =

∑
xi>yi

(xi − yi).

Note that when x,y ∈ ∆d, we recover the total variation distance DTV(x,y) =
1
2 ‖x− y‖1, while

for general x,y ∈ R
d
+, the quantityDTV(x,y) is not necessarily symmetric and is always bounded

by ‖x− y‖1. The traditional shifting regret of [4, 5, 1, 6] is obtained from (2) when all ut are such
that ‖ut‖1 = 1.

4 Projected update

The shifting variant of the EG algorithm analyzed in [1] is a special case of the generalized share
algorithm in which the function ψt+1 performs a projection of the pre-weights on the convex set
∆α

d = [α/d, 1]d ∩∆d. Here α ∈ (0, 1) is a fixed parameter. We can prove (using techniques similar
to the ones shown in the next section—see the supplementary material) the following bound which
generalizes [1, Theorem 16].
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Theorem 1. For all T > 1, for all sequences ℓ1, . . . , ℓt ∈ [0, 1]d of loss vectors, and for all
u1, . . . ,uT ∈ R

d
+, if Algorithm 1 is run with the above update, then

T∑

t=1

‖ut‖1 p̂⊤
t ℓt −

T∑

t=1

u⊤
t ℓt 6

‖u1‖1 ln d
η

+
m(uT

1 )

η
ln
d

α
+
(η
8
+ α

) T∑

t=1

‖ut‖1 . (4)

This bound can be optimized by a proper tuning of α and η parameters. We show a similarly tuned
(and slightly better) bound in Corollary 1.

5 Fixed-share update

Next, we consider a different instance of the generalized share algorithm corresponding to the update

p̂j,t+1 =

d∑

i=1

(α
d
+ (1− α)1i=j

)
vi,t+1 =

α

d
+ (1− α)vj,t+1 , 0 6 α 6 1 (5)

Despite seemingly different statements, this update in Algorithm 1 can be seen to lead exactly to the
fixed-share algorithm of [4] for prediction with expert advice. We now show that this update delivers
a bound on the regret almost equivalent to (though slightly better than) that achieved by projection
on the subset ∆α

d of the simplex.

Theorem 2. With the above update, for all T > 1, for all sequences ℓ1, . . . , ℓT of loss vectors
ℓt ∈ [0, 1]d, and for all u1, . . . ,uT ∈ R

d
+,

T∑

t=1

‖ut‖1 p̂
⊤
t ℓt −

T∑

t=1

u⊤
t ℓt 6

‖u1‖1 ln d
η

+
η

8

T∑

t=1

‖ut‖1

+
m(uT

1 )

η
ln
d

α
+

∑T
t=2 ‖ut‖1 −m(uT

1 )

η
ln

1

1− α
.

Note that if we only consider vectors of the form ut = qt = (0, . . . , 0, 1, 0, . . . , 0) then m(qT
1 )

corresponds to the number of times qt+1 6= qt in the sequence qT
1 . We thus recover [4, Theorem 1]

and [6, Lemma 6] from the much more general Theorem 2.

The fixed-share forecaster does not need to “know” anything in advance about the sequence of
the norms ‖ut‖ for the bound above to be valid. Of course, in order to minimize the obtained
upper bound, the tuning parameters α, η need to be optimized and their values will depend on the

maximal values of m(uT
1 ) and

∑T
t=1 ‖ut‖1 for the sequences one wishes to compete against. This

is illustrated in the following corollary, whose proof is omitted. Therein, h(x) = −x lnx − (1 −
x) ln(1 − x) denotes the binary entropy function for x ∈ [0, 1]. We recall3 that h(x) 6 x ln(e/x)
for x ∈ [0, 1].

Corollary 1. Suppose Algorithm 1 is run with the update (5). Let m0 > 0 and U0 > 0. For all T >

1, for all sequences ℓ1, . . . , ℓT of loss vectors ℓt ∈ [0, 1]d, and for all sequences u1, . . . ,uT ∈ R
d
+

with ‖u1‖1 +m(uT
1 ) 6 m0 and

∑T
t=1 ‖ut‖1 6 U0,

T∑

t=1

‖ut‖1 p̂
⊤
t ℓt−

T∑

t=1

u⊤
t ℓt 6

√√√√U0

2

(
m0 ln d+ U0 h

(
m0

U0

))
6

√√√√U0m0

2

(
ln d+ ln

(
e U0

m0

))

whenever η and α are optimally chosen in terms of m0 and U0.

Proof of Theorem 2. Applying Lemma 1 with qt = ut/ ‖ut‖1, and multiplying by ‖ut‖1, we get

for all t > 1 and ut ∈ R
d
+

‖ut‖1 p̂
⊤
t ℓt − u⊤

t ℓt 6
1

η

d∑

i=1

ui,t ln
vi,t+1

p̂i,t
+
η

8
‖ut‖1 . (6)

3As can be seen by noting that ln
(

1/(1− x)
)

< x/(1− x)

4

ha
l-0

06
70

51
4,

 v
er

si
on

 2
 - 

27
 S

ep
 2

01
2



We now examine

d∑

i=1

ui,t ln
vi,t+1

p̂i,t
=

d∑

i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
+

d∑

i=1

(
ui,t−1 ln

1

vi,t
− ui,t ln

1

vi,t+1

)
.

(7)
For the first term on the right-hand side, we have

d∑

i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
=

∑

i :ui,t>ui,t−1

(
(ui,t − ui,t−1) ln

1

p̂i,t
+ ui,t−1 ln

vi,t
p̂i,t

)

+
∑

i :ui,t<ui,t−1

(
(ui,t − ui,t−1) ln

1

vi,t︸ ︷︷ ︸
60

+ui,t ln
vi,t
p̂i,t

)
. (8)

In view of the update (5), we have 1/p̂i,t 6 d/α and vi,t/p̂i,t 6 1/(1− α). Substituting in (8), we
get

d∑

i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)

6
∑

i :ui,t>ui,t−1

(ui,t − ui,t−1) ln
d

α
+




∑

i: ui,t>ui,t−1

ui,t−1 +
∑

i: ui,t<ui,t−1

ui,t


 ln

1

1− α

= DTV(ut,ut−1) ln
d

α
+




d∑

i=1

ui,t −
∑

i :ui,t>ui,t−1

(ui,t − ui,t−1)




︸ ︷︷ ︸
=‖ut‖1

−DTV(ut,ut−1)

ln
1

1− α
.

The sum of the second term in (7) telescopes. Substituting the obtained bounds in the first sum of
the right-hand side in (7), and summing over t = 2, . . . , T , leads to

T∑

t=2

d∑

i=1

ui,t ln
vi,t+1

p̂i,t
6 m(uT

1 ) ln
d

α
+

(
T∑

t=2

‖ut‖1 −m(uT
1 )

)
ln

1

1− α

+
d∑

i=1

ui,1 ln
1

vi,2
− ui,T ln

1

vi,T+1︸ ︷︷ ︸
60

.

We hence get from (6), which we use in particular for t = 1,

T∑

t=1

‖ut‖1 p̂
⊤
t ℓt − u⊤

t ℓt 6
1

η

d∑

i=1

ui,1 ln
1

p̂i,1
+
η

8

T∑

t=1

‖ut‖1

+
m(uT

1 )

η
ln
d

α
+

∑T
t=2 ‖ut‖1m(uT

1 )

η
ln

1

1− α
.

6 Applications

We now show how our regret bounds can be specialized to obtain bounds on adaptive and discounted
regret, and on regret with time-selection functions. We show regret bounds only for the specific
instance of the generalized share algorithm using update (5); but the discussion below also holds up
to minor modifications for the forecaster studied in Theorem 1.

Adaptive regret was introduced by [8] and can be viewed as a variant of discounted regret where
the monotonicity assumption is dropped. For τ0 ∈ {1, . . . , T }, the τ0-adaptive regret of a forecaster
is defined by

Rτ0−adapt
T = max

[r, s] ⊂ [1, T ]
s + 1 − r 6 τ0

{
s∑

t=r

p̂
⊤
t ℓt − min

q∈∆d

s∑

t=r

q⊤ℓt

}
. (9)

5
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The fact that this is a special case of (2) clearly emerges from the proof of Corollary 2 below here.

Adaptive regret is an alternative way to measure the performance of a forecaster against a changing
environment. It is a straightforward observation that adaptive regret bounds also lead to shifting
regret bounds (in terms of hard shifts). In this paper we note that these two notions of regret share
an even tighter connection, as they can be both viewed as instances of the same alma mater notion
of regret, i.e., the generalized shifting regret introduced in Section 3. The work [8] essentially
considered the case of online convex optimization with exp-concave loss function; in case of general
convex functions, they also mentioned that the greedy projection forecaster of [2] enjoys adaptive
regret guarantees. This is obtained in much the same way as we obtain an adaptive regret bound for
the fixed-share forecaster in the next result.

Corollary 2. Suppose that Algorithm 1 is run with the shared update (5). Then for all T > 1, for
all sequences ℓ1, . . . , ℓT of loss vectors ℓt ∈ [0, 1]d, and for all τ0 ∈ {1, . . . , T },

Rτ0−adapt
T 6

√
τ0
2

(
τ0 h

(
1

τ0

)
+ ln d

)
6

√
τ0
2

ln(edτ0)

whenever η and α are chosen optimally (depending on τ0 and T ).

As mentioned in [8], standard lower bounds on the regret show that the obtained bound is optimal
up to the logarithmic factors.

Proof. For 1 6 r 6 s 6 T and q ∈ ∆d, the regret in the right-hand side of (9) equals the
regret considered in Theorem 2 against the sequence uT

1 defined as ut = q for t = r, . . . , s and
0 = (0, . . . , 0) for the remaining t. When r > 2, this sequence is such that DTV(ur,ur−1) =
DTV(q,0) = 1 and DTV(us+1,us) = DTV(0, q) = 0 so that m(uT

1 ) = 1, while ‖u1‖1 = 0.

When r = 1, we have ‖u1‖1 = 1 and m(uT
1 ) = 0. In all cases, m(uT

1 ) + ‖u1‖1 = 1, that
is, m0 = 1. Specializing the bound of Theorem 2 with the additional choice U0 = τ0 gives the
result.

Discounted regret was introduced in [3, Section 2.11] and is defined by

max
q∈∆d

T∑

t=1

βt,T
(
p̂
⊤
t ℓt − q⊤ℓt

)
. (10)

The discount factors βt,T measure the relative importance of more recent losses to older losses. For
instance, for a given horizon T , the discounts βt,T may be larger as t is closer to T . On the contrary,
in a game-theoretic setting, the earlier losses may matter more then the more recent ones (because of
interest rates), in which case βt,T would be smaller as t gets closer to T . We mostly consider below
monotonic sequences of discounts (both non-decreasing and non-increasing). Up to a normalization,
we assume that all discounts βt,T are in [0, 1]. As shown in [3], a minimal requirement to get non-
trivial bounds is that the sum of the discounts satisfies UT =

∑
t6T βt,T → ∞ as T → ∞.

A natural objective is to show that the quantity in (10) is o(UT ), for instance, by bounding it by

something of the order of
√
UT . We claim that Corollary 1 does so, at least whenever the sequences

(βt,T ) are monotonic for all T . To support this claim, we only need to show thatm0 = 1 is a suitable
value to deal with (10). Indeed, for all T > 1 and for all q ∈ ∆d, the measure of regularity involved
in the corollary satisfies

‖β1,Tq‖1 +m
(
(βt,Tq)t6T

)
= β1,T +

T∑

t=2

(
βt,T − βt−1,T

)
+
= max

{
β1,T , βT,T

}
6 1 ,

where the second equality follows from the monotonicity assumption on the discounts.

The values of the discounts for all t and T are usually known in advance. However, the horizon T
is not. Hence, a calibration issue may arise. The online tuning of the parameters α and η shown
in Section 7.3 entails a forecaster that can get discounted regret bounds of the order

√
UT for all

T . The fundamental reason for this is that the discounts only come in the definition of the fixed-
share forecaster via their sums. In contrast, the forecaster discussed in [3, Section 2.11] weighs each
instance t directly with βt,T (i.e., in the very definition of the forecaster) and enjoys therefore no
regret guarantees for horizons other than T (neither before T nor after T ). Therein, the knowledge

6
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of the horizon T is so crucial that it cannot be dealt with easily, not even with online calibration of
the parameters or with a doubling trick. We insist that for the fixed-share forecaster, much flexibility
is gained as some of the discounts βt,T can change in a drastic manner for a round T to values
βt,T+1 for the next round. However we must admit that the bound of [3, Section 2.11] is smaller

than the one obtained above, as it of the order of
√∑

t6T β
2
t,T , in contrast to our

√∑
t6T βt,T

bound. Again, this improvement was made possible because of the knowledge of the time horizon.

As for the comparison to the setting of discounted losses of [9], we note that the latter can be cast as
a special case of our setting (since the discounting weights take the special form βt,T = γt . . . γT−1

therein, for some sequence γs of positive numbers). In particular, the fixed-share forecaster can
satisfy the bound stated in [9, Theorem 2], for instance, by using the online tuning techniques of
Section 7.3. A final reference to mention is the setting of time-selection functions of [10, Section 6],
which basically corresponds to knowing in advance the weights ‖ut‖1 of the comparison sequence
u1, . . . ,uT the forecaster will be evaluated against. We thus generalize their results as well.

7 Refinements and extensions

We now show that techniques for refining the standard online analysis can be easily applied to our
framework. We focus on the following: improvement for small losses, sparse target sequences, and
dynamic tuning of parameters. Not all of them where within reach of previous analyses.

7.1 Improvement for small losses

The regret bounds of the fixed-share forecaster can be significantly improved when the cumulative
loss of the best sequence of experts is small. The next result improves on Corollary 1 whenever
L0 ≪ U0. For concreteness, we focus on the fixed-share update (5).

Corollary 3. Suppose Algorithm 1 is run with the update (5). Let m0 > 0, U0 > 0, and L0 > 0.
For all T > 1, for all sequences ℓ1, . . . , ℓT of loss vectors ℓt ∈ [0, 1]d, and for all sequences

u1, . . . ,uT ∈ R
d
+ with ‖u1‖1 +m(uT

1 ) 6 m0,
∑T

t=1 ‖ut‖1 6 U0, and
∑T

t=1 u
⊤
t ℓt 6 L0,

T∑

t=1

‖ut‖1 p̂
⊤
t ℓt −

T∑

t=1

u⊤
t ℓt 6

√√√√L0m0

(
ln d+ ln

(
e U0

m0

))
+ ln d+ ln

(
e U0

m0

)

whenever η and α are optimally chosen in terms of m0, U0, and L0.

Here again, the parameters α and η may be tuned online using the techniques shown in Section 7.3.
The above refinement is obtained by mimicking the analysis of Hedge forecasters for small losses
(see, e.g., [3, Section 2.4]). In particular, one should substitute Lemma 1 with the following lemma
in the analysis carried out in Section 5; its proof follows from the mere replacement of Hoeffding’s
inequality by [3, Lemma A.3], which states that for all η ∈ R and for all random variable X taking
values in [0, 1], one has lnE[e−ηX ] 6 (e−η − 1)EX .

Lemma 2. Algorithm 1 satisfies
1− e−η

η
p̂
⊤
t ℓt − q⊤

t ℓt 6
1

η

d∑

i=1

qi,t ln

(
vi,t
p̂i,t+1

)
for all qt ∈ ∆d.

7.2 Sparse target sequences

The work [6] introduced forecasters that are able to efficiently compete with the best sequence of
experts among all those sequences that only switch a bounded number of times and also take a
small number of different values. Such “sparse” sequences of experts appear naturally in many
applications. In this section we show that their algorithms in fact work very well in comparison with
a much larger class of sequences u1, . . . ,uT that are “regular”—that is, m(uT

1 ), defined in (3) is

small—and “sparse” in the sense that the quantity n(uT
1 ) =

∑d
i=1 maxt=1,...,T ui,t is small. Note

that when qt ∈ ∆d for all t, then two interesting upper bounds can be provided. First, denoting
the union of the supports of these convex combinations by S ⊆ {1, . . . , d}, we have n(qT

1 ) 6 |S|,
the cardinality of S. Also, n(qT

1 ) 6
∣∣{qt, t = 1, . . . , T }

∣∣, the cardinality of the pool of convex

combinations. Thus, n(uT
1 ) generalizes the notion of sparsity of [6].
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Here we consider a family of shared updates of the form

p̂j,t = (1− α)vj,t + α
wj,t

Zt
, 0 6 α 6 1 , (11)

where the wj,t are nonnegative weights that may depend on past and current pre-weights and Zt =∑d
i=1 wi,t is a normalization constant. Shared updates of this form were proposed by [6, Sections 3

and 5.2]. Apart from generalizing the regret bounds of [6], we believe that the analysis given below
is significantly simpler and more transparent. We are also able to slightly improve their original
bounds.

We focus on choices of the weights wj,t that satisfy the following conditions: there exists a constant
C > 1 such that for all j = 1, . . . , d and t = 1, . . . , T ,

vj,t 6 wj,t 6 1 and C wj,t+1 > wj,t . (12)

The next result improves on Theorem 2 when T ≪ d and n(uT
1 ) ≪ m(uT

1 ), that is, when the
dimension (or number of experts) d is large but the sequence uT

1 is sparse. Its proof can be found in
the supplementary material; it is a variation on the proof of Theorem 2.

Theorem 3. Suppose Algorithm 1 is run with the shared update (11) with weights satisfying the
conditions (12). Then for all T > 1, for all sequences ℓ1, . . . , ℓT of loss vectors ℓt ∈ [0, 1]d, and
for all sequences u1, . . . ,uT ∈ R

d
+,

T∑

t=1

‖ut‖1 p̂
⊤
t ℓt −

T∑

t=1

u⊤
t ℓt 6

n(uT
1 ) ln d

η
+
n(uT

1 )T lnC

η
+
η

8

T∑

t=1

‖ut‖1

+
m(uT

1 )

η
ln

maxt6T Zt

α
+

∑T
t=2 ‖ut‖1 −m(uT

1 )

η
ln

1

1− α
.

Corollaries 8 and 9 of [6] can now be generalized (and even improved); we do so—in the supple-
mentary material—by showing two specific instances of the generic update (11) that satisfy (12).

7.3 Online tuning of the parameters

The forecasters studied above need their parameters η and α to be tuned according to various quan-
tities, including the time horizon T . We show here how the trick of [11] of having these parameters
vary over time can be extended to our setting. For the sake of concreteness we focus on the fixed-
share update, i.e., Algorithm 1 run with the update (5). We respectively replace steps 3 and 4 of its
description by the loss and shared updates

vj,t+1 = p̂
ηt

ηt−1

j,t e−ηtℓj,t

/
d∑

i=1

p̂
ηt

ηt−1

i,t e−ηtℓi,t and pj,t+1 =
αt

d
+ (1− αt) vj,t+1 , (13)

for all t > 1 and all j ∈ {1, . . . , d}, where (ητ ) and (ατ ) are two sequences of positive numbers,
indexed by τ > 1. We also conventionally define η0 = η1. Theorem 2 is then adapted in the
following way (when ηt ≡ η and αt ≡ α, Theorem 2 is exactly recovered).

Theorem 4. The forecaster based on the updates (13) is such that whenever ηt 6 ηt−1 and αt 6

αt−1 for all t > 1, the following performance bound is achieved. For all T > 1, for all sequences
ℓ1, . . . , ℓT of loss vectors ℓt ∈ [0, 1]d, and for all u1, . . . ,uT ∈ R

d
+,

T∑

t=1

‖ut‖1 p̂
⊤
t ℓt −

T∑

t=1

u⊤
t ℓt 6

(
‖ut‖1
η1

+

T∑

t=2

‖ut‖1
(

1

ηt
− 1

ηt−1

))
ln d

+
m(uT

1 )

ηT
ln
d(1 − αT )

αT
+

T∑

t=2

‖ut‖1
ηt−1

ln
1

1− αt
+

T∑

t=1

ηt−1

8
‖ut‖1 .

Due to space constraints, we provide an illustration of this bound only in the supplementary material.
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A Online convex optimization on the simplex

By using a standard reduction, the results of the main body of the paper (for linear optimization on
the simplex) can be applied to online convex optimization on the simplex. In this setting, at each
step t the forecaster chooses p̂t ∈ ∆d and then is given access to a convex loss ℓt : ∆d → [0, 1].
Now, using Algorithm 1 with the loss vector ℓt ∈ ∂ℓt(p̂t) given by a subgradient of ℓt leads to the
desired bounds. Indeed, by the convexity of ℓt, the regret at each time t with respect to any vector
ut ∈ R

d
+ with ‖ut‖1 > 0 is then bounded as

‖ut‖1
(
ℓt(p̂t)− ℓt

(
ut

‖ut‖1

))
6
(
‖ut‖1 p̂t − ut

)⊤
ℓt .

B Proof of Theorem 3; application of the bound to two different updates

Proof. The beginning and the end of the proof are similar to the one of Theorem 2, as they do not
depend on the specific weight update. In particular, inequalities (6) and (7) remain the same. The
proof is modified after (8), which this time we upper bound using the first condition in (12),

d∑

i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
=

∑

i :ui,t>ui,t−1

(ui,t − ui,t−1) ln
1

p̂i,t
+ ui,t−1 ln

vi,t
p̂i,t

+
∑

i :ui,t<ui,t−1

(ui,t − ui,t−1)︸ ︷︷ ︸
60

ln
1

vi,t︸ ︷︷ ︸
>ln(1/wi,t)

+ui,t ln
vi,t
p̂i,t

. (14)

By definition of the shared update (11), we have 1/p̂i,t 6 Zt/(αwi,t) and vi,t/p̂i,t 6 1/(1 − α).
We then upper bound the quantity at hand in (14) by

∑

i :ui,t>ui,t−1

(ui,t − ui,t−1) ln

(
Zt

αwi,t

)
+




∑

i :ui,t>ui,t−1

ui,t−1 +
∑

i :ui,t<ui,t−1

ui,t


 ln

1

1− α

+
∑

i :ui,t<ui,t−1

(ui,t − ui,t−1) ln
1

wi,t

= DTV(ut,ut−1) ln
Zt

α
+
(
‖ut‖1 −DTV(ut,ut−1)

)
ln

1

1− α
+

d∑

i=1

(ui,t − ui,t−1) ln
1

wi,t
.

Proceeding as in the end of the proof of Theorem 2, we then get the claimed bound, provided that
we can show that

T∑

t=2

d∑

i=1

(ui,t − ui,t−1) ln
1

wi,t
6 n(uT

1 ) (ln d+ T lnC)− ‖u1‖1 ln d ,

which we do next. Indeed, the left-hand side can be rewritten as

T∑

t=2

d∑

i=1

(
ui,t ln

1

wi,t
− ui,t ln

1

wi,t+1

)
+

T∑

t=2

d∑

i=1

(
ui,t ln

1

wi,t+1
− ui,t−1 ln

1

wi,t

)

6

(
T∑

t=2

d∑

i=1

ui,t ln
C wi,t+1

wi,t

)
+

(
d∑

i=1

ui,T ln
1

wi,T+1
−

d∑

i=1

ui,1 ln
1

wi,2

)

6

(
d∑

i=1

(
max

t=1,...,T
ui,t

) T∑

t=2

ln
C wi,t+1

wi,t

)
+

(
d∑

i=1

(
max

t=1,...,T
ui,t

)
ln

1

wi,T+1
−

d∑

i=1

ui,1 ln
1

wi,2

)

=
d∑

i=1

(
max

t=1,...,T
ui,t

)(
(T − 1) lnC + ln

1

wi,2

)
−

d∑

i=1

ui,1 ln
1

wi,2
,

where we used C > 1 for the first inequality and the second condition in (12) for the second
inequality. The proof is concluded by noting that (12) entails wi,2 > (1/C)wi,1 > (1/C)vi,1 =
1/(dC) and that the coefficient maxt=1,...,T ui,t − ui,1 in front of ln(1/wi,2) is nonnegative.
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The first update uses wj,t = maxs6t vj,s. Then (12) is satisfied with C = 1. Moreover, since a sum
of maxima of nonnegative elements is smaller than the sum of the sums, Zt 6 min{d, t} 6 T . This
immediately gives the following result.

Corollary 4. Suppose Algorithm 1 is run with the update (11) with wj,t = maxs6t vj,s. For all

T > 1, for all sequences ℓ1, . . . , ℓT of loss vectors ℓt ∈ [0, 1]d, and for all q1, . . . , qT ∈ ∆d,

T∑

t=1

p̂
⊤
t ℓt −

T∑

t=1

q⊤
t ℓt 6

n(qT
1 ) ln d

η
+
η

8
T +

m(qT
1 )

η
ln
T

α
+
T −m(qT

1 )− 1

η
ln

1

1− α
.

The second update we discuss uses wj,t = maxs6t e
γ(s−t)vj,s in (11) for some γ > 0. Both

conditions in (12) are satisfied with C = eγ . One also has that

Zt 6 d and Zt 6
∑

τ>0

e−γτ =
1

1− e−γ
6

1

γ

as ex > 1 + x for all real x. The bound of Theorem 3 then instantiates as

n(qT
1 ) ln d

η
+
n(qT

1 )Tγ

η
+
η

8
T +

m(qT
1 )

η
ln

min{d, 1/γ}
α

+
T −m(qT

1 )− 1

η
ln

1

1− α

when sequences ut = qt ∈ ∆d are considered. This bound is best understood when γ is tuned
optimally based on T and on two boundsm0 and n0 over the quantities m(qT

1 ) and n(qT
1 ). Indeed,

by optimizingn0Tγ+m0 ln(1/γ), i.e., by choosing γ = m0/(n0 T ), one gets a bound that improves
on the one of the previous corollary:

Corollary 5. Let m0, n0 > 0. Suppose Algorithm 1 is run with the update wj,t =

maxs6t e
γ(s−t)vj,s where γ = m0/(n0 T ). For all T > 1, for all sequences ℓ1, . . . , ℓT of loss

vectors ℓt ∈ [0, 1]d, and for all q1, . . . , qT ∈ ∆d such thatm(qT
1 ) 6 m0 and n(qT

1 ) 6 n0, we have

T∑

t=1

p̂
⊤
t ℓt −

T∑

t=1

q⊤
t ℓt 6

n0 ln d

η
+
m0

η

(
1 + ln min

{
d,
n0 T

m0

})

+
η

8
T +

m0

η
ln

1

α
+
T −m0 − 1

η
ln

1

1− α
.

As the factors e−γt cancel out in the numerator and denominator of the ratio in (11), there is a
straightforward implementation of the algorithm (not requiring the knowledge of T ) that needs to
maintain only d weights.

In contrast, the corresponding algorithm of [6], using the updates p̂j,t = (1 − α)vj,t +

αS−1
t

∑
s6t−1(s− t)−1vj,s or p̂j,t = (1−α)vj,t+αS−1

t maxs6t−1(s− t)−1vj,s, where St denote

normalization factors, needs to maintainO(dT ) weights with a naive implementation, andO(d ln T )
weights with a more sophisticated one. In addition, the obtained bounds are slightly worse than the
one stated above in Corollary 5 as an additional factor of m0 ln(1 + lnT ) is present in [6, Corol-
lary 9].

C Proof of Theorem 4; illustration of the obtained bound

We first adapt Lemma 1.

Lemma 3. The forecaster based on the loss and shared updates (13) satisfies, for all t > 1 and for
all qt ∈ ∆d,

(
p̂t − qt

)⊤
ℓt 6

d∑

i=1

qi,t

(
1

ηt−1
ln

1

p̂i,t
− 1

ηt
ln

1

vi,t+1

)
+

(
1

ηt
− 1

ηt−1

)
ln d+

ηt−1

8
,

whenever ηt 6 ηt−1.
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Proof. By Hoeffding’s inequality,

d∑

j=1

p̂j,t ℓj,t 6 − 1

ηt−1
ln




d∑

j=1

p̂j,t e
−ηt−1 ℓj,t


+

ηt−1

8
.

By Jensen’s inequality, since ηt 6 ηt−1 and thus x 7→ x
ηt−1

ηt is convex,

1

d

d∑

j=1

p̂j,t e
−ηt−1ℓj,t =

1

d

d∑

j=1

(
p̂

ηt
ηt−1

j,t e−ηtℓj,t

)ηt−1

ηt

>


1

d

d∑

j=1

p̂
ηt

ηt−1

j,t e−ηtℓj,t




ηt−1

ηt

.

Substituting in Hoeffding’s bound we get

p̂
⊤
t ℓt 6 − 1

ηt
ln




d∑

j=1

p̂
ηt

ηt−1

j,t e−ηtℓj,t


+

(
1

ηt
− 1

ηt−1

)
ln d+

ηt−1

8
.

Now, by definition of the loss update in (13), for all i ∈ {1, . . . , d},

d∑

j=1

p̂
ηt

ηt−1

j,t e−ηtℓj,t =
1

vi,t+1
p̂

ηt
ηt−1

i,t e−ηtℓi,t ,

which, after substitution in the previous bound leads to the inequality

p̂
⊤
t ℓt 6 ℓi,t +

1

ηt−1
ln

1

p̂i,t
− 1

ηt
ln

1

vi,t+1
+

(
1

ηt
− 1

ηt−1

)
ln d+

ηt−1

8
,

valid for all i ∈ {1, . . . , d}. The proof is concluded by taking a convex aggregation over i with
respect to qt.

The proof of Theorem 4 follows the steps of the one of Theorem 2; we sketch it below.

Proof of Theorem 4. Applying Lemma 3 with qt = ut/ ‖ut‖1, and multiplying by ‖ut‖1, we get

for all t > 1 and ut ∈ R
d
+,

‖ut‖1 p̂
⊤
t ℓt − u⊤

t ℓt 6
1

ηt−1

d∑

i=1

ui,t ln
1

p̂i,t
− 1

ηt

d∑

i=1

ui,t ln
1

vi,t+1

+ ‖ut‖1
(

1

ηt
− 1

ηt−1

)
ln d+

ηt−1

8
‖ut‖1 . (15)

We will sum these bounds over t > 1 to get the desired result but need to perform first some
additional boundings for t > 2; in particular, we examine

1

ηt−1

d∑

i=1

ui,t ln
1

p̂i,t
− 1

ηt

d∑

i=1

ui,t ln
1

vi,t+1

=
1

ηt−1

d∑

i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)
+

d∑

i=1

(
ui,t−1

ηt−1
ln

1

vi,t
− ui,t

ηt
ln

1

vi,t+1

)
, (16)

where the first difference in the right-hand side can be bounded as in (8) by

d∑

i=1

(
ui,t ln

1

p̂i,t
− ui,t−1 ln

1

vi,t

)

6
∑

i :ui,t>ui,t−1

(
(ui,t − ui,t−1) ln

1

p̂i,t
+ ui,t−1 ln

vi,t
p̂i,t

)
+

∑

i :ui,t<ui,t−1

ui,t ln
vi,t
p̂i,t
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6 DTV (ut,ut−1) ln
d

αt
+
(
‖ut‖1 −DTV (ut,ut−1)

)
ln

1

1− αt

6 DTV (ut,ut−1) ln
d(1− αT )

αT
+ ‖ut‖1 ln

1

1− αt
, (17)

where we used for the second inequality that the shared update in (13) is such that 1/p̂i,t 6 d/αt and
vi,t/p̂i,t 6 1/(1− αt), and for the third inequality, that αt > αT and x 7→ (1− x)/x is increasing
on (0, 1]. Summing (16) over t = 2, . . . , T using (17) and the fact that ηt > ηT , we get

T∑

t=2

(
1

ηt−1

d∑

i=1

ui,t ln
1

p̂i,t
− 1

ηt

d∑

i=1

ui,t ln
1

vi,t+1

)

6
m(uT

1 )

ηT
ln
d(1− αT )

αT
+

T∑

t=2

‖ut‖1
ηt−1

ln
1

1− αt
+

d∑

i=1

(
ui,1
η1

ln
1

vi,2
− ui,T

ηT
ln

1

vi,T+1︸ ︷︷ ︸
>0

)
.

An application of (15) —including for t = 1, for which we recall that p̂i,1 = 1/d and η1 = η0 by
convention— concludes the proof. �

We now instantiate the obtained bound to the case of, e.g., T –adaptive regret guarantees, when T is
unknown and/or can increase without bounds.

Corollary 6. The forecaster based on the updates discussed above with ηt =
√(

ln(dt)
)
/t for t > 3

and η0 = η1 = η2 = η3 on the one hand, αt = 1/t on the other hand, is such that for all T > 3 and
for all sequences ℓ1, . . . , ℓT of loss vectors ℓt ∈ [0, 1]d,

max
[r,s]⊂[1,T ]

{
s∑

t=r

p̂
⊤
t ℓt − min

q∈∆d

s∑

t=r

q⊤ℓt

}
6
√
2T ln(dT ) +

√
3 ln(3d) .

Proof. The sequence n 7→ ln(n)/n is only non-increasing after round n > 3, so that the defined
sequences of (αt) and (ηt) are non-increasing, as desired. For a given pair (r, s) and a given q ∈ ∆d,
we consider the sequence νT1 defined in the proof of Corollary 2; it satisfies that m(uT

1 ) 6 1 and
‖ut‖1 6 1 for all t > 1. Therefore, Theorem 4 ensures that

s∑

t=r

p̂
⊤
t ℓt−min

q∈∆d

s∑

t=r

q⊤ℓt 6
ln d

ηT
+

1

ηT
ln
d(1− αT )

αT︸ ︷︷ ︸
6dT

+

T∑

t=2

1

ηt−1
ln

1

1− αt
︸ ︷︷ ︸

6(1/ηT )
∑

T
t=2

ln(t/(t−1))=(lnT )/ηT

+

T∑

t=1

ηt−1

8
.

It only remains to substitute the proposed values of ηt and to note that

T∑

t=1

ηt−1 6 3η3 +
T−1∑

t=3

1√
t

√
ln(dT ) 6 3

√
ln(3d)

3
+ 2

√
T
√
ln(dT ) .

D Proof of Theorem 1

We recall that the forecaster at hand is the one described in Algorithm 1, with the shared update
p̂t+1 = ψt+1

(
Vt+1

)
for

ψt+1

(
Vt+1

)
∈ argmin

x∈∆α
d

K(x,vt+1) , where K(x,vt+1) =

d∑

i=1

xi ln
xi

vi,t+1
(18)

is the Kullback-Leibler divergence and ∆α
d = [α/d, 1]d ∩∆d is the simplex of convex vectors with

the constraint that each component be larger than α/d.

The proof of the performance bound starts with an extension of Lemma 1.

Lemma 4. For all t > 1 and for all qt ∈ ∆α
d , the generalized forecaster with the shared update (18)

satisfies

(p̂t − qt)
⊤ℓt 6

1

η

d∑

i=1

qi,t ln
p̂i,t+1

p̂i,t
+
η

8
.
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Proof. We rewrite the bound of Lemma 1 in terms of Kullback-Leibler divergences,

(p̂t − qt)
⊤ℓt 6

1

η

d∑

i=1

qi,t ln
vi,t+1

pi,t
+
η

8
=

K(qt, p̂t)−K(qt,vt+1)

η
+
η

8

6
K(qt, p̂t)−K(qt, p̂t+1)

η
+
η

8
=

1

η

d∑

i=1

qi,t ln
p̂i,t+1

p̂i,t
+
η

8
,

where the last inequality holds by applying a generalized Pythagorean theorem for Bregman diver-
gences (here, the Kullback-Leibler divergence) —see, e.g., [3, Lemma 11.3].

Proof. Let qt =
α

d
+ (1− α)

ut

‖ut‖1
∈ ∆α

d . We have by rearranging the terms for all t,

(
‖ut‖1 p̂t − ut

)⊤
ℓt = ‖ut‖1 (p̂t − qt)

⊤
ℓt +

(α
d
‖ut‖1 − αut

)⊤
ℓt

6 ‖ut‖1 (p̂t − qt)
⊤
ℓt + α ‖ut‖1 .

Therefore, by applying Lemma 4 with qt ∈ ∆α
d , we further upper bound the quantity of interest as

(
‖ut‖1 p̂t − ut

)⊤
ℓt 6

‖ut‖1
η

d∑

i=1

qi,t ln
p̂i,t+1

p̂i,t
+
η

8
‖ut‖1 + α ‖ut‖1 .

The upper bound is rewritten by summing over t and applying an Abel transform to its first term,

T∑

t=1

‖ut‖1
η

d∑

i=1

qi,t ln
p̂i,t+1

p̂i,t
+
η

8
‖ut‖1 + α ‖ut‖1

=
‖u1‖1 ln d

η
+

‖uT ‖1
η

d∑

i=1

qi,T ln p̂i,T+1

︸ ︷︷ ︸
60

+
1

η

T∑

t=2

d∑

i=1

(
‖ut‖1 qi,t − ‖ut−1‖ qi,t−1

)
︸ ︷︷ ︸

=(1−α)(ui,t−ui,t−1)

ln
1

p̂i,t︸ ︷︷ ︸
06 · 6ln d

α

+
(η
8
+ α

) T∑

t=1

‖ut‖1

6
‖u1‖1 ln d

η
+

1− α

η

(
T∑

t=2

DTV(ut,ut−1)

)
ln
d

α
+
(η
8
+ α

) T∑

t=1

‖ut‖1 .
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