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1 Introduction

In statistics or machine learning, we often want to explain some output Y ∈ Y from input X ∈ X ⊂ Rp by
observing a data set Dn = {(Xi, Yi)}1≤i≤n of i.i.d. observations. In this lecture, we would like to deal with
high-dimensional input spaces, i.e., large p (possibly p� n). We will have two motivations in mind:

– prediction, accuracy : when p � n classical models fail. Is it possible to have strong theoretical
guarantees on the risk (i.e., generalization error)?

– model interpretability : by removing irrelevant features Xi (i.e, by setting the corresponding coefficients
estimates to zero), the model will easier to understand.

Good references on this topic are Giraud [2014] and Friedman et al. [2001].

Why high-dimensional data? The volume of available data is growing exponentially fast nowadays.
According to IBM two years ago, 1018 bytes of data were created every day in the world and 90% of data
is less than two years old. Many modern data record simultaneously thousands up to millions of features
on each objects or individuals. In many applications, data is high-dimensional such as with DNA, images,
video, cookies (data about consumer preferences) or in astrophysics.

The curse of dimensionality
– High-dimensional spaces are vast and data points are isolated in their immensity.
– The accumulation of small errors in many different directions can produce a large global error.
– An event that is an accumulation of rare events may be not rare in high-dimensional space.

Example 1.1. In high-dimensional spaces, no point in you data set will be close from a new input you want
to predict. Assume that your input space is X = [0, 1]p. The number of points needed to cover the space at
a radius ε in L2 norm is of order 1/εp which increases exponentially with the dimension. Therefore, in high
dimension, it is unlikely to have a point in you data set that will be close to any new input.

Example 1.2. In high-dimensional spaces classical distances are often meaningless: all the points tends to
be at similar distance from one another. Consider the following example to convince ourselves. Assume that
X,X ′ follow uniform distribution on [0, 1]p. Then, the expected distance in square L2-norm between X and
X ′ is

E
[
‖X −X ′‖2

]
=

p∑

i=1

E
[
(Xi −X ′i)2

]
= pE

[
(X1 −X ′1)2

]
= p

∫ 1

0

∫ 1

0

(x− x′)dxdx′ =
p

6

Therefore, the average distance between the points increases with the dimension. Furthermore, the standard
deviation of this square distance is

√
Var
(
‖X −X ′‖2

)
=

√√√√
p∑

i=1

Var
(
(Xi−X ′i)2

)
=
√
pVar

(
(X1 −X ′1)2

)
=

√
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6
√
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Thus, if we plot the distribution of the square distance, we get something like:

95% of the points are at distance 0.4
√
p

p/6

Distance between points in [0, 1]p

D
en
si
ty

Therefore, relatively to their dis-
tance, all points seem to be at
similar distance from one an-
other. The notion of nearest
point distance vanishes. As a
consequence, K-Nearest Neigh-
bors gets poor performance in
large dimension.

Example 1.3. Let us consider another example in high-dimensional linear regression. We consider the
ordinary least square estimator (OLS) for the linear model

β̂ ∈ arg min
β∈Rp

∥∥Y −Xβ
∥∥2 where Yi = x>i β

∗ + εi, X = (x1, . . . , xn)> ∈ Rn×p and εi
i.i.d.∼ N (0, σ2) .

If rg(X) = p (i.e., p ≤ n) then β̂ = (X>X)−1X>Y and as we saw in previous lecture the estimator satisfies

E
[
‖β̂ − β∗‖2

]
= Tr

(
(X>X)−1

)
σ2 .

In particular, in the very gentle case of an orthogonal design, we get E
[
‖β̂ − β∗‖2

]
= pσ2 . Therefore,

the variance of the estimator increases linearly with the dimension and the later gets unstable for high-
dimensional data. Furthermore, OLS only works for p � n because otherwise the matrix X>X is not
invertible and using pseudo-inverse would lead to highly unstable estimator and over-fitting. One needs to
regularize.

The previous examples seem to show that the curse of dimensionality is unavoidable and we are doomed to
poor estimators in large dimension. Hopefully, in many cases, data has an intrinsic low complexity (sparsity,
low dimensional structure,. . . ). This is the case of the data (for instance with images) or of the machine
learning methods which is used (for instance Kernel regression).

What can we do with high-dimensional data? There are three classes of methods to deal with large
dimensional input spaces:

– Model selection: we identify a subset of s� p predictors that we believe to be related to the response.
We then fit a model (for instance OLS) on the s variables only.

– Regularization: Lasso, Group Lasso, Elastic net,. . .
– Dimension reduction: the objective is to find a low-dimensional representation of the data. If we

consider linear transformation, we may project the p predictors into a s-dimensional space with s� p.
This is achieved by computing s different linear combination or projections of the variables. Then these
projections are used as new features to fit a simple model for instance by least squares. Examples of
such methods are PCA, PLS,. . .

In this lesson, we will focus on the regularization approach.
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2 The Lasso

The high-level idea of the Lasso is to transform the penalize the empirical risk minimizer with a sharp penalty
that will favorize sparse solutions. We define the LASSO estimator

β̂λ ∈ arg min
β∈Rp

{ 1

2
‖Y −Xβ‖2 + λ‖β‖1

}
. (LASSO)

The solution β̂λ may not be unique but the prediction Xβ̂λ is.

2.1 Geometric insight

By convex duality, the Lasso is also the solution of

β̂λ ∈ arg min
β∈Rp:‖β‖1≤Rλ

{
‖Y −Xβ‖2

}
,

for some radius Rλ > 0 (that may depend on the data (Xi, Yi)). The non-smoothness of the `1-norm puts

some coefficients to zero. In Figure 1, we can see that because of the corners of the `1-ball, the solution β̂λ
gets zero coefficients which is not the case when regularizing with the `2-norm (on the right).

β1

β2

β̂

β̂λ

β1

β2

β̂

β̂λ

Figure 1: β̂ denotes the minimizer of the empirical risk and the blue lines denote level lines of the empirical
risk [left] Regularization with a `1-ball [right] Regularization with a `2-ball.

2.2 What does the solution of the Lasso looks like?

To solve the problem of Lasso, if the objective function L : β 7→ 1
2‖Y −Xβ‖2 +λ‖β‖1 was differentiable, one

would cancel the gradient. However, because of the `1-norm the later is not differentiable and one needs to
generalize the notion of gradient to convex functions which are not necessarily differentiable. This is done
with the following definition.

Definition 1 (Subdifferential). A subgradient of a convex function f : Rp → R at a point β0 ∈ Rp is a
vector z ∈ Rp such that for any β ∈ Rp the convex inequality holds

f(β)− f(β0) ≥ z>(β − β0) .

The set of all subgradients of f at β0 is denoted ∂f(β0) and is called the subdifferential of f at β0.
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The subdifferential of the `1-norm is

∂‖β‖1 =
{
z ∈ [−1, 1]p s.t. for all 1 ≤ j ≤ p zj = sign(βj) if βj 6= 0

}

and the subdifferential of the objective funtion of the Lasso is

∂L(β) =
{
−X>(Y −Xβ) + λz : z ∈ ∂‖β‖1

}
.

Any solution of the Lasso should cancel the subdifferential. Therefore, if β̂λ is a solution of the Lasso, it
exists ẑ ∈ ∂‖β̂λ‖1 (i.e., ẑj = sign(β̂λ(j)) if β̂λ(j) 6= 0 and ẑj ∈ [−1, 1] otherwise) such that

−X>(Y −Xβ) + λẑ = 0 ⇒ X>Xβ̂λ = X>Y − λẑ . (1)

If the gram matrix X>X is general, it is not possible to solve the later in close form. To get some insights
about the solution of the Lasso, let us assume the orthonormal setting X>X = Ip. Then, from (1), we get

for all j ∈ {1, . . . , p} such that β̂λ(j) 6= 0

β̂λ(j) = X>j Y − λsign(β̂λ(j)) .

Therefore, X>j Y = β̂λ(j) + sign(β̂λ(j)) and β̂λ(j) have same sign and we obtain for all 1 ≤ j ≤ p

β̂λ(j) =

{
X>j Y − λsign(X>j Y ) if |X>j Y | ≥ λ
0 if |X>j Y | ≤ λ

= Sλ(X>j Y ) ,

where Sλ is the soft-threshold function:

Sλ(x) =

{
0 if |x| ≤ λ
x− λsign(x) otherwise

.

In the orthonormal setting, the Lasso performs thus a soft threshold of the coordinates of the OLS.

x

Sλ(x)

Sλ(x)

λ−λ

Figure 2: Soft-threshold function
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2.3 Statistical property of the Lasso estimator

Consider the sparse linear model

Y = Xβ∗ + ε , Y = (y1, . . . , yn) ∈ Rn, X ∈ Rn×p, ε ∼ N (0, σ2In) . (2)

We consider p� n but we assume that β∗ has only s < p non-zero coordinates. We denote bym∗ ⊂ {1, . . . , p}
the set of non-zero coordinates of β∗.

For λ large enough λ ' σ
√

log p, under some additional condition on the design (relaxed version of or-
thonormal design), it is possible to show (see Giraud [2014]) that the Lasso does not assign any weight to
coefficients that are not in m∗. If λ is properly chosen, it recovers exactly the coefficients of β∗ and its risk
is controlled with high probability as

R(β̂λ) =
∥∥Xβ∗ −Xβ̂λ

∥∥2 ≤ inf
β∈Rp\{0}

{
‖Xβ −Xβ∗‖2 + �Xλ

2‖β‖0
}
,

where λ2 ' σ2 log p. The constant �X is the compatibility constant. It depends on the design X and can
be arbitrarily bad for non-orthogonal design. It can be shown that it is not possible to avoid it for efficient
(polynomial time) procedures.

2.4 Computing the Lasso estimator

Since this is the solution of a convex optimization problem, the solution of the Lasso can be obtained
efficiently. There are three main algorithms used by the community.

Coordinate descent (cf. practical session) the idea is to repeatedly minimize the objective function L(β)
with respect to each coordinate. It converges thanks to the convexity of L. As we saw in Equation (1), the
solution of the Lasso satisfies

X>Xβ̂λ = X>Y − λẑ
where ẑ ∈ ∂‖β‖1. We saw that the solution equals β̂λ(j) = Sλ(X>j Y ) when X>X = Ip. This equation has
however no closed-form solution in general. The idea of coordinate descent is to solve this equation only for
one coordinate, fixing all the other coordinates.
Let 1 ≤ i ≤ n and fix coordinates βj ∈ R for j 6= i. Solving the i-th coordinate optimisation problem given
by

min
βi
L(β) = min

βi∈R

{
1

2

∥∥Y −Xβ
∥∥2 + λ‖β‖1

}
,

we get that the i-th partial sub-derivative of L should cancel, which gives similarly to previously

X>i Xβ = X>i Y − λzi ,

where zi ∈ ∂|βi|. This can be rewritten as

X>i Xiβi +X>i X−iβ−i = X>i Y − λzi ,

where X−i ∈ Rn× (p−1) is the input matrix without column i and β−i ∈ Rp−1 is the fixed parameter vector
without coordinate i.
Assume βi 6= 0, then zi = sign(βi) and

X>i Xiβi + λ sign(βi) = X>i (Y −X−iβ−i) ,

Since X>i Xi > 0, we have zi = sign
(
X>i (Y −X>i X−iβ−i)

)
which implies

βi =
Sλ
(
X>i (Y −X>i X−iβ−i)

)

X>i Xi
. (3)
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Figure 3: Lasso regularization path computed with LARS

where Sλ is the soft-threshold function:

Sλ(x) =

{
0 if |x| ≤ λ
x− λ sign(x) otherwise

.

The algorithm of coordinate descent consists in sequentially repeating the update (3) for i = 1, . . . , p, 1 . . . , p, . . .
minmizing the objective function with respect to each coordinate at a time.

Fista (fast iterative shrinkage thresholding algorithmn) It uses the explicit formula in the orthogonal design
setting for computing recursively an approximation of the solution

LARS The insight of the algorithm comes from equation (1): X>Xβ̂λ = X>Y − λ
2 ẑ. We then consider

the function λ 7→ β̂λ. For non-zero coefficients, ẑj = sign(β̂λ(j)) and is constant while λ 7→ β̂λ(j) does not

change sign. Therefore, the function λ 7→ β̂λ is piecewise linear in λ with a change when for some coordinate
β̂λ(j) changes sign. LARS computes the sequence {β̂λ1

, β̂λ2
, . . . } of the Lasso estimator corresponding to

the break points of the path λ 7→ β̂λ. At each break point, the model mλ = {i ∈ {1, . . . , p} : β̂λ(i) 6= 0} is
updated and we solve the linear equation

X>mλXmλ β̂λ(mλ) = X>mλY −
λ

2
sign(β̂λ(m)) ,

until the next break point. This algorithm is slower than the other two algorithms but it provides the full
regularization path λ 7→ β̂λ (see Figure 3).

2.5 Final remarks and variants

Removing the bias of the Lasso The Lasso estimator β̂λ is biased. Often one might want to remove
the bias for instance by first computing β̂λ to select to good model m̂λ and then solve the OLS or Ridge on
the model m̂λ only.

No penalization of the intercept In practice, the intercept is often no penalized and the Lasso solves

β̂λ ∈ arg min
β∈Rp

{ n∑

i=1

(Yi − β0 − β>Xi)
2 + λ‖β‖1

}
.

Group Lasso It is an extension when coordinates are sparse by groups. In other words, we have some
groups Gk ⊂ {1, . . . , p} and we assume that all coordinates βi for i ∈ Gk are either all zero or all non-zero.
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Elastic net It is a mix of `1 and `2 regularization

β̂ ∈ arg min
β∈Rp

{
‖Y −Xβ‖2 + λ1‖β‖1 + λ2‖β‖22

}
.

It also selects variables thanks to sharp corners and it is heavily used in practice.

Calibration of λ It is a crucial point in practice. A common solution is to perform K-fold cross validation.
There are a few other techniques such as the slopes heuristic.
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