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Motivation from optimization

Many machine learning problems can be cast as the minimization of an average:

min
θ∈Θ

1
n

n∑
i=1

fi(θ) ,

where fi(θ) is the error of the parameter θ on a part of the data set indexed by i.
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Typical machine learning problem

Optimize

min
θ∈Θ

1
n

n∑
i=1

fi(θ) .

Example: Data set (Xi, Yi) ∈ Rd × R for i = 1, . . . ,n. One
wants to find the best linear combination of the inputs
Xi ∈ Rd to predict the outputs Yi. The ordinary least square
estimator is

θ̂n ∈ arg min
θ∈Rd

1
n

n∑
i=1

(Yi − θ⊤Xi)2 .

In this case, fi(θ) = (Yi − θ⊤Xi)2.
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Typical machine learning problem

Optimize

min
θ∈Θ

1
n

n∑
i=1

fi(θ) .

Example: Data set (Xi, Yi) ∈ Rd × R for i = 1, . . . ,n. More
complicated function spaces may be considered (polyno-
mials, splines, kernels,...)

θ̂n ∈ arg min
θ∈Θ

1
n

n∑
i=1

(
Yi − hθ(Xi)

)2
.

for some space of functions {hθ, θ ∈ Θ}.
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Typical machine learning problem

Optimize

min
θ∈Θ

1
n

n∑
i=1

fi(θ) .

Example: Data set (Xi, Yi) ∈ Rd × R for i = 1, . . . ,n. More
complicated function spaces may be considered (polyno-
mials, splines, kernels,...)

θ̂n ∈ arg min
θ∈Θ

1
n

n∑
i=1

(
Yi − hθ(Xi)

)2
.

for some space of functions {hθ, θ ∈ Θ}.
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Typical machine learning problem

Optimize

min
θ∈Θ

1
n

n∑
i=1

fi(θ) .

Example: Data set (Xi, Yi) ∈ Rd × R for i = 1, . . . ,n. More
complicated function spaces may be considered (polyno-
mials, splines, kernels,...)

θ̂n ∈ arg min
θ∈Θ

1
n

n∑
i=1

(
Yi − hθ(Xi)

)2
+ pen(θ) .

for some space of functions {hθ, θ ∈ Θ}.

To avoid overfitting, one needs to regularize.
Complexity of F

Error

Training error

Expected error

OverfittingUnderfitting

Best choice
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Classical optimization algorithm: gradient descent

Optimize

min
θ∈Θ

1
n

n∑
i=1

fi(θ) =: F(θ) .

Gradient descent: start from θ0 ∈ Θ and iterate

θt = θt−1 − γ∇F(θt−1) .

For µ-strongly convex and L-smooth function F, it
achieves ε-accuracy in O(κ log(1/ε)) steps where κ =

L/µ is the condition number.
Each step requires a full gradient computation.
Accelerated gradient descent (see Nesterov, 2004): improves it to O(√κ log(1/ε))

θt = θ̃t−1 − γ∇F(θ̃t−1), and θ̃t = θt + γt(θt − θt−1)
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Classical optimization algorithm: gradient descent

Optimize

min
θ∈Θ

1
n

n∑
i=1

fi(θ) =: F(θ) .

Classical algorithm: (Accelerated) Gradient descent θt = θt−1 − γ∇F(θt−1) .

Issue: it not distributed. Each update needs to compute the global gradient:

∇F(θt−1) =
1
n

n∑
i=1

∇fi(θt−1) .

Why would one want to use decentralized optimization? - speed up - privacy - robstness

Vast litterature on decentralized optimization.

The gossip problem: how to compute the mean of the values in a decentralized way?

1
n

n∑
i=1

fi(θ) or 1
n

n∑
i=1

∇fi(θ) .
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Distributed learning in a graph – The Gossip problem

Some agent talk to another connected agents: information spreads.

Everyone has a piece of information

Can we find global information using this type of information propagation?
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Distributed learning in a graph – The Gossip problem

A network of agents is modeled by a undirected graph G = (V, E)
Each agent (node) v ∈ V is given an observation ξ(v) ∈ R (typically fi(θ) or ∇fi(θ)).

Goal: distributive computation of the average

µ :=
1
|V|

∑
v∈V

ξ(v)

Applications: mixing gossip and optimization al-
gorithms (Nedic and Ozdaglar (2009),…,Scaman et
al. (2017))
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Gossip algorithm Boyd et al. (2006)

At each round, each agent v ∈ V computes a weighted average of its neighbors:

µ̂0(v) = ξ(v), µ̂t+1(v) =
∑
w∈V

Wvw µ̂t(w) .

where W is a Gossip matrix such that
- Wvw ⩾ 0 if (v,w) ∈ E is an edge of the graph and Wvw = 0 otherwise
- W is symmetric and stochastic (

∑
w∈VWvw = 1 for all v) → Eigenvalues(W) ⊂ [−1, 1]

a
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e f

g h

i j

8



Gossip algorithm Boyd et al. (2006)

Pros:
- distributed (no sink)
- fault tolerant: failures of some node do not affect the protocol
- adapt to changing values: keep gossiping

Issues:
- converges to the true value but not exact
- convergence time: no guarantees before consensus is reached
- communication cost
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Gossip algorithm Boyd et al. (2006)

At each round, each agent v ∈ V computes a weighted average of its neighbors:

µ̂0(v) = ξ(v), µ̂t+1(v) =
∑
w∈V

Wvw µ̂t(w) .

where W is a Gossip matrix such that
- Wvw ⩾ 0 if (v,w) ∈ E is an edge of the graph and Wvw = 0 otherwise
- W is symmetric and stochastic (

∑
w∈VWvw = 1 for all v) → Eigenvalues(W) ⊂ [−1, 1]

Synchronous gossip (all nodes simultaneously) This can be re-written in the matrix form:

µ̂0 = ξ, µ̂t+1 = W µ̂t = Wtξ .
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Convergence

Gossip: µ̂t = Wtξ

Convergence: The value of each node is diffusing in the network until uniform distribution

µ̂t(v) −→
t→+∞

µ =
1
|V|

∑
v∈V

ξ(v)

How fast? The convergence rate depends on the eigengap of the Gossip matrix:

γ = λ1(W)− λ2(W) = 1− λ2(W) .

γ−1 is the mixing time associated with the Markov chain.

a

b c

d

e f

g h

i j

Classical gossip needs 1
γ
log 1

ε
iterations to reach precision ε.
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Convergence

Gossip: µ̂t = Wtξ

Convergence: Needs 1
γ
log 1

ε
iterations to reach precision ε.

Example: On the finite line of size n, we can take W = In − 1
2∆

where ∆ = D− A is the Laplacian of the graph.

In this case, we can show that the eigen-values are λk(W) = cos
(
2π k−1

n
)
and thus the eigengap

γ = λ1(W)− λ2(W) = 1− cos
(2π
n
)
≈ 1
2
(2π
n
)2

.

Convergence in O(n2 log(1/ε)).

What’s wrong?
- Convergence in O(n2), while we would like n (after n steps we have observed all the data
points)→ accelerated gossip

- No exact convergence (may be solved through message passing algorithms for trees)
- Transient behavior: no guarantee before all points are observed→ statistical gossip
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Convergence

Gossip: µ̂t = Wtξ

Convergence: Needs 1
γ
log 1

ε
iterations to reach precision ε.

How fast is the convergence? Hopefully:

convergence time ≈ diameter of the graph

so that each node get information from all other nodes.

This is not the case! Simple gossip is too slow.
In a d-dimensional grid: convergence is 1

γ
≈ n2/d while the diameter is n1/d
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Accelerated gossip

Gossip: µ̂t = Wtξ

Convergence: Needs 1
γ log 1

ε iterations to reach precision ε.

Accelerared gossip:
- Chebytchev acceleration (Auzinger, 2011; Arioli and Scott, 2014)
- Shift-register gossip (Cao et al., 2006)
- Min-sum splitting (Rebeschini and Tatikonda, 2017)

The main idea of all these methods, similarly to Nesterov accelearation for gradient
descent is to store past iterates

µ̃t =
t∑

s=1
αsµ̂s =

t∑
s=1

αsWsξ = Pt(W)ξ .

where Pt is a polynomial s.t. deg(Pt) ⩽ t and Pt(1) = 1.

→ Replaces γ−1 with γ−1/2 in the rates: convergence in O
( 1√

γ log 1
ε

)
12



Back to our motivation from optimization

Goal of many optimization problems

min
θ

1
n

n∑
i=1

fi(θ)

Several works considered mixing gossip and gradient descent to perform decentralized
optimization:

Nedic and Ozdaglar (2009); Duchi et al. (2012); Wei and Ozdaglar (2012); Iutzeler et al.
(2013); Shi et al. (2015); Jakoveti ́c et al. (2015); Nedich et al. (2016); Mokhtari et al. (2016);
Colin et al. (2016); Scaman et al. (2017), etc.

Using accelerated gossip Scaman et al. (2017) obtained optimal complexity:

Error ε achieved in
√
κ log 1

ε gradient steps and
√
κ/γ log(1/ε) communication steps.
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Problem for very large networks

Small eigengaps in many practical graphs:
for the d-dimensional grid γ ≈ n− 2

d

If the network is very large n≫ 1, O( 1√
γ ) is still too long.

Problem of classical gossip analysis through eigengap: it does not take into account
transient behaviors.

This is because classical gossip analysis is done for adversarial ξ(v):

µ̂t(v) −→
t→+∞

µ =
1
|V|

∑
v∈V

ξ(v)

→ needs diffusion of the information through the entire graph before guarantees.

But in classical machine learning problems 1
n
∑n

i=1 fi(θ) is not adversarial.
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Statistical gossip (Berthier et al. 2018)

Random observations:

ξ(v) i.i.d. v ∈ V with mean E[ξ(v)] = µ and variance Var
(
ξ(v)

)
= τ 2

Goal: estimate µ at every node as fast as possible

Criterion: minimize the expected squared error at every node

E
[
(µ̂t(v)− µ)2

]
=

(
E[µ̂t(v)]− µ

)2︸ ︷︷ ︸
bias squared

+ E
[(
µ̂t(v)− E[µ̂t(v)]

)2]︸ ︷︷ ︸
variance: Var(µ̂t(v))

If the estimator is unbiased E[µ̂t(v)] = µ, the goal is to minimize the variance Var
(
µ̂t(v)

)
.
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Statistical Gossip: algorithms

Simple Gossip:

µ̂0 = ξ, µ̂t = Wµ̂t−1 Ý µ̂t = Wtξ

Polynomial Gossip:
µ̂t = Pt(W)ξ ,

where Pt is a polynomial s.t. deg(Pt) ⩽ t and Pt(1) = 1.

Is simple gossip optimal?

How to choose the best polynomial?
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What performance can we expect? Lower-bound

Optimality
If µ̂t = Pt(W)ξ is an unbiased estimator. For any v ∈ V we have

Var
(
µ̂t(v)

)
⩾ τ 2

|Bt(v)|

where Bt(v) = {w ∈ V : d(v,w) ⩽ t} is the ball of radius t centered in v and d(·, ·) is the shortest
path distance.

a

b c

d

e f

g h

i j
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Polynomial Gossip: performance analysis

Polynomial Gossip: µ̂t = Pt(W)ξ , where Pt is a polynomial s.t. deg(P) ⩽ t and Pt(1) = 1.

Unbiased estimator: If Pt(1) = 1 Performance: minimize Var(µ̂t(v))

Proposition

Var(µ̂t(v)) = τ 2
∫ 1

−1
Pt(λ)2dσv(λ)

where dσv(λ) is the spectral measure of W at v.

Finite graph of size n:
- W can be decomposed W =

∑n
i=1 λiuiu

⊤
i and the spectral measure is discrete

dσv =
1
n

n∑
i=1

(ui(v))2δλi .

- The average variance is 1
n
∑

v∈V Var(µ̂t(v)) = 1
n
∑n

i=1 Pt(λi)
2 where λi are the eigenvalues of W.

- Classical gossip analysis with eigengap γ = 1− λ2 → here: all the measure
18



Example: infinite line (or one-dimensional grid)

Spectral measure: dσ(λ) = dλ
π
√
1−λ2

→ no eigengap

Simple gossip: Var(µ̂t(v)) = τ 2
∫ 1
−1 λ

tdσ(λ) ≈ 1√
t → suboptimal
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Example: two-dimensional grid

Spectral measure: dσ(λ) = Uniform([−1, 1])

Simple gossip: Var(µ̂t(v)) = τ 2
∫ 1
−1 λ

tdσ(λ) ≈ 1
t → suboptimal
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Example: d-regular tree

Spectral measure: support included in
[
− 2

√
d−1
d , 2

√
d−1
d

]
→ eigengap for d ⩾ 3

Simple gossip: Var(µ̂t(v)) = τ 2
∫ 1
−1 λ

tdσ(λ) ≈ Ct for d ⩾ 3 → suboptimal
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Polynomial Gossip: how to find the best polynomial?

If we know σ, we want to find the polynomial minimizing:

P(σ)t ∈ arg min
P:deg(P)⩽t,P(1)=1

∫ 1

−1
Pt(λ)2dσ(λ)

The line Z The 5-regular tree: T5
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How to find the best polynomial

If we know σ, we want to find the polynomial minimizing:

P(σ)
t ∈ arg min

P:deg(P)⩽t,P(1)=1

∫ 1

−1
Pt(λ)2dσ(λ)

Classical problem in numerical linear algebra (Fischer (1996); Diekmann et al. (1999))

This functional is the square norm with respect to a scalar product:

⟨P,Q⟩σ =

∫ 1

−1
P(λ)Q(λ)dσ(λ) .

Computation of P(σ)
t from orthogonal basis The minimization can then be done thanks to the

orthogonal basis π0, π1, . . . , πt of the set of polynomial with respect to ⟨ · , · ⟩σ :

P(σ)
t =

1∑t
s=0 πs(1)

t∑
s=0

πs(1)πs ← closed form solution

Recursive computation of the orthogonal basis π0, π1, . . . , πt
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Distributive computation of the best polynomial

Polynomial with the best polynomial can be computed via a second-order recursion (see
Berthier et al. 2018 for details)

Computation formula Result
x−1 = 0 , x0 = ξ , xt+1 = 1

at+1

(
Wxt − btxt − atxt−1

)
xt = πt(W)ξ (1)

ρ−1 = 0 , ρ0 = 1 , ρt+1 =
1

at+1 ((1− bt)ρt − atρt−1) ρt = πt(1) (2)

u0 = ξ , ut+1 = ut + ρt+1xt+1 ut =
∑t

s=0 πs(1)πs(W)ξ (3)
v0 = 1 , vt+1 = vt + ρ2t+1 vt =

∑t
s=0 πs(1)2 (4)

µ̂t = ut/vt µ̂t = Pσt (W)ξ (5)

Issue: computation can be hard for some measures σ
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Example: infinite line (or one-dimensional grid)

Spectral measure: dσ(λ) = dλ
π
√
1−λ2

Simple gossip: 1√
t → suboptimal

Polynomial gossip with Pσt : 1t → optimal
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Spectral measure: dσ(λ) = dλ
π
√
1−λ2

Simple gossip: 1√
t → suboptimal

Polynomial gossip with Pσt : 1t → optimal
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Example: two-dimensional grid

Spectral measure: dσ(λ) = Uniform([−1, 1])

Simple gossip: 1t → suboptimal

Polynomial gossip with Pσt : 1
t2 → optimal
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Simulations 2D-Grid

2D-grid: 40× 40

ξv
i.i.d.∼ N (0, 1)

27



Example: d-dimensional grid

Spectral measure: dσ(λ) ∝ (1− λ)d/2−1dλ

Simple gossip: t−d/2 → suboptimal

Polynomial gossip with Pσt : t−d → optimal
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Example: d-regular tree (d ⩾ 3)

Spectral measure: support included in
[
− 2

√
d−1
d , 2

√
d−1
d

]
→ eigengap for d ⩾ 3

Simple gossip: Ct → suboptimal

Polynomial gossip with Pσt : (d− 1)t → optimal
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Optimal algorithm for trees

a

b c

d

e f

g h

i j

For trees, the message passing algorithm
(Moallemi and Roy, 2005) is exactly optimal.
Ý No backtracking information.

Proposition
The polynomial gossip algorithm obtained
from the optimal polynomial for the
d-regular tree is exactly the message
passing algorithm on any d-regular graph.
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But we do not know σ for general graphs...

What if we do not know σ?
- Current solution: use an approximation (works well in practice)
- Future work: estimate as the process goes on in a distributive manner

In some graphs we can use approximations

Random regular graph: if G is a random d-regular graph on n vertices, its spectral
measure converges to

dσ(λ) = d
2π

√
4(d−1)
d2 − λ2

1− λ2

and we know the orthogonal polynomials with respect to σ!
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Simulations on random d-regular graphs

Random 3-regular graph:
n = 2000

ξv
i.i.d.∼ N (0, 1)
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Simulations two-dimensional random geometric graphs

Random geometric graph: n = 1600
Vertices are sampled uniformly in [0, 1]2

Edges between points closer than 3/
√
n

ξv
i.i.d.∼ N (0, 1)

Using polynomials obtained from
two-dimensional grid

33



Simulations 3D grid – geometric graphs
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Conclusion

In averaging problem in a graph, the goal is to reach consensus (full averaging of the
values in the graph) as quickly as possible.
Ý Here new frame work for i.i.d. observation to provide better local guarantees before
consensus is reached.

Future work:
- theoretical results on other large random graphs
- adaptive approximation of σ by the algorithm on arbitrary graph
- non i.i.d. observations ξv but smooth distribution with respect to the graph metric
- asynchronous algorithm

Thank you!

Berthier, R., F. Bach, and P. Gaillard. “Gossip of Statistical Observations using Orthogonal
Polynomials”. In: arXiv preprint arXiv:1805.08531 (2018).
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