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Motivation from optimization

Many machine learning problems can be cast as the minimization of an average:
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where f;(0) is the error of the parameter 6 on a part of the data set indexed by i.



Typical machine learning problem

Optimize
n
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Example: Data set (X;,Y;) € RY x Rfori =1,...,n. One [,
wants to find the best linear combination of the inputs
Xi € RY to predict the outputs Y;. The ordinary least square

estimator is
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In this case, fi(9) = (Y; — 07 X))



Typical machine learning problem

Optimize
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Cubic model: Y = ax+bX*cX>+d

Example: Data set (X;,Y;) e R x Rfori=1,...,n. More
complicated function spaces may be considered (polyno-
mials, splines, kernels,...)
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0, € argmin o Z (Y,' = hg(x,.))z.
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for some space of functions {hy,0 € ©}.



Typical machine learning problem

Optimize

n

B
i=1

Polynomial model: Degree =14

Example: Data set (X;,Y;) e R x Rfori=1,...,n. More
complicated function spaces may be considered (polyno-
mials, splines, kernels,...)
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for some space of functions {hy,0 € ©}.



Typical machine learning problem

Optimize

RN
a7 250
Example: Data set (X;,Y;) € R x Rfori=1,...,n. More
complicated function spaces may be considered (polyno-  eror
mials, splines, kernels,...)

Underfitting Overfitting
-~ _—

n Expected error

~ 1
0, € arg min — Z (Y,- — h(y(X,‘))z + pen(6).
geo N

=1 Training error

for some space of functions {hg,0 € ©}.

Best choice Complexity of F

To avoid overfitting, one needs to regularize.



Classical optimization algorithm: gradient descent

Optimize

ol & > fi(6) =:F(6).
i=1

0e© N
Gradient descent: start from 6y € © and iterate
9[ = 9t_1 - ’}/VF(Qt_O .

For u-strongly convex and L-smooth function F, it
achieves e-accuracy in O(klog(1/¢)) steps where k =
L/u is the condition number.

Each step requires a full gradient computation.

Accelerated gradient descent (see Nesterov, 2004): improves it to O(+/x log(1/¢))
O = Op_q — VVF(étA), and 0; = 6 + Y(0r — 6e—1)




Classical optimization algorithm: gradient descent

Optimize
L aZﬁ

Classical algorithm: (Accelerated) Gradient descent 6; = ;1 — yVF(6;_1) .

Issue: it not distributed. Each update needs to compute the global gradient:

F(6:—1) Zvﬁ (Ot—1)

Why would one want to use decentralized optimization? - speed up - privacy - robstness

Vast litterature on decentralized optimization.

The gossip problem: how to compute the mean of the values in a decentralized way?
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Distributed learning in a graph — The Gossip problem

Some agent talk to another connected agents: information spreads.
Everyone has a piece of information

Can we find global information using this type of information propagation?
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Distributed learning in a graph - The Gossip problem

Some agent talk to another connected agents: information spreads.
Everyone has a piece of information

Can we find global information using this type of information propagation?
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Distributed learning in a graph — The Gossip problem

A network of agents is modeled by a undirected graph G = (V, E)
Each agent (node) v € Vis given an observation £(v) € R (typically fi(9) or Vfi(9)).

Goal: distributive computation of the average

b= S bc\e f/gh

Applications: mixing gossip and optimization al- / \
gorithms (Nedic and Ozdaglar (2009),...Scaman et g d !
al. (2017))

-----



Gossip algorithm Boyd et al. (2006)

At each round, each agent v € V computes a weighted average of its neighbors:

AoW) = €0v),  fien(V) = 3 Wiy fie(w)

weV

where W is a Gossip matrix such that
- Wy = 0if (v,w) € E is an edge of the graph and W,,, = 0 otherwise
- Wis symmetric and stochastic (3°,,c, Waw = 1forallv) — Eigenvalues(W) c [-1,1]
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Gossip algorithm Boyd et al. (2006)

Pros:
- distributed (no sink)
- fault tolerant: failures of some node do not affect the protocol
- adapt to changing values: keep gossiping

Issues:
- converges to the true value but not exact
- convergence time: no guarantees before consensus is reached
- communication cost



Gossip algorithm Boyd et al. (2006)

At each round, each agent v € V computes a weighted average of its neighbors:

/70(\/) = 5(\/)7 ,Ut+1 Z Wyw [ Mt

weV

where W is a Gossip matrix such that
- Wy = 0if (v,w) € E is an edge of the graph and W,,, = 0 otherwise
- Wis symmetric and stochastic (3°,,c, Ww = 1forallv) — Eigenvalues(W) c [-1,1]

Synchronous gossip (all nodes simultaneously) This can be re-written in the matrix form:

[ﬁoZ& g1 = W i = WEE . ]




Convergence

Gossip: it = W'¢
Convergence: The value of each node is diffusing in the network until uniform distribution

He(v) Sl k= Wi ZE

veVv
How fast? The convergence rate depends on the eigengap of the Gossip matrix:

a = A](W) e AQ(W) =1 AQ(W) 5

~~"is the mixing time associated with the Markov chain.

TN
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Classical gossip needs % log 1 iterations to reach precision e.
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Convergence

Gossip: it = W'¢
Convergence: Needs 1 log I iterations to reach precision e.
¥ €

Example: On the finite line of size n, we can take W = I, — 1A
where A = D — Ais the Laplacian of the graph.

In this case, we can show that the eigen-values are A,(W) = cos (ZTrk%) and thus the eigengap
2 1 2
v =M(W) = X (W) =1— cos (?) e~ 7(7) .
Convergence in O(n’ log(1/¢)).

What's wrong?
- Convergence in O(n?), while we would like n (after n steps we have observed all the data
points) — accelerated gossip
- No exact convergence (may be solved through message passing algorithms for trees)
- Transient behavior: no guarantee before all points are observed — statistical gossip

i



Convergence

Gossip: it = W'¢

Convergence: Needs %log% iterations to reach precision e.

How fast is the convergence? Hopefully: :

convergence time ~ diameter of the graph D

so that each node get information from all other nodes.

This is not the case! Simple gossip is too slow.
In a d-dimensional grid: convergence is 1 ~ n*? while the diameter is n"/*

i



Accelerated gossip

Gossip: fiy = W
Convergence: Needs % log 1 iterations to reach precision e.

Accelerared gossip:
- Chebytchev acceleration (Auzinger, 2011; Arioli and Scott, 2014)
- Shift-register gossip (Cao et al., 2006)
- Min-sum splitting (Rebeschini and Tatikonda, 2017)

The main idea of all these methods, similarly to Nesterov accelearation for gradient
descent is to store past iterates

t t
fie = asfis = »_ asWE = Py(W)E.
s=1 s=1
where P is a polynomial s.t. deg(P;) < tand P¢(1) = 1.

— Replaces v~" with 4=1/2 in the rates: convergence in O(% log 1)



Back to our motivation from optimization

Goal of many optimization problems

RS
min — ;)‘,(9)
Several works considered mixing gossip and gradient descent to perform decentralized
optimization:

Nedic and Ozdaglar (2009); Duchi et al. (2012); Wei and Ozdaglar (2012); lutzeler et al.
(2013); Shi et al. (2015); Jakovetic et al. (2015); Nedich et al. (2016): Mokhtari et al. (2016);
Colin et al. (2016); Scaman et al. (2017), etc.

Using accelerated gossip Scaman et al. (2017) obtained optimal complexity:

Error € achieved in /k log I gradient steps and /r /v log(1/€) communication steps.



Problem for very large networks

Small eigengaps in many practical graphs: =
for the d-dimensional grid v ~ n~3

If the network is very large n > 1, O(%) is still too long. B

)

|
\
to account

I

[ R—

Problem of classical gossip analysis through eigengap: it does not tak
transient behaviors.

This is because classical gossip analysis is done for adversarial £(v):

) o = )

veV
— needs diffusion of the information through the entire graph before guarantees.

But in classical machine learning problems 1 >~ fi(#) is not adversarial.
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Statistical gossip (Berthier et al. 2018)

Random observations:

g(v) iid. veV  withmean E[¢(v)]=p andvariance Var(¢(v)) =12

Goal: estimate p at every node as fast as possible

Criterion: minimize the expected squared error at every node

E[@(v) - ) = EaWl-n)’ + E[@w) -EEm)]

bias squared

variance: Var(ji(v))

If the estimator is unbiased E[fi:(v)] = p, the goal is to minimize the variance Var (7i(v)).



Statistical Gossip: algorithms

Simple Gossip:

Ho=¢&, = Wity = =W

Polynomial Gossip:
ﬁt = ’DI(W)£7
where P is a polynomial s.t. deg(P;) < tand P¢(1) = 1.

Is simple gossip optimal?

How to choose the best polynomial?



What performance can we expect? Lower-bound

Optimality

If 7ir = Py(W)€& is an unbiased estimator. For any v € V we have

7_2

Var(nt(v)) > ————
() >

where Bi(v) = {w € V: d(v,w) < t} is the ball of radius t centered in v and d(, -) is the shortest
path distance.
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What performance can we expect? Lower-bound

Optimality

If 7ir = Py(W)€& is an unbiased estimator. For any v € V we have
7_2

[B:(V)

where Bi(v) = {w € V: d(v,w) < t} is the ball of radius t centered in v and d(, -) is the shortest
path distance.

Var (fir(v)) >

\/
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What performance can we expect? Lower-bound

Optimality

If 7ir = Py(W)€& is an unbiased estimator. For any v € V we have

7_2

Var(nt(v)) > ————
() >

where Bi(v) = {w € V: d(v,w) < t} is the ball of radius t centered in v and d(, -) is the shortest
path distance.
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Polynomial Gossip: performance analysis

Polynomial Gossip: i = P:(W)&, where Py is a polynomial s.t. deg(P) < tand P¢(1) = 1.
Unbiased estimator: If P;(1) =1 Performance: minimize Var(j:(v))

Proposition

Var(fie(v)) = 72/1 Pi(A)’day(N)

where day () is the spectral measure of W at v.

Finite graph of size n:
- W can be decomposed W = Z,”:1 Xiuju” and the spectral measure is discrete

doy = =Y (ui(v))?6x, -

i=1

- The average variance is 1 3=, Var(fi:(v)) = 1 7, Pi(\;)* where \; are the eigenvalues of W.
- Classical gossip analysis with eigengap v =1— X\, — here: all the measure



Example: infinite line (or one-dimensional grid)

dX

Spectral measure: do(\) = > — no eigengap
Simple gossip: Var(it(v)) = 72 fiW Ado(N) ~ % — suboptimal
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Example: infinite line (or one-dimensional grid)

Spectral measure: do(\) = > — no eigengap
Simple gossip: Var(it(v)) = 72 fiW Ado(N) ~ % — suboptimal
t=4
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Example: infinite line (or one-dimensional grid)

Spectral measure: do(\) = > — no eigengap
Simple gossip: Var(it(v)) = 72 fiW Ado(N) ~ % — suboptimal
t=8

1

1

00 05 1.0 15 20
1 1

-1.0 -0.5 0.0 0.5 1.0

19



Example: infinite line (or one-dimensional grid)

dX

Spectral measure: do(\) = > — no eigengap
Simple gossip: Var(it(v)) = 72 fiW Ado(N) ~ % — suboptimal
t=20
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Example: two-dimensional grid

Spectral measure: do(\) = Uniform([—1,1])
Simple gossip: Var(fi(v)) = 7 [, Xldo(\) ~

1
t
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Example: two-dimensional grid

Spectral measure: do(\) = Uniform([—1,1])

Simple gossip: Var(fix(v)) = 72 fiw Mdo(N) ~ ¢ — suboptimal

t=2
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Example: two-dimensional grid

Spectral measure: do(\) = Uniform([—1,1])

Simple gossip: Var(fix(v)) = 72 fiw Mdo(N) ~ ¢ — suboptimal
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Example: two-dimensional grid

Spectral measure: do(\) = Uniform([—1,1])

Simple gossip: Var(fix(v)) = 72 fiw Mdo(N) ~ ¢ — suboptimal
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Example: two-dimensional grid

Spectral measure: do(\) = Uniform([—1,1])

Simple gossip: Var(fix(v)) = 72 fiw Mdo(N) ~ ¢ — suboptimal
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Example: d-regular tree

Spectral measure: support included in [— 2 dd”,Z %‘W} — eigengap ford >3

Simple gossip: Var(fi(v)) = 72 [, Ado(\) ~ C' for d > 3 — suboptimal
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Example: d-regular tree

Spectral measure: support included in [— 2 dd”,Z %‘W} — eigengap ford >3

Simple gossip: Var(fi(v)) = 72 [, Ado(\) ~ C' for d > 3 — suboptimal
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Polynomial Gossip: how to find the best polynomial?

If we know o, we want to find the polynomial minimizing:

]
Pga) € argmin / Pe(A)?da(N)
P:deg(P)<t,P(1)=1 J—1

The line Z The 5-regular tree: Ts
1.0 !
1 P2(A) I
08— | : !
' vV [ mm——— density of o 4
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0.4
0.2
0.0
—0.24 -0.24
T T T T T T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 ~1.00 -0.75 -0.50-0.25 0.00 0.25 0.50 0.75 1.00
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How to find the best polynomial

If we know o, we want to find the polynomial minimizing:

]
Pga) € argmin / Pi(A)’do(N)
=1

P:deg(P)<t,P(1)=1
Classical problem in numerical linear algebra (Fischer (1996); Diekmann et al. (1999))

This functional is the square norm with respect to a scalar product:

(P,Q)o = /71 P(N)Q(N)da(N).

Computation of Pi") from orthogonal basis The minimization can then be done thanks to the
orthogonal basis mg, m, ..., m of the set of polynomial with respectto (-, - )s:

1 t

Yeoms(1) ;

Recursive computation of the orthogonal basis o, m, ..., m

plo) = s(1)ms + closed form solution

23



Distributive computation of the best polynomial

Polynomial with the best polynomial can be computed via a second-order recursion (see
Berthier et al. 2018 for details)

Computation formula Result

x'=0, X=¢, xt= %ﬂ (Wxt — bext —apxt=") X' = (W)€ (1)
p-1=0, po=T1, pey1= %ﬁ (1= bt)pt — aept—1) pr = (1) ()
W =g, Ut = Ut + praxt ut =t ms(ms(Wye (3)
vo=1, Vipr = Vi + pipq Vi = Zgzo ms(1)° (4)
it =ut/v, = P7(W)¢ (5)

Issue: computation can be hard for some measures o

24



Example: infinite line (or one-dimensional grid)

Spectral measure: do()) = 2
Simple gossip: % - suboptimal
Polynomial gossip with P7: - optimal
—J‘..O —0‘.5 0‘.0 0.‘5 1.‘0



Example: infinite line (or one-dimensional grid)

Spectral measure: do()) = 2
Simple gossip: % - suboptimal
Polynomial gossip with P7: - optimal
t=2
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Example: infinite line (or one-dimensional grid)

. _ _d
Spectral measure: do(\) = >

Simple gossip: % - suboptimal
Polynomial gossip with P7: - optimal
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Example: infinite line (or one-dimensional grid)

. _ _d
Spectral measure: do(\) = >

Simple gossip: % - suboptimal
Polynomial gossip with P7: - optimal
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Example: infinite line (or one-dimensional grid)

Spectral measure: do()) = 2
Simple gossip: % - suboptimal
Polynomial gossip with P7: - optimal
t=20
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Example: two-dimensional grid

Spectral measure: do(\) = Uniform([—1,1])
Simple gossip: | — suboptimal

Polynomial gossip with P: 2 - optimal

5 a
****** 3 VY
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Simulations 2D-Grid

2D-grid: 40 x 40
& ' N(0,1)

o F"\-‘\ Polynomial Gossip
107 \:\ ————— Simple Gossip
'\. = = = = . Shift Register Gossip
l‘ '\:\'. ———— Splitting Gossip
e 1071 N, | Y Lower bound
r;.l“'_r\l “I'.\ .\' \t
a [N NN
| ~ K ~
fy 1072 LSRR
3 - = ..__}
-\‘ ""‘-‘:- - —— N
.\. '\
=3 - -
10 -, \.
.'.‘."-l.-l—“:..."_-:'.i
I I I I I I
0 20 40 60 80 100 120 140
t
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Example: d-dimensional grid

Spectral measure: do(\) o (1 — \)%2~1d)

Simple gossip: t=9/2 — suboptimal
Polynomial gossip with P7: t—9 — optimal
t=20
; |
o [\ yaNEIVAN
°© ~ ~ V]
T T T T T
-1.0 -0.5 0.0 0.5 1.0
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Example: d-regular tree (d > 3)

Spectral measure: support included in [— 2 VﬂfﬂZ—V‘Zﬁ} — eigengap ford > 3
Simple gossip: — suboptimal

Polynomial gossip with PZ: (d — 1)t - optimal

d=5-—-t=6

1.0

0.0
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Optimal algorithm for trees

For trees, the message passing algorithm
(Moallemi and Roy, 2005) is exactly optimal.
— No backtracking information.

b)—QE g —nh

\e — f/ Proposition

/ The polynomial gossip algorithm obtained
a—d j j from the optimal polynomial for the

d-regular tree is exactly the message
passing algorithm on any d-regular graph.

30



But we do not know o for general graphs...

What if we do not know o?
- Current solution: use an approximation (works well in practice)
- Future work: estimate as the process goes on in a distributive manner

In some graphs we can use approximations

Random regular graph: if G is a random d-regular graph on n vertices, its spectral
measure converges to
4(d—1)

B i (d? _ N2
2 1= X2
and we know the orthogonal polynomials with respect to o!

do(\)

31



Simulations on random d-regular graphs

Random 3-regular graph:

n = 2000 094 &>~ mm——— Simple Gossip
. — -—-— Shift Register Gossip
ii.d. ————— Splitting Gossip
~J
£V N(07 1) Message Passing Gossip
10014 N\ s\ T Lower bounds
£
I
|
=2 10-24
\h\hsh
-~ -
~ -
~ Il
10—3 — ~ — ) -
- —— —
T T T T T
0 5 10 15 20 25 30
t
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Simulations two-dimensional random geometric graphs

Using polynomials obtained from

Random geometric graph: n = 1600 ) i .
two-dimensional grid

Vertices are sampled uniformly in [0, 1]

_ 109
Edges between points closer than 3/+/n _b’\,t\
. ",
iid. N
& ~ N(0,1) _ 1075 ‘-.t'\'
G ! N
[ SN
;—3 10 _'.\\, - \
*A.‘..-'-..|l ..‘ \.
i it G
10734 - N, N, T TTEe=
: e~
"""""" et T S ]
T T
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Simulations 3D grid — geometric graphs

/n

2
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14—l

10% —

1071+

10-3+

Polynomial Gossip
————— Simple Gossip
= » ==+ Shift Register Gossip
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Lower bound
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Conclusion

In averaging problem in a graph, the goal is to reach consensus (full averaging of the
values in the graph) as quickly as possible.

— Here new frame work for i.i.d. observation to provide better local guarantees before
consensus is reached.

Future work:

theoretical results on other large random graphs

adaptive approximation of o by the algorithm on arbitrary graph

- non i.i.d. observations &, but smooth distribution with respect to the graph metric
- asynchronous algorithm

Thank you!

ﬁ Berthier, R,, F. Bach, and P. Gaillard. “Gossip of Statistical Observations using Orthogonal

Polynomials”. In: arXiv preprint arXiv:1805.08531 (2018).
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