Distributed averaging of observations in a graph: the gossip problem

Pierre Gaillard

May 31, 2018

Joint work with Raphaël Berthier and Francis Bach

Sierra project-team – INRIA Paris – Département d'informatique de l'ENS Paris

Many machine learning problems can be cast as the minimization of an average:

$$\min_{\theta\in\Theta}\frac{1}{n}\sum_{i=1}^n f_i(\theta)\,,$$

where $f_i(\theta)$ is the error of the parameter θ on a part of the data set indexed by *i*.

Optimize

$$\min_{\theta\in\Theta}\frac{1}{n}\sum_{i=1}^n f_i(\theta).$$

Example: Data set $(X_i, Y_i) \in \mathbb{R}^d \times \mathbb{R}$ for i = 1, ..., n. One wants to find the best linear combination of the inputs $X_i \in \mathbb{R}^d$ to predict the outputs Y_i . The ordinary least square estimator is

$$\widehat{\theta}_n \in \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (Y_i - \theta^\top X_i)^2 \,.$$

In this case, $f_i(\theta) = (Y_i - \theta^\top X_i)^2$.

Linear model: Y = aX+b

Optimize

$$\min_{\theta\in\Theta}\frac{1}{n}\sum_{i=1}^{n}f_i(\theta).$$

Example: Data set $(X_i, Y_i) \in \mathbb{R}^d \times \mathbb{R}$ for i = 1, ..., n. More complicated function spaces may be considered (polynomials, splines, kernels,...)

$$\widehat{\theta}_n \in \operatorname*{arg\,min}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n (Y_i - h_{\theta}(X_i))^2$$

for some space of functions $\{h_{\theta}, \theta \in \Theta\}$.

Cubic model: Y = aX+bX²+cX³+d

Optimize

$$\min_{\theta\in\Theta}\frac{1}{n}\sum_{i=1}^n f_i(\theta)\,.$$

Example: Data set $(X_i, Y_i) \in \mathbb{R}^d \times \mathbb{R}$ for i = 1, ..., n. More complicated function spaces may be considered (polynomials, splines, kernels,...)

$$\widehat{\theta}_n \in \operatorname*{arg\,min}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n (Y_i - h_{\theta}(X_i))^2.$$

for some space of functions $\{h_{\theta}, \theta \in \Theta\}$.

Polynomial model: Degree = 14

Optimize

$$\min_{\theta\in\Theta}\frac{1}{n}\sum_{i=1}^n f_i(\theta)\,.$$

Example: Data set $(X_i, Y_i) \in \mathbb{R}^d \times \mathbb{R}$ for i = 1, ..., n. More complicated function spaces may be considered (polynomials, splines, kernels,...)

$$\widehat{\theta}_n \in \operatorname*{arg\,min}_{\theta \in \Theta} rac{1}{n} \sum_{i=1}^n \left(Y_i - h_{ heta}(X_i)
ight)^2 + \operatorname{pen}(heta).$$

for some space of functions $\{h_{\theta}, \theta \in \Theta\}$.

To avoid overfitting, one needs to regularize.

Classical optimization algorithm: gradient descent

Optimize

$$\min_{\theta\in\Theta} \frac{1}{n} \sum_{i=1}^n f_i(\theta) =: F(\theta).$$

Gradient descent: start from $\theta_0 \in \Theta$ and iterate

$$\theta_t = \theta_{t-1} - \gamma \nabla F(\theta_{t-1}).$$

For μ -strongly convex and *L*-smooth function *F*, it achieves ε -accuracy in $O(\kappa \log(1/\varepsilon))$ steps where $\kappa = L/\mu$ is the condition number. Each step requires a full gradient computation.

Accelerated gradient descent (see Nesterov, 2004): improves it to $O(\sqrt{\kappa} \log(1/\epsilon))$

$$\theta_t = \tilde{\theta}_{t-1} - \gamma \nabla F(\tilde{\theta}_{t-1}), \quad \text{and} \quad \tilde{\theta}_t = \theta_t + \gamma_t(\theta_t - \theta_{t-1})$$

Classical optimization algorithm: gradient descent

Optimize

$$\min_{\theta\in\Theta} \frac{1}{n} \sum_{i=1}^n f_i(\theta) =: F(\theta).$$

Classical algorithm: (Accelerated) Gradient descent $\theta_t = \theta_{t-1} - \gamma \nabla F(\theta_{t-1})$.

Issue: it not distributed. Each update needs to compute the global gradient:

$$\nabla F(\theta_{t-1}) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\theta_{t-1}).$$

Why would one want to use decentralized optimization? - speed up - privacy - robstness Vast litterature on decentralized optimization.

The gossip problem: how to compute the mean of the values in a decentralized way?

$$\frac{1}{n}\sum_{i=1}^{n}f_i(\theta)$$
 or $\frac{1}{n}\sum_{i=1}^{n}
abla f_i(\theta)$.

Everyone has a piece of information

A network of agents is modeled by a undirected graph G = (V, E)Each agent (node) $v \in V$ is given an observation $\xi(v) \in \mathbb{R}$ (typically $f_i(\theta)$ or $\nabla f_i(\theta)$). **Goal**: distributive computation of the average

$$\mu := \frac{1}{|V|} \sum_{v \in V} \xi(v)$$

Applications: mixing gossip and optimization algorithms (Nedic and Ozdaglar (2009),...,Scaman et al. (2017))

At each round, each agent $v \in V$ computes a weighted average of its neighbors:

$$\widehat{\mu}_0(\mathbf{v}) = \xi(\mathbf{v}), \qquad \widehat{\mu}_{t+1}(\mathbf{v}) = \sum_{w \in V} W_{vw} \ \widehat{\mu}_t(w).$$

where *W* is a Gossip matrix such that

- $W_{vw} \ge 0$ if $(v, w) \in E$ is an edge of the graph and $W_{vw} = 0$ otherwise
- W is symmetric and stochastic $(\sum_{w \in V} W_{vw} = 1 \text{ for all } v) \rightarrow \text{Eigenvalues}(W) \subset [-1, 1]$

Pros:

- distributed (no sink)
- fault tolerant: failures of some node do not affect the protocol
- adapt to changing values: keep gossiping

Issues:

- converges to the true value but not exact
- convergence time: no guarantees before consensus is reached
- communication cost

At each round, each agent $v \in V$ computes a weighted average of its neighbors:

$$\widehat{\mu}_0(\mathsf{v}) = \xi(\mathsf{v}), \qquad \widehat{\mu}_{t+1}(\mathsf{v}) = \sum_{\mathsf{w}\in\mathsf{V}} W_{\mathsf{vw}} \ \widehat{\mu}_t(\mathsf{w}).$$

where *W* is a Gossip matrix such that

- $W_{vw} \ge 0$ if $(v, w) \in E$ is an edge of the graph and $W_{vw} = 0$ otherwise
- W is symmetric and stochastic $(\sum_{w \in V} W_{vw} = 1 \text{ for all } v) \rightarrow \text{Eigenvalues}(W) \subset [-1, 1]$

Synchronous gossip (all nodes simultaneously) This can be re-written in the matrix form:

$$\widehat{\mu}_0 = \xi, \qquad \widehat{\mu}_{t+1} = W \ \widehat{\mu}_t = W^t \xi \ .$$

Convergence

Gossip: $\widehat{\mu}_t = W^t \xi$

Convergence: The value of each node is diffusing in the network until uniform distribution

$$\widehat{\mu}_t(v) \underset{t \to +\infty}{\longrightarrow} \mu = rac{1}{|V|} \sum_{v \in V} \xi(v)$$

How fast? The convergence rate depends on the eigengap of the Gossip matrix:

$$\gamma = \lambda_1(W) - \lambda_2(W) = 1 - \lambda_2(W)$$
.

 γ^{-1} is the mixing time associated with the Markov chain.

Classical gossip needs $\frac{1}{\gamma} \log \frac{1}{\varepsilon}$ iterations to reach precision ε .

Convergence

Gossip: $\widehat{\mu}_t = W^t \xi$

Convergence: Needs $\frac{1}{\gamma} \log \frac{1}{\varepsilon}$ iterations to reach precision ε .

Example: On the finite line of size *n*, we can take $W = I_n - \frac{1}{2}\Delta$ where $\Delta = D - A$ is the Laplacian of the graph.

In this case, we can show that the eigen-values are $\lambda_k(W) = \cos\left(2\pi \frac{k-1}{n}\right)$ and thus the eigengap

$$\gamma = \lambda_1(W) - \lambda_2(W) = 1 - \cos\left(\frac{2\pi}{n}\right) \approx \frac{1}{2}\left(\frac{2\pi}{n}\right)^2.$$

Convergence in $O(n^2 \log(1/\varepsilon))$.

What's wrong?

- Convergence in $O(n^2)$, while we would like *n* (after *n* steps we have observed all the data points) \rightarrow accelerated gossip
- No exact convergence (may be solved through message passing algorithms for trees)
- Transient behavior: no guarantee before all points are observed \rightarrow statistical gossip

Gossip: $\widehat{\mu}_t = W^t \xi$

Convergence: Needs $\frac{1}{\gamma} \log \frac{1}{\varepsilon}$ iterations to reach precision ε .

How fast is the convergence? Hopefully:

convergence time \approx diameter of the graph

so that each node get information from all other nodes.

This is not the case! Simple gossip is too slow. In a *d*-dimensional grid: convergence is $\frac{1}{\gamma} \approx n^{2/d}$ while the diameter is $n^{1/d}$

Accelerated gossip

Gossip: $\widehat{\mu}_t = W^t \xi$

Convergence: Needs $\frac{1}{\gamma} \log \frac{1}{\varepsilon}$ iterations to reach precision ε .

Accelerared gossip:

- Chebytchev acceleration (Auzinger, 2011; Arioli and Scott, 2014)
- Shift-register gossip (Cao et al., 2006)
- Min-sum splitting (Rebeschini and Tatikonda, 2017)

The main idea of all these methods, similarly to Nesterov accelearation for gradient descent is to store past iterates

$$\tilde{\mu}_t = \sum_{s=1}^t \alpha_s \widehat{\mu}_s = \sum_{s=1}^t \alpha_s W^s \xi = P_t(W) \xi.$$

where P_t is a polynomial s.t. deg $(P_t) \leq t$ and $P_t(1) = 1$.

 \rightarrow Replaces γ^{-1} with $\gamma^{-1/2}$ in the rates: convergence in $O(\frac{1}{\sqrt{\gamma}} \log \frac{1}{\varepsilon})$

Back to our motivation from optimization

Goal of many optimization problems

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

Several works considered mixing gossip and gradient descent to perform decentralized optimization:

Nedic and Ozdaglar (2009); Duchi et al. (2012); Wei and Ozdaglar (2012); Iutzeler et al. (2013); Shi et al. (2015); Jakoveti´c et al. (2015); Nedich et al. (2016); Mokhtari et al. (2016); Colin et al. (2016); Scaman et al. (2017), etc.

Using accelerated gossip Scaman et al. (2017) obtained optimal complexity:

Error ε achieved in $\sqrt{\kappa} \log \frac{1}{\varepsilon}$ gradient steps and $\sqrt{\kappa/\gamma} \log(1/\varepsilon)$ communication steps.

Problem for very large networks

Small eigengaps in many practical graphs: for the d-dimensional grid $\gamma \approx n^{-\frac{2}{d}}$

If the network is very large $n \gg 1$, $O(\frac{1}{\sqrt{\gamma}})$ is still too long.

Problem of classical gossip analysis through eigengap: it does not take into account **transient behaviors**.

This is because classical gossip analysis is done for adversarial $\xi(v)$:

$$\widehat{\mu}_t(v) \underset{t \to +\infty}{\longrightarrow} \mu = \frac{1}{|V|} \sum_{v \in V} \xi(v)$$

ightarrow needs diffusion of the information through the entire graph before guarantees.

But in classical machine learning problems $\frac{1}{n}\sum_{i=1}^{n}f_{i}(\theta)$ is not adversarial.

Random observations:

 $\xi(v)$ i.i.d. $v \in V$ with mean $\mathbb{E}[\xi(v)] = \mu$ and variance $\operatorname{Var}(\xi(v)) = \tau^2$

Goal: estimate μ at every node as fast as possible

Criterion: minimize the expected squared error at every node

$$\mathbb{E}[(\widehat{\mu}_{t}(\mathsf{v}) - \mu)^{2}] = \underbrace{\left(\mathbb{E}[\widehat{\mu}_{t}(\mathsf{v})] - \mu\right)^{2}}_{\text{bias squared}} + \underbrace{\mathbb{E}\left[\left(\widehat{\mu}_{t}(\mathsf{v}) - \mathbb{E}[\widehat{\mu}_{t}(\mathsf{v})]\right)^{2}\right]}_{\text{variance: Var}(\widehat{\mu}_{t}(\mathsf{v}))}$$

If the estimator is unbiased $\mathbb{E}[\hat{\mu}_t(v)] = \mu$, the goal is to minimize the variance $\operatorname{Var}(\hat{\mu}_t(v))$.

Simple Gossip:

$$\hat{\mu}_0 = \xi, \quad \hat{\mu}_t = W \hat{\mu}_{t-1} \qquad \rightarrow \qquad \hat{\mu}_t = W^t \xi$$

Polynomial Gossip:

 $\widehat{\mu}_t = \mathsf{P}_t(\mathsf{W})\xi\,,$

where P_t is a polynomial s.t. deg $(P_t) \leq t$ and $P_t(1) = 1$.

Is simple gossip optimal?

How to choose the best polynomial?

What performance can we expect? Lower-bound

Optimality

If $\widehat{\mu}_t = P_t(W)\xi$ is an unbiased estimator. For any $v \in V$ we have

$$\operatorname{Var}(\widehat{\mu}_t(\mathsf{v})) \geqslant rac{ au^2}{|B_t(\mathsf{v})|}$$

where $B_t(v) = \{w \in V : d(v, w) \leq t\}$ is the ball of radius *t* centered in *v* and $d(\cdot, \cdot)$ is the shortest path distance.

What performance can we expect? Lower-bound

Optimality

If $\widehat{\mu}_t = P_t(W)\xi$ is an unbiased estimator. For any $v \in V$ we have

$$\operatorname{Var}ig(\widehat{\mu}_t(\mathsf{v})ig) \geqslant rac{ au^2}{|B_t(\mathsf{v})|}$$

where $B_t(v) = \{w \in V : d(v, w) \leq t\}$ is the ball of radius t centered in v and $d(\cdot, \cdot)$ is the shortest path distance.

What performance can we expect? Lower-bound

Optimality

If $\widehat{\mu}_t = P_t(W)\xi$ is an unbiased estimator. For any $v \in V$ we have

$$\operatorname{Var}ig(\widehat{\mu}_t(\mathsf{v})ig) \geqslant rac{ au^2}{|B_t(\mathsf{v})|}$$

where $B_t(v) = \{w \in V : d(v, w) \leq t\}$ is the ball of radius *t* centered in *v* and $d(\cdot, \cdot)$ is the shortest path distance.

Polynomial Gossip: performance analysis

Polynomial Gossip: $\hat{\mu}_t = P_t(W)\xi$, where P_t is a polynomial s.t. deg(P) $\leq t$ and $P_t(1) = 1$.

Unbiased estimator: If $P_t(1) = 1$

Performance: minimize $Var(\hat{\mu}_t(v))$

Proposition

$$\operatorname{Var}(\widehat{\mu}_t(v)) = \tau^2 \int_{-1}^{1} P_t(\lambda)^2 d\sigma_v(\lambda)$$

where $d\sigma_v(\lambda)$ is the spectral measure of W at v.

Finite graph of size *n*:

- W can be decomposed $W = \sum_{i=1}^{n} \lambda_i u_i u_i^{\top}$ and the spectral measure is discrete

$$d\sigma_{v} = \frac{1}{n} \sum_{i=1}^{n} (u_{i}(v))^{2} \delta_{\lambda_{i}}$$

- The average variance is $\frac{1}{n} \sum_{v \in V} \operatorname{Var}(\widehat{\mu}_t(v)) = \frac{1}{n} \sum_{i=1}^n P_t(\lambda_i)^2$ where λ_i are the eigenvalues of W.
- Classical gossip analysis with eigengap $\gamma = 1 \lambda_2 \longrightarrow$ here: all the measure

t = 2

t = 4

t = 8

t = 20

Spectral measure: $d\sigma(\lambda) = \text{Uniform}([-1, 1])$ Simple gossip: $\operatorname{Var}(\widehat{\mu}_t(v)) = \tau^2 \int_{-1}^{1} \lambda^t d\sigma(\lambda) \approx \frac{1}{t} \rightarrow \text{suboptimal}$

t = 2

Spectral measure: support included in $\left[-2\frac{\sqrt{d-1}}{d}, 2\frac{\sqrt{d-1}}{d}\right] \rightarrow \text{eigengap for } d \ge 3$ **Simple gossip**: $\operatorname{Var}(\widehat{\mu}_t(\mathbf{v})) = \tau^2 \int_{-1}^{1} \lambda^t d\sigma(\lambda) \approx C^t \text{ for } d \ge 3 \rightarrow \text{suboptimal}$

Spectral measure: support included in $\left[-2\frac{\sqrt{d-1}}{d}, 2\frac{\sqrt{d-1}}{d}\right] \rightarrow \text{eigengap for } d \ge 3$ **Simple gossip**: $\operatorname{Var}(\widehat{\mu}_t(v)) = \tau^2 \int_{-1}^1 \lambda^t d\sigma(\lambda) \approx C^t \text{ for } d \ge 3 \rightarrow \text{suboptimal}$

d = 3

Spectral measure: support included in $\left[-2\frac{\sqrt{d-1}}{d}, 2\frac{\sqrt{d-1}}{d}\right] \rightarrow \text{eigengap for } d \ge 3$ **Simple gossip**: $\operatorname{Var}(\widehat{\mu}_t(v)) = \tau^2 \int_{-1}^1 \lambda^t d\sigma(\lambda) \approx C^t \text{ for } d \ge 3 \rightarrow \text{suboptimal}$

d = 5

Spectral measure: support included in $\left[-2\frac{\sqrt{d-1}}{d}, 2\frac{\sqrt{d-1}}{d}\right] \rightarrow \text{eigengap for } d \ge 3$ **Simple gossip**: $\operatorname{Var}(\widehat{\mu}_t(v)) = \tau^2 \int_{-1}^1 \lambda^t d\sigma(\lambda) \approx C^t \text{ for } d \ge 3 \rightarrow \text{suboptimal}$

Polynomial Gossip: how to find the best polynomial?

If we know σ , we want to find the polynomial minimizing:

$$P_t^{(\sigma)} \in \operatorname*{arg\,min}_{P: \operatorname{deg}(P) \leqslant t, P(1)=1} \int_{-1}^1 P_t(\lambda)^2 d\sigma(\lambda)$$

How to find the best polynomial

If we know σ , we want to find the polynomial minimizing:

$$P_t^{(\sigma)} \in \operatorname*{arg\,min}_{P: \deg(P) \leqslant t, P(1)=1} \int_{-1}^1 P_t(\lambda)^2 d\sigma(\lambda)$$

Classical problem in numerical linear algebra (Fischer (1996); Diekmann et al. (1999))

This functional is the square norm with respect to a scalar product:

$$\langle P, Q \rangle_{\sigma} = \int_{-1}^{1} P(\lambda) Q(\lambda) d\sigma(\lambda) \, .$$

Computation of $P_t^{(\sigma)}$ **from orthogonal basis** The minimization can then be done thanks to the orthogonal basis $\pi_0, \pi_1, \ldots, \pi_t$ of the set of polynomial with respect to $\langle \cdot, \cdot \rangle_{\sigma}$:

$$P_t^{(\sigma)} = \frac{1}{\sum_{s=0}^t \pi_s(1)} \sum_{s=0}^t \pi_s(1) \pi_s \quad \leftarrow \quad \text{closed form solution}$$

Recursive computation of the orthogonal basis $\pi_0, \pi_1, \ldots, \pi_t$

Distributive computation of the best polynomial

Polynomial with the best polynomial can be computed via a second-order recursion (see Berthier et al. 2018 for details)

Computation formulaResult $x^{-1} = 0$, $x^{0} = \xi$, $x^{t+1} = \frac{1}{a_{t+1}} (Wx^{t} - b_{t}x^{t} - a_{t}x^{t-1})$ $x^{t} = \pi_{t}(W)\xi$ (1) $\rho_{-1} = 0$, $\rho_{0} = 1$, $\rho_{t+1} = \frac{1}{a_{t+1}} ((1 - b_{t})\rho_{t} - a_{t}\rho_{t-1})$ $\rho_{t} = \pi_{t}(1)$ (2) $u^{0} = \xi$, $u^{t+1} = u^{t} + \rho_{t+1}x^{t+1}$ $u^{t} = \sum_{s=0}^{t} \pi_{s}(1)\pi_{s}(W)\xi$ (3) $v_{0} = 1$, $v_{t+1} = v_{t} + \rho_{t+1}^{2}$ $v_{t} = \sum_{s=0}^{t} \pi_{s}(1)^{2}$ (4) $\hat{\mu}^{t} = u^{t}/v_{t}$ $\hat{\mu}^{t} = \rho_{t}^{\sigma}(W)\xi$ (5)

Issue: computation can be hard for some measures σ

Example: infinite line (or one-dimensional grid)

Example: infinite line (or one-dimensional grid)

Example: infinite line (or one-dimensional grid)

Spectral measure: $d\sigma(\lambda) = \text{Uniform}([-1, 1])$ Simple gossip: $\frac{1}{t} \rightarrow \text{suboptimal}$ Polynomial gossip with P_t^{σ} : $\frac{1}{t^2} \rightarrow \text{optimal}$

Spectral measure: $d\sigma(\lambda) \propto (1-\lambda)^{d/2-1} d\lambda$ Simple gossip: $t^{-d/2} \rightarrow$ suboptimal Polynomial gossip with P_t^{σ} : $t^{-d} \rightarrow$ optimal

t = 20

Example: d-regular tree ($d \ge 3$)

Spectral measure: support included in $\left[-2\frac{\sqrt{d-1}}{d}, 2\frac{\sqrt{d-1}}{d}\right] \rightarrow$ eigengap for $d \ge 3$ **Simple gossip**: $C^t \rightarrow$ **suboptimal Polynomial gossip with** P_t^{σ} : $(d-1)^t \rightarrow$ **optimal**

d = 5 - t = 6

Optimal algorithm for trees

For trees, the message passing algorithm (Moallemi and Roy, 2005) is exactly optimal. → No backtracking information.

Proposition

The polynomial gossip algorithm obtained from the optimal polynomial for the *d*-regular tree is exactly the message passing algorithm on any *d*-regular graph.

What if we do not know σ ?

- Current solution: use an approximation (works well in practice)
- Future work: estimate as the process goes on in a distributive manner

In some graphs we can use approximations

Random regular graph: if G is a random *d*-regular graph on *n* vertices, its spectral measure converges to

$$d\sigma(\lambda) = rac{d}{2\pi} rac{\sqrt{rac{4(d-1)}{d^2} - \lambda^2}}{1 - \lambda^2}$$

and we know the orthogonal polynomials with respect to σ !

Simulations on random *d*-regular graphs

Simulations two-dimensional random geometric graphs

Random geometric graph: n = 1600Vertices are sampled uniformly in $[0, 1]^2$ Edges between points closer than $3/\sqrt{n}$ $\xi_V \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$

Using polynomials obtained from two-dimensional grid

Simulations 3D grid – geometric graphs

Conclusion

In averaging problem in a graph, the goal is to **reach consensus** (full averaging of the values in the graph) as quickly as possible.

 \rightarrow Here new frame work for i.i.d. observation to provide better local guarantees before consensus is reached.

Future work:

- theoretical results on other large random graphs
- adaptive approximation of σ by the algorithm on arbitrary graph
- non i.i.d. observations ξ_v but smooth distribution with respect to the graph metric
- asynchronous algorithm

Thank you!

Berthier, R., F. Bach, and P. Gaillard. "Gossip of Statistical Observations using Orthogonal Polynomials". In: *arXiv preprint arXiv:1805.08531* (2018).