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Online prediction of arbitrary
sequences



The framework of this talk

Sequential prediction of arbitrary time-series1 :
- a time-series y1, . . . , yn ∈ Y = [−B,B] is to be predicted step by step
- covariates x1, . . . , xn ∈ X are sequentially available

At each forecasting instance t = 1, . . . , n
- the environment reveals xt ∈ X
- the player is ask to form a prediction ŷt of yt based on

– the past observations y1, . . . , yt−1
– the current and past covariates x1, . . . , xt

- the environment reveals yt

Goal: minimize the average loss: L̂n = 1
n
∑n

t=1 (̂yt − yt)2 .
Difficulty: no stochastic assumption on the time series
- neither on the observations (yt)
- nor on the covariates (xt)

1N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. 2006. 2



The framework of this talk

Sequential prediction of arbitrary time-series:
- a time-series y1, . . . , yn ∈ Y = [−B,B] is to be predicted step by step
- covariates x1, . . . , xn ∈ X are sequentially available

At each forecasting instance t = 1, . . . , n
- the environment reveals xt ∈ X
- solution: produce the prediction as a function of xt

ŷt = f̂t(xt)

- the environment reveals yt

Goal: minimize our average regret against a reference function class F ∈ YX

Regn(F)
def
=

1
n

n∑
t=1

(
f̂t(xt)− yt

)2
︸ ︷︷ ︸

our performance

− inf
f∈F

1
n

n∑
t=1

(
f(xt)− yt

)2
︸ ︷︷ ︸

reference performance
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The framework of this talk

Sequential prediction of arbitrary time-series:
- a time-series y1, . . . , yn ∈ Y = [−B,B] is to be predicted step by step
- covariates x1, . . . , xn ∈ X are sequentially available

At each forecasting instance t = 1, . . . , n
- the environment reveals xt ∈ X
- solution: produce the prediction as a function of xt

ŷt = f̂t(xt)
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Regn(F)
def
=

1
n

n∑
t=1

(
f̂t(xt)− yt

)2
︸ ︷︷ ︸

our performance

− inf
f∈F

1
n

n∑
t=1

(
f(xt)− yt

)2
︸ ︷︷ ︸

reference performance

= o(1)

︸ ︷︷ ︸
Goal
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Online to batch conversion

Online regret bound:

Regn(F)
def
=

1
n

n∑
t=1

(
f̂t(xt)− yt

)2
︸ ︷︷ ︸

our performance

− inf
f∈F

1
n

n∑
t=1

(
f(xt)− yt

)2
︸ ︷︷ ︸

reference performance

= o(1)

︸ ︷︷ ︸
Goal

If the data (xt, yt) is i.i.d. we can bound the excess risk of f̄n = 1
n
∑n

t=1 f̂t :

E
[(̄
fn(X)− Y

)2]
− inf

f∈F
E
[
(f(X)− Y)2

] Convexity
⩽ 1

n

n∑
t=1

E
[
(̂ft(X)− Y)2

]
− inf

f∈F
E
[
(f(X)− Y)2

]
⩽ E[Regn(F)] = o(1)
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Finite reference class: prediction
with expert advice



A strategy for finite F

Assumption: F = {f1, . . . , fK} ⊂ YX is finite

The exponentially weighted average forecaster (Hedge)1

At each forecasting instance t,
- assign to each function fk ∈ F the weight

p̂k,t =
exp

(
− η

∑t−1
s=1
(
fk(xs)− ys

)2)
∑K

j=1 exp
(
− η

∑t−1
s=1
(
fj(xs)− ys

)2)
- form function f̂t =

∑K
k=1 p̂k,tfk and predict ŷt = f̂t(xt)

Performance: if Y = [−B,B] and η = 1/(8B2)

Regn(F)
def
=

1
n

n∑
t=1

(̂
f(xt)− yt

)2 − inf
f∈F

1
n

n∑
t=1

(
f(xt)− yt

)2 ⩽ 8B2 log K
n

If B is not known in advance, η can be tuned online (doubling trick).

1Littlestone and Warmuth (1994) and Vovk (1990) 4



Proof

1. Upper bound the instantaneous loss

(
yt − f̂t(xt)

)2
=

(
yt −

∑K
k=1 p̂k,tfk(xt)

)2
for η⩽1/(8B2)

⩽ −
1
η
log

( K∑
k=1

p̂k,te−η
(
yt−fk(xt)

)2)
← exp-concavity

by definition of p̂k,t+1
= −

1
η
log

(
p̂k,t
p̂k,t+1

e−η
(
yt−fk(xt)

)2)

=
(
yt − fk(xt)

)2
+
1
η
log

p̂k,t+1
p̂k,t

2. Sum over all t, the sum telescopes

n∑
t=1

(
yt − f̂t(xt)

)2 − (yt − fk(xt))2 ⩽ 1
η
log�

��p̂k,n+1
p̂k,1

⩽ log K
η

= 8B2 log K
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Large reference class



Approximate F by a finite class Vovk (2001)

1. Approximate F by a finite set Fε such that

∀f ∈ F ∃fε ∈ Fε ∥f− fε∥∞ ⩽ ε . (1)

Such set Fε is called an ε-net of F
2. Run Hedge on Fε

Definition (metric entropy)
The cardinal of the smallest ε-net Fε that satisfies (1) is denoted N∞(F , ε). The
metric entropy of F is logN∞(F , ε).

Regret bound of order (forgetting constants):

Regn(F) = Regn(Fε) +

 inf
fε∈Fε

n∑
t=1

(
yt − fε(xt)

)2 − inf
f∈F

n∑
t=1

(
yt − f(xt)

)2
≲ logN∞(F, ε)

n︸ ︷︷ ︸
Regret of Hedge on Fε

+ ε︸︷︷︸
Approximation of F by Fε

6



Examples of reference classes: the parametric case

If N∞(F , ε) ≲ ε−p for p > 0 as ε→ 0,

Regn(F) ≲ logN∞(F , ε)
n

+ ε

≈
log(ε−p)

n
+ ε

ε≈1/n
≈

p log(n)
n

Example
Assume you have d ⩾ 1 black-box forecasters φ1, . . . , φd ∈ XY

- linear regression in a compact ball

F =
{∑d

j=1ujφj : for u ∈ Θ ⊂
comp.

Rd
}

→ N∞(F , ε) ≲ ε−d

- sparse linear regression

F =
{∑d

j=1ujφj : for u ∈ [0, 1]d s.t. ∥u∥1 = 1 and ∥u∥0 = s
}

Then2 ,
logN∞(F , ε) ≲ log

(d
s

)
+ s log

(
1+ 1/(ε

√
s)
)
→ Regn(F) ≲

s log(1+dn/s)
n

2F. Gao, C.-K. Ing, and Y. Yang. “Metric entropy and sparse linear approximation of ℓq-hulls for 0< q≤ 1”. In: Journal
of Approximation Theory (2013). 7
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What if F is non parametric?

Non parametric class: if logN∞(F , ε) ≲ ε−p for p > 0 as ε→ 0.

Regn(F) ≲ logN∞(F , ε)
n

+ ε

≲ ε−p

n
+ ε

ε=n−1/(p+1)
≈ n−

1
p+1

Example

- 1-Lipschitz ball on [0, 1]

F =
{
f ∈ YX : ∀ x, y ∈ X ⊂ [0, 1]

∥∥f(x)− f(y)∥∥ ⩽ ∥x− y∥
}

Then logN∞(F , ε) ≈ ε−1 → Regn(F) ≲ n−1/2

- Hölder ball on X ⊂ [0, 1] with regularity β = q+ α > 1/2

F =
{
f ∈ YX : ∀ x, y ∈ X

∣∣f(q)(x)− f(q)(y)∣∣ ⩽ |x− y|α and ∀k ⩽ q, ∥f(k)∥∞ ⩽ B
}

Then3 logN∞(F , ε) ≈ ε−1/β → Regn(F) ≲ n−
β

β+1 .

3G. Lorentz. “Metric Entropy, Widths, and Superpositions of Functions”. In: Amer. Math. Monthly 6 (1962). 8



What if F is non parametric?

Non parametric class: if logN∞(F , ε) ≲ ε−p for p > 0 as ε→ 0.

Regn(F) ≲ logN∞(F , ε)
n

+ ε

≲ ε−p

n
+ ε

ε=n−1/(p+1)
≈ n−

1
p+1

Ý suboptimal:

n−
2

p+2 if p < 2

n
− 1
p if p > 2

Example

- 1-Lipschitz ball on [0, 1]

F =
{
f ∈ YX : ∀ x, y ∈ X ⊂ [0, 1]

∥∥f(x)− f(y)∥∥ ⩽ ∥x− y∥
}

Then logN∞(F , ε) ≈ ε−1 → Regn(F) ≲ n−1/2 Ý suboptimal: n−
2
3

- Hölder ball on X ⊂ [0, 1] with regularity β = q+ α > 1/2

F =
{
f ∈ YX : ∀ x, y ∈ X

∣∣f(q)(x)− f(q)(y)∣∣ ⩽ |x− y|α and ∀k ⩽ q, ∥f(k)∥∞ ⩽ B
}

Then3 logN∞(F , ε) ≈ ε−1/β → Regn(F) ≲ n−
β

β+1 Ý suboptimal: n−
β

β+1/2 .

3G. Lorentz. “Metric Entropy, Widths, and Superpositions of Functions”. In: Amer. Math. Monthly 6 (1962). 8



Minimax rates

Theorem (Rakhlin and Sridharan, 20144)
The minimax rate of the regret if of order

inf
γ⩾ε⩾0

{
logN seq(F , γ)

n
+

∫ γ

ε

√
logN seq(τ,F)

n
dτ + ε

}

where logN seq(F , ε) ⩽ logN∞(F , ε) is the sequential entropy of F .

logN∞(F,γ)
n : regret of Hedge against γ-net Ý crude approximation

n: approximation error of the ε-net Ý fine approximation∫ γ
ε

√
logN∞(F,τ)

n dτ : from large scale γ to small scale ε.

This term is a Dudley entropy integral that appears in
- Chaining to bound the supremum of a stochastic process (Dudley 1967)
- Statistical learning with i.i.d. data to derive risk bounds (e.g., Massart 2007;
Rakhlin et al. 2013)

- Online learning with arbitrary sequences (Opper and Haussler 1997; Cesa-Bianchi
and Lugosi 1999)

4A. Rakhlin and K. Sridharan. “Online Nonparametric Regression”. In: COLT (2014). 9
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Minimax rates

Theorem (Rakhlin and Sridharan, 20144)
The minimax rate of the regret if of order

inf
γ⩾ε⩾0

{
logN∞(F , γ)

n
+

∫ γ

ε

√
logN∞(τ,F)

n
dτ + ε

}

if logN∞(F , ε) ≈ logN seq(F , ε).

Example: let p ∈ (0, 2) and F such that

logN∞(F , ε) ≈ ε−p as ε→∞ .

The minimax regret is then of order

γ−p

n
+

∫ γ

ε

τ−p/2
√
n

dτ + ε =
γ−p

n
+

γ1−p/2

n
+ 0 ≈ n−

2
p+2

for the optimal choices ε = 0 and γ ≈ n−1/(p+2) .

4A. Rakhlin and K. Sridharan. “Online Nonparametric Regression”. In: COLT (2014). 9



Our contributions

Propose a constructive algorithm which:
- achieves the Dudley-type regret bound

Regn ≲ logN∞(F , γ)
n

+

∫ γ

ε

√
logN∞(F , τ)

n
dτ + ε

- efficient version for Hölder class in [0, 1] (costs a log factor)

Key-subroutine (Multi-variable EG) to go from scale γ to scale ε.

Function class Metric entropy Regret of Hedge Our Regret

ε−p p ∈ (0, 2) n−1/(p+1) n−2/(p+2)

Lipschitz on [0, 1] ε−1 n−1/2 n−2/3

β-Hölder on [0, 1] ε−1/β β > 1/2 n−β/(β+1) n−β/(β+1/2)

Sparse lin. reg. log
(d
s
)
+ s log

(
1+ 1/(ε

√
s)
) s log(1+dn/s)

n
s log(1+dn/s)

n

10



Suboptimality of the previous approach

Why was the previous approach suboptimal? We were treating the functions in the
discretization as uncorrelated experts, which is too pessimistic and harmful when F
is large.

To deal with it, we will need the following property for the regret bound:

“ if all function in F are close from one another, the regret should be small”

Hedge achieves this!

11



Hedge with regret scaling with loss range

Assumption: F = {f1, . . . , fK} ⊂ YX is finite such that

∀fi, fj ∈ F , ∥fi − fj∥∞ ⩽ ∆

The exponentially weighted average forecaster (Hedge)5

At each forecasting instance t,
- assign to each function fk ∈ F the weight

p̂k,t =
exp

(
− η

∑t−1
s=1
(
fk(xs)− ys

)2)
∑K

j=1 exp
(
− η

∑t−1
s=1
(
fj(xs)− ys

)2)
- form function f̂t =

∑K
k=1 p̂k,tfk and predict ŷt = f̂t(xt)

Performance: if Y = [−B,B] and well-tuned η

Regn(F)
def
=

1
n

n∑
t=1

(̂
f(xt)− yt

)2 − inf
f∈F

1
n

n∑
t=1

(
f(xt)− yt

)2 ≲


B2 log K
n

B∆
√

log K
n

5Littlestone and Warmuth (1994) and Vovk (1990) 12



Proof

We replace the exp-concavity property of the square loss with the Hoeffding’s lemma.

Lemma (Hoeffding)
If X is a random variable with |X| ⩽ B. Then,

∀η ∈ R, E[X] ⩽ − 1
η
log
(
E
[
e−ηX])+

ηB
4

.

1. Upper bound the instantaneous loss

(
yt − f̂t(xt)

)2 − (yt − fk(xt))2 ⩽ log
p̂k,t+1
p̂k,t

+
ηB∆
4

2. Sum over all t, the sum telescopes

n∑
t=1

(
yt − f̂t(xt)

)2 − (yt − fk(xt))2 ⩽ 1
η
log�

��p̂k,n+1
p̂k,1

++
ηB∆n
4

≲ B∆
√
n log K

13



Algorithmic chaining

Build a hierarchy of discretizations:
- the level-m discretization approximates F with precision γ2−m ;
- each level-m node is connected to its closest level-(m− 1) node;

f1

g1

h1 h23

g7

h71 h94

…

…………

…

…

…

Hierarchical Hedge algorithm:
- each leaf h recommends its own (discretized) function h(xt);
- each internal node hosts an instance of Hedge using its children as experts; its
regret is at most of order γ2−m

√
ln N2−m

n at level m since its children’s losses are
γ2−m-close.

14
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Chaining (continued)

Summing the local regret bounds over any path in the tree, we obtain a regret bound
of

RegT(F) ≲ B2 log(Nγ)

n
+ B

M−1∑
m=0

γ2−m

√
lnNγ2−m

n
+ B2−M

≲ B2
logN∞(F , γ)

)
n

+ B
∫ γ

ε

√
logN∞(F , ε)

n
dε+ Bε

Remarks:

- Same upper bound as the one proven by Rakhlin, Sridharan, and Tewari, 2015 in a
nonconstructive manner.

- Matches the lower bound of Hazan and Megiddo, 2007.

15



Efficient implementation for Lipschitz functions

The idea is to design computationally manageable coverings F (k) , k ⩾ 0:

- approximate any Lipschitz function f ∈ [0, 1]→ [−B,B] with piecewise constant
functions (level k = 0);

- refine the approximation via a dyadic discretization (levels k ⩾ 1).

+

+
+

+

+

+

At each round t, the point xt falls into only one subinterval for each level k
ß No need to update all coefficients ß manageable complexity O(n4/3).

For Hölder functions: piecewise constant Ý piecewise polynomials

16



Extensions



Extension to general loss functions

Goal: minimize the regret

Regn =
1
n

n∑
t=1

ℓt
(
ŷt
)
− inf

f∈F

1
n

n∑
t=1

ℓt
(
f(xt)

)
for generic sequences of loss functions (ℓt).

If the loss functions ℓt are Lipschitz, we can achieve

Regn(F) ≲ ������logN∞(F , γ)
n︸ ︷︷ ︸

Large scale term not possible
(was thanks to strong convexity)

+

∫ 1

ε

√
logN∞(F , τ)

n
dτ + ε

Lipschitz class on [0, 1]d Metric entropy Hedge Regret Our Regret

d = 1 ε−1 n−1/3 n−1/2

d = 2 ε−2 n−1/4 n−1/2 log n
d ⩾ 3 ε−d n−1/(d+2) n−1/d

First constructive algorithm to achieve the optimal6 rates.

The rate n−1/(d+2) was achieved by G. and Baudin, 2014 and Hazan and Megiddo, 2007.

6A. Rakhlin and K. Sridharan. “Online Nonparametric Regression with General Loss Functions”. In: arXiv (2015). 17



Can we use chaining for other feedbacks?

Bandit feedback: the learner only observes its loss ℓt (̂yt) instead of ℓt
- Bad news: deriving regret bounds that scale as the effective range of the arms’
losses, which was key for full information, is not possible in general for
adversarial bandits (Gerchinovitz and Lattimore, 2016).

- Regret bounds : T−1/(d+3) for semi-Lipschitz losses or T−1/(d+2) for convex Lipschitz
losses. See also the work of Slivkins (2014).

18



Can we use chaining for other feedbacks? One-sided feedback

One-sided full-information feedback: the learner obbserves ℓt(y) for all y ⩾ ŷt .

Example of application: online
auctions in web advertising.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

bt(2) bt(1)

bt(2)

bt(1)

- This stronger feedback, together with Lipschitzness of the losses, enables us to
derive a regret bound for a variant of Exp4 that scales as the effective range of
the arms’ losses.

- Hierarchical algorithm: in the earlier tree, we replace Hedge with Exp4 (bandit
algorithm). We obtain a regret of order T−1/(d+1) or even T−1/(d+2/3) with an
additional hierarchical penalization trick.

19



Other related open questions

Get the sequential entropy N seq(F , ε) instead of the metric entropy N∞(F , ε)

Efficient version for other function classes
- step-wise Lipschitz functions Ý application to classification
- generalized additive models Ý useful to predict electricity consumption

Similar results with other algorithms (Kernel regression)

Thank you !

20
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