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Introduction



What is it?

Machine Learning : artificial intelligence which can learn and model some
phenomena without being explicitely programmed

Machine Learning ⊂ Statistics + Computer Sciences
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The machine learning revolution

Big data / machine learning / data science / artificial intelligence / deep learning, a
revolution?

- Technical progress: increase in computing power and storage capacity, lower
costs

- Exponential increase in amount of data: Volume, Variability, Velocity, Veracity
– IBM: 1018 bytes created each day — 90% of the data ⩽ 2 years
– In all area: sciences, industries, personal life
– In all forms: video, text, clicks, numbers

- Methodological advancement to analyze complex datasets: high dimensional
statistics, deep learning, reinforcement learning,…
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Moore’s law: more computing power
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Moore’s Law: reduced costs

Limits : – debits do not follow
– miniaturization→ reach the limits of classical physics→ quantum mechanics
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Overview of most popular machine learning methods

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X. The training data has a known
label Y.

Examples:
– X is a picture, and Y is a cat or a dog
– X is a picture, and Y ∈ {0, . . . , 9} is a digit
– X is are videos captured by a robot playing table
tennis, and Y are the parameters of the robots to
return the ball correctly

– X is a music track and Y are the audio signals of each
instrument

?
?

?

- Unsupervised learning: training data is not labeled and does not have a known result

Examples:
– detect change points in a non-stationary time-series
– detect outliers
– cluster data in homogeneous groups
– compress data without loosing much information
– density estimation

?
? ?

?

?

?

?

?
?

?

?

- Others: reinforcement learning, semi-supervised learning, online learning,…
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Overview of most popular machine learning methods

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X. The training data has a known
label Y.

Classification Regression

SVM
Logistic regression
Random Forest

Lasso, Ridge
Nearest Neighbors
Neural Networks
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- Unsupervised learning: training data is not labeled and does not have a known result

Clustering Dimensionality
reduction

K-means, the Apriori al-
gorithm, Birch, Ward,
Spectral Cluster

PCA, ICA
word embedding

?
? ?

?

?

?

?

?
?

?

?

- Others: reinforcement learning, semi-supervised learning, online learning,…
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Supervised learning



Supervised learning

Goal: from training data, we want to predict an output Y (or the best action) from the
observation of some input X.

Difficulties: Y is not a deterministic function of X. There can be some noise:

Y = f(X) + ε

The function f is unknown and can be sophisticated.
→ hard to perform well systematically

Possible theoretical approaches: perform well
- in the worst-case: minimax theory, game theory
- in average, or with high probability

Algorithmic approaches:
- local averages: K-nearest neighbors, decision trees
- empirical risk minimization: linear regression, lasso, spline regression, SVM,
logistic regression

- online learning
- deep learning
- probabilist models: graphical models, Bayesian methods
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Supervised learning: theory

Some data (X, Y) ∈ X × Y is distributed according to a probability distribution P.

We observe training data Dn :=
{
(X1, Y1), . . . , (Xn, Yn)

}
.

We must form prediction into a decision set A by choosing a prediction function

f : X︸︷︷︸
observation

→ A︸︷︷︸
decision

Our performance is measured by a loss function ℓ : A × Y → R. We define the risk

R(f) := E
[
ℓ
(
f(X), Y

)]
= expected loss of f

Goal: minimize R(f) by approaching the performance of the oracle f∗ = arg minf∈F R(f)

Least square regression Classification

A = Y R {0, 1, . . . , K− 1}
ℓ(a, y) (a− y)2 1a̸=y

R(f) E
[
(f(X) − Y)2

]
P(f(X) ̸= Y)

f∗ E[Y|X] arg maxk P(Y = k|X)
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Empirical risk minimization

Idea: estimate R(f) thanks to the training data with the empirical risk

R̂n(f) :=
1
n

n∑
i=1

ℓ
(
f(Xi), Yi

)
︸ ︷︷ ︸
average error on training data

≈ R(f) = E
[
ℓ
(
f(X), Y

)]
︸ ︷︷ ︸

expected error

We estimate f̂n by minimizing the empirical risk

f̂n ∈ arg min
f∈F

R̂n(f) .

Many methods are based on empirical risk minimization: ordinary least square,
logistic regression, Ridge, Lasso,…

Choosing the right model: F is a set of models which needs to be properly chosen:

R(̂fn) = min
f∈F

R(f)︸ ︷︷ ︸
Approximation error

+ R(̂fn)−min
f∈F

R(f)︸ ︷︷ ︸
Estimation error
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Overfitting

Complexity of F

Error

Training error

Expected error

OverfittingUnderfitting

Best choice
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Overfitting: example in regression
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Overfitting: example in regression

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Cubic model: Y = aX+bX2+cX3+d

X

Y
Training error: 0.03
Expected error: 0.05

14



Overfitting: example in regression
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Least square Linear regression

Given training data (Xi, Yi) for i = 1, . . . , n, with Xi ∈ Rd and Yi ∈ {0, 1} learn a
predictor f such that our expected square loss

E
[
(f(X)− Y)2

]
is small.

We assume here that f is a linear combination
of the input x = (x1, . . . , xd)

fw(x) =
d∑
i=1

wixi = w⊤x

f(X)

X

Y
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Ordinary Least Square

Input X ∈ Rd , output Y ∈ R, and ℓ is the square loss: ℓ(a, y) =

(a− y)2 .

The Ordinary Least Square regression (OLS) minimizes the em-
pirical risk

R̂n(w) =
1
n

n∑
i=1

(Yi − w⊤Xi)2

This is minimized in w ∈ Rd when X⊤Xw − X⊤Y = 0, where
X =

[
X1, . . . , Xn

]⊤ ∈ Rn×d and Y =
[
Y1, . . . , Yn

]⊤ ∈ Rn .

f(X)

X

Y

Assuming X is injective (i.e., X⊤X is invertible) and there is an exact solution

ŵ =
(
X⊤X

)−1X⊤Y .

What happens if d ≫ n?
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Ordinary Least Square: how to compute ŵn?

If the design matrix X⊤X is invertible, the OLS has the closed form:

ŵn ∈ arg min
w

R̂n(w) =
(
X⊤X

)−1X⊤Y .

Question: how to compute it?
- inversion of (X⊤X) can be prohibitive (the cost is O(d3)!)
- QR-decomposition: we write X = QR, with Q an orthogonal matrix and R an
upper-triangular matrix. One needs to solve the linear system:

Rŵ = Q⊤Y, with R =


x
. . . . . . .

x . . . . x

0 x


- iterative approximation with convex optimization algorithms [Bottou, Curtis, and
Nocedal 2016]: (stochastic)-gradient descent, Newton,…

wi+1 = wi − η∇R̂n(wi)
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Classification

Given training data (Xi, Yi) for i = 1, . . . , n, with Xi ∈ Rd and Yi ∈ {0, 1} learn a
classifier f(x) such that

f(Xi)

 ⩾ 0 ⇒ Yi = +1

< 0 ⇒ Yi = 0

Linearly separable
wX = 0

wX>0

wX<0

Non Linearly separable

f(X) = 0

f(X)>0

f(X)<0
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Linear classification

We would like to find the best linear classifier such
that

fw(X) = w⊤X

 ⩾ 0 ⇒ Y = +1

< 0 ⇒ Y = 0

Empirical risk minimization with the binary loss?

ŵn = arg min
w∈Rd

1
n

n∑
i=1

1Yi ̸=1w⊤Xi⩾0
.

This is not convex in w. Very hard to compute!

wX = 0

wX>0

wX<0

−5 0 5
0

0.5

1

binary

w⊤X
er
ro
r
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Logistic regression

Idea: replace the loss with a convex loss

ℓ(w⊤X, y) = y log
(
1+ e−w⊤X)+ (1− y) log

(
1+ ew

⊤X)

−3 0 1
0

0.5

1 binary

logistic

Hinge

ŷ

er
ro
r

wX = 0

wX>0

wX<0

Probabilistic interpretation: based on likelihood maximization of the model:

P(Y = 1|X) = 1
1+ e−w⊤X

∈ [0, 1]

Satisfied for many distributions of X|Y: Bernoulli, Gaussian, Exponential, …

Computation of the minimizer of the empirical risk (No closed form of the solution)

- Use a convex optimization algorithm (Newton, gradient descent,…)
20



Support Vector Machine (SVM)

In SVM, the linear separator (hyperplane) is chosen by maximizing the margin. Not by
minimizing the empirical risk.

wX = 0

wX>0

wX<0

Sparsity: it only depends on a few training points, called the support vectors

In practice, we use soft margins because no perfect linear separation is possible.
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Non-linear regression/classification

Until now, we have only considered linear predictions of x = (x1, . . . , xd)

fw(x) =
d∑
i=1

wixi .

But this can perform pretty bad... How to perform non-linear regression?

Non linear regression

f(X)

X

Y

Non Linearly separable

f(X) = 0

f(X)>0

f(X)<0
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Non-linear regression/classification

Idea: map the input X into a higher dimensional space where the problem is linear.
Example: given an input x = (x1, x2, x3) perform a linear method on a transformation
of the input like

Φ(x) =
(
x1x1, x1x2, . . . , x3x2, x3x3

)
∈ R9

Linear transformations of Φ(x) are polynomials of x! The previous methods works by
replacing x with Φ(x).

Non linear regression

f(X)

X

Y

Non Linearly separable

f(X) = 0

f(X)>0

f(X)<0
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Spline regression

A spline of degree p is a function formed by connecting polynomial segments of
degree p so that:
- the function is continuous
- the function has D − 1 continuous derivatives
- the pth-derivative is constant between knots

This can be done by choosing the good transformation Φp(x) and the right
regularization ∥Φp(x)∥.

Difficulties: choose the number of knots and the degree
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Regularization

How to avoid over-fitting if there is not enough data?

Complexity of F

Error

Training error

Expected error

OverfittingUnderfitting

Best choice

Control the complexity of the solution
- explicitly by choosing F small enough: choose the degree of the polynomials,…
- implicitly by adding a regularization term

min
f∈F

R̂n(f) + λ∥f∥2

The higher the norm ∥f∥ is, the more complex the function is.

We do not need to know the best complexity F in advance

Complexity controlled by λ, which need to be calibrated.
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Ridge regression

The most classic regularization in statistics for linear regression:

ŵn = arg min
w∈Rd

1
n

n∑
i=1

(Yi − w⊤Xi)2 + λ
d∑
i=1

w2i

The exact solution is unique because the problem is now strongly convex:

ŵn =
(
X⊤X+ nλI

)−1X⊤Y

The regularization parameter λ controls the matrix conditioning:
- if λ = 0: ordinary linear regression
- if λ → ∞: ŵn → 0
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The Lasso: how to choose among a large set of variables with few observa-
tions

The Lasso corresponds to L1 regularization:

ŵn = arg min
w∈Rd

1
n

n∑
i=1

(Yi − w⊤Xi)2 + λ

d∑
i=1

|wi|

Powerful if d ≫ n: many potential variables, few observations
ŵn is sparse: most of its values will be 0→ can be used to choose variables

Other formulation of the Lasso:
∃β > 0 such that

ŵn ∈ arg min
∥w∥1⩽β

1
n

n∑
i=1

(Yi − w⊤Xi)2
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The Lasso: how to choose among a large set of variables with few observa-
tions

The Lasso corresponds to L1 regularization:

ŵn = arg min
w∈Rd

1
n

n∑
i=1

(Yi − w⊤Xi)2 + λ

d∑
i=1

|wi|

Powerful if d ≫ n: many potential variables, few observations
ŵn is sparse: most of its values will be 0→ can be used to choose variables

The Lasso is biased: ŵ⊤
n X ̸= E[Y|X]. Hence, it is better to:

Perform Lasso
↓

Choose variables with ŵi > 0
↓

Perform Ridge on this sub-model only

Another solution is Elastic Net:

ŵn = arg min
w∈Rd

1
n

n∑
i=1

(Yi − w⊤Xi)2 + λ1

d∑
i=1

|wi| + λ2

d∑
i=1

w2i

Many extensions of the Lasso exist: Group Lasso,…
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Lasso: the regularization path

The Lasso corresponds to L1 regularization:

ŵn = arg min
w∈Rd

1
n

n∑
i=1

(Yi − w⊤Xi)2 + λ
d∑
i=1

|wi|

Plot of the evolution of the coefficients of ŵn as a function of λ:
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Probabilistic prediction

In some situation, we are not interested by prediction the average case E[Y|X] only,
but by the distribution of Y|X. → give a measure of uncertainty of our prediction

Solution: modify the loss function:
- square loss ℓ(a, y) = (a− y)2 : prediction of the expected value
- absolute loss ℓ(a, y) = |a− y|: prediction of the median
(50% to be above Y, and 50% chance to be below)

- pinball loss ℓ(a, y) = (a− y)(τ − 1a<y): prediction of the τ-quantile
((1− τ) chance to be above Y and τ chance to be below)

prévision - observation

erreur

observation
prévision
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How to choose the parameters? Test set

All the methods in machine learning depend on learning parameters.

How to choose them? First solution: use a test set.
- randomly choose 70% of the data to be in the training set
- the remainder is a test set

Initial training set

New training set

Test set

We choose the parameter with the smallest error on the test set.

very simple
waste data: the best method is fitted only with 70% of the data
with bad luck the test set might be lucky or unlucky
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How to choose the parameters? Cross-validation

Cross-validation:
- randomly break data into K groups
- for each group, use it as a test set and train the data on the (K− 1) other groups

Initial training set
Test setNew training set

We choose the parameter with the smallest average error on the test sets.
only 1/K of the data lost for training
K times more expensive

In practice: choose K ≈ 10.
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K-Nearest Neighbors

Classify data based on similarity with neighbors.

When observing a new input x, find the k-closest training data points to x and for
- classification: predict the most frequently occuring class
- regression: predict the average value

K = 3
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K-Nearest Neighbors

Classify data based on similarity with neighbors.

When observing a new input x, find the k-closest training data points to x and for
- classification: predict the most frequently occuring class
- regression: predict the average value
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K-Nearest Neighbors

Classify data based on similarity with neighbors.

When observing a new input x, find the k-closest training data points to x and for
- classification: predict the most frequently occuring class
- regression: predict the average value
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K-Nearest Neighbors

Advantages:
- No optimization or training
- Easy to implement
- Can get very good performance

Drawbacks:
- Slow at query time: must pass through all training data at each
- Easily fooled by irrelevant inputs
- Bad for high-dimensional data (d > 20)

Difficulties:
- choice of K
- what distance for complex data?
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Decision Tree

Introduced by Breiman et al. 1984

Idea: partitioned the input space in an inductive and diadic fashion.
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Decision Tree

Introduced by Breiman et al. 1984

Idea: partitioned the input space in an inductive and diadic fashion.

To construct the tree, we need to answer two questions:
- Location of the cuts: which variable, what threshold?
→ minimize the inter-groups variance

- Depth of the tree: when do we stop? Over-fitting risk!
– continue while variance decreases enough
– pruning: build a large tree and prune it by minimiz-
ing a penalized error:

Test error(T) + λsize(T)

Advantage: interpretable Drawbacks: instable (butterfly effect),
computational cost
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Decision trees: example for spam detection
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Ensemble algorithms

Ensemble algorithms are based on the following idea: averaging adds stability.

Example: Assume that Y ∈ {0, 1} and that you have K independent classification
methods fk, k = 1, . . . , K such that P(fk(X) ̸= Y) ⩽ ε . Then from Hoeffding’s inequality:

P
(
majority voting of fk(X) ̸= Y

)
≲ e−Kε2

→ exponential decrease to 0!

Idea: build base methods as independent as possible and average them.
1. split the training set into K subsets of size n/K
2. train a different “base learner” on each subset

Issue: n may be too small→ not enough data per “base learner” → Bagging
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Bagging (Boostrap) AGGregatING

Introduced by Breiman 1996

To fit a new “base learner”

1. sample n data with replacement from the training set

2. train the “base learner” on this subset of observations

Each base learner gets ≈ 36.8% of the data. Remaining points are called “out-of-bag”.

We can estimate the performance of each base learner with the out-of-bag error
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Random Forests

Introduced by Breiman 2001

Idea: build many (≈ 400) random decisions trees and average their predictions.

predict 24.7+23.32 = 24

How to build uncorrelated trees?
- bagging: each tree is built over sample of training points
- random choice of the covariate to cut

Advantages:
- No over-fitting (the more trees we build, the better)
- Easy computation of an error estimate: “out-of-bag”: no-need of cross validation
- efficient for small data sets n

Drawbacks: computational cost, black box
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Variable selection with random forests

Random forests is a powerful tool to order explanatory variables by predictive
importance.

First, we build the forest and compute E its “out-of-bag” error.

For each variable Xi, we compute its importance as follows

- randomly permute the values of Xi among training data

- update the “out-of-bag” error Ei
- get the importance of Xi given by Ei − E
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Outline

Introduction

Supervised learning

Empirical risk minimization: OLS, Logistic regression, Ridge, Lasso, Quantile
regression

Calibration of the parameters: cross-validation

Local averages

Deep learning
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Clustering

Dimensionality Reduction Algorithms

Tools for Machine Learning
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Deep learning

Successful application domains: Image (object recognition), Audio (speech
recognition), Text (parsing)

What is it used for?
- Prediction: regression, classification,
- Generation: denoising, reconstruction of partial/missing data, generation of new
data

What is it?
- Models with graphs structure (networks) with multiple layers (deep)
- Typically non-linear models
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Deep neural network

• A neuron is a non-linear transformation of a linear combination of inputs.

• A column of neurons taking the same input x forms a new layer

x1

x2

x3

x4

Output

Inputs Neuron

f(w⊤x + b)
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Deep neural network

• A neuron is a non-linear transformation of a linear combination of inputs.

• A column of neurons taking the same input x forms a new layer

x1

x2

x3

x4

Output

Hidden
layer

Input
layer

Output
layer

Training a neural networks: backpropagation (gradient descent using ∂f
∂x = ∂f

∂q
∂q
∂x ).

Avoid over-fitting: dropout [Hinton et al. 2012]

Build data-specific models: convolutional neural networks [LeCun et al. 1998]
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Unsupervised learning
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Clustering

• Idea: group together similar instances

• Requires data but no labels

• Useful when you don’t know what you are looking for

The similarity is measured by a metric (ex: ∥x− y∥22).
The results crucially depends on the metric choice: depends on data.
Types of clustering algorithms:
- model based clustering (mixture of Gaussian)
- hierarchical clustering: a hierarchy of nested clusters is build using divisive or
agglomerative approach

- Flat clustering: no hierarchy (k-means, spectral clustering)
45
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K-means
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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K-means
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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K-means
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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K-means

●●●●●●
●
●●

●
●●●●●

● ●
●●●●●●●● ●●●●
●●●●●●
●

●●
●●

●●
●

●●
●●●● ● ●●

●

●●●
●
●●

●

●●
●

●

●
●

●●
●●

●●
●●●●
●

●●●●●● ●●●●●●●
●●

●●
●●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

x x

x

1

2

3

4

5

1 2 3 4 5

x

y

- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.

46



K-means

●●●●●●
●
●●

●
●●●●●

● ●
●●●●●●●● ●●●●
●●●●●●
●

●●
●●

●●
●

●●
●●●● ● ●●

●

●●●
●
●●

●

●●
●

●

●
●

●●
●●

●●
●●●●
●

●●●●●● ●●●●●●●
●●

●●
●●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

x

x

x

1

2

3

4

5

1 2 3 4 5

x

y

- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.

46



K-means

●●●●●●
●
●●

●
●●●●●

● ●
●●●●●●●● ●●●●
●●●●●●
●

●●
●●

●●
●

●●
●●●● ● ●●

●

●●●
●
●●

●

●●
●

●

●
●

●●
●●

●●
●●●●
●

●●●●●● ●●●●●●●
●●

●●
●●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

x

x

x

1

2

3

4

5

1 2 3 4 5

x

y

- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.

46



K-means

●●●●●●
●
●●

●
●●●●●

● ●
●●●●●●●● ●●●●
●●●●●●
●

●●
●●

●●
●

●●
●●●● ● ●●

●

●●●
●
●●

●

●●
●

●

●
●

●●
●●

●●
●●●●
●

●●●●●● ●●●●●●●
●●

●●
●●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

x

x

x

1

2

3

4

5

1 2 3 4 5

x

y

- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.

46



K-means

●●●●●●
●
●●

●
●●●●●

● ●
●●●●●●●● ●●●●
●●●●●●
●

●●
●●

●●
●

●●
●●●● ● ●●

●

●●●
●
●●

●

●●
●

●

●
●

●●
●●

●●
●●●●
●

●●●●●● ●●●●●●●
●●

●●
●●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

x

x

x

1

2

3

4

5

1 2 3 4 5

x

y

- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.

46



K-means

●●●●●●
●
●●

●
●●●●●

● ●
●●●●●●●● ●●●●
●●●●●●
●

●●
●●

●●
●

●●
●●●● ● ●●

●

●●●
●
●●

●

●●
●

●

●
●

●●
●●

●●
●●●●
●

●●●●●● ●●●●●●●
●●

●●
●●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

x

x

x

1

2

3

4

5

1 2 3 4 5

x

y

- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.
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- Initialization: sample K points as
cluster centers

- Alternate:
1. Assign points to closest center
2. Update cluster to the aver-
aged of its assigned points

- Stop when no point’s assignment
change.

Guaranteed to converge in a finite number of iterations.
Initialization is crucial.
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Principal component analysis

Assume that you have a data matrix (with column-wise zero empirical mean)

X :=


x1,1 x1,2 . . . x1,p
...

... . . .
...

xn,1 xn,2 . . . xn,p


If p is large, some columns (i.e., explanatory
variables) may be linearly correlated.

• bad statistical property: risk minimization not
identifiable, the covariance matrix (X⊤X) is not
invertible→ unstable estimators

• bad computational property: we need to store
p ≫ 1 columns with redundant information

PCA reduces the p dimensions of the data set X
down to k principal components.
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Principal component analysis

Assume that you have a data matrix (with column-wise zero empirical mean)

X :=


x1,1 x1,2 . . . x1,p
...

... . . .
...

xn,1 xn,2 . . . xn,p


How does it work?
1. Find the vector u1 such that the projection of
the data on u has the greatest variance.

u1 := arg max
∥u∥=1

∥X⊤u∥2 = u⊤X⊤Xu

⇒ this is the principal eigenvector of X⊤X.
2. More generally, if we wish a k-dimensional
subspace we choose u1, . . . , uk the top k
eigenvectors of X⊤X.

3. The ui form a new orthogonal basis of the data
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Tools for Machine Learning



R

broadly used by the statistic community, huge library, well-known
slow, less used by computer scientists, old language
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python

general-purpose language, growing fast
not (yet?) so good for statistical analysis (smaller library)
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