

AN OVERVIEW OF MACHINE LEARNING

Pierre Gaillard – Inria, ENS Paris

September 28, 2017

Introduction

Supervised learning

Empirical risk minimization: OLS, Logistic regression, Ridge, Lasso, Quantile regression

Calibration of the parameters: cross-validation

Local averages

Deep learning

Unsupervised learning

Clustering

Dimensionality Reduction Algorithms

Tools for Machine Learning

Introduction

Machine Learning: artificial intelligence which can learn and model some phenomena without being explicitely programmed

Machine Learning \subset Statistics + Computer Sciences

Big data / machine learning / data science / artificial intelligence / deep learning, a revolution?

- Technical progress: increase in computing power and storage capacity, lower costs

Moore's Law: reduced costs

Limits : - debits do not follow

– miniaturization \rightarrow reach the limits of classical physics \rightarrow quantum mechanics

Big data / machine learning / data science / artificial intelligence / deep learning, a revolution?

- Technical progress: increase in computing power and storage capacity, lower costs
- Exponential increase in amount of data: Volume, Variability, Velocity, Veracity
 - IBM: 10¹⁸ bytes created each day 90% of the data \leq 2 years
 - In all area: sciences, industries, personal life
 - In all forms: video, text, clicks, numbers

Big data / machine learning / data science / artificial intelligence / deep learning, a revolution?

- Technical progress: increase in computing power and storage capacity, lower costs
- Exponential increase in amount of data: Volume, Variability, Velocity, Veracity
 - IBM: 10¹⁸ bytes created each day 90% of the data \leqslant 2 years
 - In all area: sciences, industries, personal life
 - In all forms: video, text, clicks, numbers
- Methodological advancement to analyze complex datasets: high dimensional statistics, deep learning, reinforcement learning,...

Overview of most popular machine learning methods

Two main categories of machine learning algorithms:

- **Supervised learning:** predict output Y from some input data X. The training data has a known label Y.

Examples:

- X is a picture, and Y is a cat or a dog
- X is a picture, and $Y \in \{0, \ldots, 9\}$ is a digit
- X is are videos captured by a robot playing table tennis, and Y are the parameters of the robots to return the ball correctly
- X is a music track and Y are the audio signals of each instrument

- Unsupervised learning: training data is not labeled and does not have a known result

Examples:

- detect change points in a non-stationary time-series
- detect outliers
- cluster data in homogeneous groups
- compress data without loosing much information
- density estimation

- Others: reinforcement learning, semi-supervised learning, online learning,...

Overview of most popular machine learning methods

Two main categories of machine learning algorithms:

- **Supervised learning:** predict output Y from some input data X. The training data has a known label Y.

Examples:

- X is a picture, and Y is a cat or a dog
- X is a picture, and $Y \in \{0, \ldots, 9\}$ is a digit
- X is are videos captured by a robot playing table tennis, and Y are the parameters of the robots to return the ball correctly

- Unsupervised learning: training data is not labeled and does not have a known result

Examples:

- detect change points in a non-stationary time-series
- detect outliers
- cluster data in homogeneous groups
- compress data without loosing much information
- density estimation

- Others: reinforcement learning, semi-supervised learning, online learning,...

Overview of most popular machine learning methods

Two main categories of machine learning algorithms:

- **Supervised learning:** predict output Y from some input data X. The training data has a known label Y.

_	Classification	Regression		
	SVM Logistic regression Random Forest	Lasso, Ridge Nearest Neighbors Neural Networks		

- Unsupervised learning: training data is not labeled and does not have a known result

Clustering	Dimensionality reduction	
K-means, the Apriori al- gorithm, Birch, Ward, Spectral Cluster	PCA, ICA word embedding	() () ()

- Others: reinforcement learning, semi-supervised learning, online learning,...

Supervised learning

Goal: from training data, we want to predict an output Y (or the best action) from the observation of some input X.

Difficulties: Y is not a deterministic function of X. There can be some noise:

$$Y = f(X) + \varepsilon$$

The function f is unknown and can be sophisticated. \rightarrow hard to perform well systematically

Possible theoretical approaches: perform well

- in the worst-case: minimax theory, game theory
- in average, or with high probability

Algorithmic approaches:

- local averages: K-nearest neighbors, decision trees
- empirical risk minimization: linear regression, lasso, spline regression, SVM, logistic regression
- online learning
- deep learning
- probabilist models: graphical models, Bayesian methods

Supervised learning: theory

Some data $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ is distributed according to a probability distribution *P*.

We observe training data $D_n := \{(X_1, Y_1), \ldots, (X_n, Y_n)\}.$

We must form prediction into a decision set \mathcal{A} by choosing a prediction function

Our performance is measured by a loss function $\ell : \mathcal{A} \times \mathcal{Y} \to \mathbb{R}$. We define the risk

 $R(f) := \mathbb{E}\left[\ell\left(f(X), Y\right)\right] \qquad = \quad \text{expected loss of } f$

Goal: minimize R(f) by approaching the performance of the oracle $f^* = \arg \min_{f \in \mathcal{F}} R(f)$

	Least square regression	Classification
$\mathcal{A}=\mathcal{Y}$	R	$\{0, 1, \ldots, K-1\}$
$\ell(a, y)$	$(a - y)^2$	1. <i>a≠y</i>
R(f)	$\mathbb{E}\left[(f(X)-Y)^2\right]$	$\mathbb{P}(f(X) \neq Y)$
f^*	$\mathbb{E}[Y X]$	$rg \max_k \mathbb{P}(Y = k X)$

Outline

Introduction

Supervised learning

Empirical risk minimization: OLS, Logistic regression, Ridge, Lasso, Quantile regression

Calibration of the parameters: cross-validation

Local averages

Deep learning

Unsupervised learning

Clustering

Dimensionality Reduction Algorithms

Tools for Machine Learning

Empirical risk minimization

Idea: estimate *R*(*f*) thanks to the training data with the empirical risk

We estimate \widehat{f}_n by minimizing the empirical risk

 $\widehat{f}_n \in \operatorname*{arg\,min}_{f \in \mathcal{F}} \widehat{R}_n(f)$.

Many methods are based on empirical risk minimization: ordinary least square, logistic regression, Ridge, Lasso,...

Choosing the right model: ${\mathcal F}$ is a set of models which needs to be properly chosen:

$$R(\widehat{f}_n) = \underbrace{\min_{f \in \mathcal{F}} R(f)}_{\text{Approximation error}} + \underbrace{R(\widehat{f}_n) - \min_{f \in \mathcal{F}} R(f)}_{\text{Estimation error}}$$

Overfitting: example in regression

Linear model: Y = aX+b

Overfitting: example in regression

Cubic model: $Y = aX+bX^2+cX^3+d$

Overfitting: example in regression

Polynomial model: Degree = 14

Given training data (X_i, Y_i) for i = 1, ..., n, with $X_i \in \mathbb{R}^d$ and $Y_i \in \{0, 1\}$ learn a predictor f such that our expected square loss

$$\mathbb{E}\left[(f(X)-Y)^2\right]$$

is small.

We assume here that f is a linear combination of the input $x = (x_1, ..., x_d)$

$$f_w(x) = \sum_{i=1}^d w_i x_i = w^\top x$$

Input $X \in \mathbb{R}^d$, output $Y \in \mathbb{R}$, and ℓ is the square loss: $\ell(a, y) = (a - y)^2$.

The Ordinary Least Square regression (OLS) minimizes the empirical risk

$$\widehat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n (Y_i - w^\top X_i)^2$$

This is minimized in $w \in \mathbb{R}^d$ when $\mathbf{X}^\top \mathbf{X} w - \mathbf{X}^\top \mathbf{Y} = \mathbf{0}$, where $\mathbf{X} = [X_1, \dots, X_n]^\top \in \mathbb{R}^{n \times d}$ and $\mathbf{Y} = [Y_1, \dots, Y_n]^\top \in \mathbb{R}^n$.

Assuming X is injective (i.e., $X^{\top}X$ is invertible) and there is an exact solution

$$\widehat{w} = \left(X^{\top} X \right)^{-1} X^{\top} Y.$$

Ordinary Least Square: how to compute \widehat{w}_n ?

If the design matrix $X^{\top}X$ is invertible, the OLS has the closed form:

$$\widehat{w}_n \in \operatorname*{arg\,min}_{w} \widehat{R}_n(w) = (X^{\top}X)^{-1}X^{\top}Y.$$

Question: how to compute it?

- inversion of $(X^{\top}X)$ can be prohibitive (the cost is $\mathcal{O}(d^3)!$)
- QR-decomposition: we write X = QR, with Q an orthogonal matrix and R an upper-triangular matrix. One needs to solve the linear system:

$$R\widehat{w} = Q^{\top}Y, \quad \text{with} \quad R = \begin{pmatrix} x & x & \cdots & x \\ & \ddots & & \\ & & \ddots & \\ & & 0 & & x \end{pmatrix}$$

 iterative approximation with convex optimization algorithms [Bottou, Curtis, and Nocedal 2016]: (stochastic)-gradient descent, Newton,...

$$w_{i+1} = w_i - \eta \nabla \widehat{R}_n(w_i)$$

Classification

Given training data (X_i, Y_i) for i = 1, ..., n, with $X_i \in \mathbb{R}^d$ and $Y_i \in \{0, 1\}$ learn a classifier f(x) such that

$$f(X_i) \begin{cases} \ge 0 & \Rightarrow & Y_i = +7 \\ < 0 & \Rightarrow & Y_i = 0 \end{cases}$$

Non Linearly separable

We would like to find the best linear classifier such that

$$f_{W}(X) = W^{\top} X \begin{cases} \ge 0 & \Rightarrow & Y = +1 \\ < 0 & \Rightarrow & Y = 0 \end{cases}$$

Empirical risk minimization with the binary loss?

$$\widehat{w}_n = \operatorname*{arg\,min}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{Y_i \neq \mathbb{1}_w \top_{X_i \geqslant 0}} \,.$$

-

This is not convex in w. Very hard to compute!

Logistic regression

Idea: replace the loss with a convex loss

Probabilistic interpretation: based on likelihood maximization of the model:

$$\mathbb{P}(Y = 1 | X) = \frac{1}{1 + e^{-w^{\top}X}} \in [0, 1]$$

Satisfied for many distributions of X|Y: Bernoulli, Gaussian, Exponential, ...

Computation of the minimizer of the empirical risk (No closed form of the solution)

- Use a convex optimization algorithm (Newton, gradient descent,...)

In SVM, the linear separator (hyperplane) is chosen by maximizing the margin. Not by minimizing the empirical risk.

Sparsity: it only depends on a few training points, called the support vectors In practice, we use soft margins because no perfect linear separation is possible.

Non-linear regression/classification

Until now, we have only considered linear predictions of $x = (x_1, \ldots, x_d)$

$$f_w(x) = \sum_{i=1}^d w_i x_i \, .$$

But this can perform pretty bad... How to perform non-linear regression?

Non-linear regression/classification

Idea: map the input X into a higher dimensional space where the problem is linear. Example: given an input $x = (x_1, x_2, x_3)$ perform a linear method on a transformation of the input like

$$\Phi(x) = (x_1x_1, x_1x_2, \ldots, x_3x_2, x_3x_3) \in \mathbb{R}^{9}$$

Linear transformations of $\Phi(x)$ are polynomials of x! The previous methods works by replacing x with $\Phi(x)$.

A spline of degree *p* is a function formed by connecting polynomial segments of degree *p* so that:

- the function is continuous
- the function has D 1 continuous derivatives
- the pth-derivative is constant between knots

This can be done by choosing the good transformation $\Phi_p(x)$ and the right regularization $\|\Phi_p(x)\|$.

Difficulties: choose the number of knots and the degree

How to avoid over-fitting if there is not enough data?

Control the complexity of the solution

- explicitly by choosing ${\mathcal F}$ small enough: choose the degree of the polynomials,...
- implicitly by adding a regularization term

$$\min_{f\in\mathcal{F}}\widehat{R}_n(f)+\lambda\|f\|^2$$

The higher the norm ||f|| is, the more complex the function is.

- igstarrow We do not need to know the best complexity ${\cal F}$ in advance
- **?** Complexity controlled by λ , which need to be calibrated.

The most classic regularization in statistics for linear regression:

$$\widehat{w}_n = \operatorname*{arg\,min}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (Y_i - w^\top X_i)^2 + \lambda \sum_{i=1}^d w_i^2$$

The exact solution is unique because the problem is now strongly convex:

$$\widehat{w}_n = \left(X^\top X + \frac{n\lambda I}{\lambda} \right)^{-1} X^\top Y$$

The regularization parameter λ controls the matrix conditioning:

- if $\lambda = 0$: ordinary linear regression
- if $\lambda \to \infty$: $\widehat{W}_n \to 0$

The Lasso: how to choose among a large set of variables with few observations

The Lasso corresponds to L1 regularization:

$$\widehat{w}_n = \operatorname*{arg\,min}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (Y_i - w^\top X_i)^2 + \lambda \sum_{i=1}^d |w_i|$$

d Powerful if $d \gg n$: many potential variables, few observations d \widehat{w}_n is sparse: most of its values will be 0 → can be used to choose variables

The Lasso: how to choose among a large set of variables with few observations

The Lasso corresponds to L1 regularization:

$$\widehat{W}_n = \operatorname*{arg\,min}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (Y_i - w^\top X_i)^2 + \lambda \sum_{i=1}^d |W_i|$$

d Powerful if $d \gg n$: many potential variables, few observations d \widehat{w}_n is sparse: most of its values will be 0 → can be used to choose variables

The Lasso is biased: $\widehat{w}_n^\top X \neq \mathbb{E}[Y|X]$. Hence, it is better to:

Perform Lasso

$$\downarrow$$

Choose variables with $\widehat{w}_i > 0$
 \downarrow
Perform Ridge on this sub-model only

Another solution is Elastic Net:

$$\widehat{W}_n = \operatorname*{arg\,min}_{W \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (Y_i - W^\top X_i)^2 + \lambda_1 \sum_{i=1}^d |W_i| + \lambda_2 \sum_{i=1}^d W_i^2$$

Many extensions of the Lasso exist: Group Lasso,...

Lasso: the regularization path

The Lasso corresponds to *L*₁ regularization:

$$\widehat{w}_n = \operatorname*{arg\,min}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (Y_i - w^\top X_i)^2 + \lambda \sum_{i=1}^d |w_i|$$

Plot of the evolution of the coefficients of \widehat{w}_n as a function of λ :

- square loss $\ell(a, y) = (a y)^2$: prediction of the expected value
- absolute loss $\ell(a, y) = |a y|$: prediction of the median (50% to be above Y, and 50% chance to be below)
- pinball loss $\ell(a, y) = (a y)(\tau \mathbb{1}_{a < y})$: prediction of the τ -quantile $((1 \tau)$ chance to be above Y and τ chance to be below)

- square loss $\ell(a, y) = (a y)^2$: prediction of the expected value
- absolute loss $\ell(a, y) = |a y|$: prediction of the median (50% to be above Y, and 50% chance to be below)
- pinball loss $\ell(a, y) = (a y)(\tau \mathbb{1}_{a < y})$: prediction of the τ -quantile $((1 \tau)$ chance to be above Y and τ chance to be below)

- square loss $\ell(a, y) = (a y)^2$: prediction of the expected value
- absolute loss $\ell(a, y) = |a y|$: prediction of the median (50% to be above Y, and 50% chance to be below)
- pinball loss $\ell(a, y) = (a y)(\tau \mathbb{1}_{a < y})$: prediction of the τ -quantile $((1 \tau)$ chance to be above Y and τ chance to be below)

- square loss $\ell(a, y) = (a y)^2$: prediction of the expected value
- absolute loss $\ell(a, y) = |a y|$: prediction of the median (50% to be above Y, and 50% chance to be below)
- pinball loss $\ell(a, y) = (a y)(\tau \mathbb{1}_{a < y})$: prediction of the τ -quantile $((1 \tau)$ chance to be above Y and τ chance to be below)

- square loss $\ell(a, y) = (a y)^2$: prediction of the expected value
- absolute loss $\ell(a, y) = |a y|$: prediction of the median (50% to be above Y, and 50% chance to be below)
- pinball loss $\ell(a, y) = (a y)(\tau \mathbb{1}_{a < y})$: prediction of the τ -quantile $((1 \tau)$ chance to be above Y and τ chance to be below)

Outline

Introduction

Supervised learning

Empirical risk minimization: OLS, Logistic regression, Ridge, Lasso, Quantile regression

Calibration of the parameters: cross-validation

Local averages

Deep learning

Unsupervised learning

Clustering

Dimensionality Reduction Algorithms

Tools for Machine Learning

How to choose the parameters? Test set

All the methods in machine learning depend on learning parameters.

How to choose them? First solution: use a test set.

- randomly choose 70% of the data to be in the training set
- the remainder is a test set

We choose the parameter with the smallest error on the test set.

🖕 very simple

👎 waste data: the best method is fitted only with 70% of the data

with bad luck the test set might be lucky or unlucky

How to choose the parameters? Cross-validation

Cross-validation:

- randomly break data into K groups
- for each group, use it as a test set and train the data on the (K 1) other groups

We choose the parameter with the smallest average error on the test sets.

- only 1/K of the data lost for training
- K times more expensive

In practice: choose $K \approx 10$.

Outline

Introduction

Supervised learning

Empirical risk minimization: OLS, Logistic regression, Ridge, Lasso, Quantile regression

Calibration of the parameters: cross-validation

Local averages

Deep learning

Unsupervised learning

Clustering

Dimensionality Reduction Algorithms

Tools for Machine Learning

When observing a new input *x*, find the *k*-closest training data points to *x* and for

- classification: predict the most frequently occuring class
- regression: predict the average value

When observing a new input *x*, find the *k*-closest training data points to *x* and for

- classification: predict the most frequently occuring class
- regression: predict the average value

When observing a new input *x*, find the *k*-closest training data points to *x* and for

- classification: predict the most frequently occuring class
- regression: predict the average value

When observing a new input x, find the k-closest training data points to x and for

- classification: predict the most frequently occuring class
- regression: predict the average value

K = 20

dvantages:

- No optimization or training
- Easy to implement
- Can get very good performance

Prawbacks:

- Slow at query time: must pass through all training data at each
- Easily fooled by irrelevant inputs
- Bad for high-dimensional data (d > 20)

??

λ Difficulties:

- choice of K
- what distance for complex data?

Idea: partitioned the input space in an inductive and diadic fashion.

To construct the tree, we need to answer two questions:

- Location of the cuts: which variable, what threshold?
 - \rightarrow minimize the inter-groups variance
- Depth of the tree: when do we stop? Over-fitting risk!
 - continue while variance decreases enough
 - pruning: build a large tree and prune it by minimizing a penalized error:

Test error(T) + λ size(T)

Drawbacks: instable (butterfly effect),

Decision trees: example for spam detection

Ensemble algorithms are based on the following idea: averaging adds stability.

Example: Assume that $Y \in \{0, 1\}$ and that you have *K* independent classification methods $f_k, k = 1, ..., K$ such that $\mathbb{P}(f_k(X) \neq Y) \leq \varepsilon$. Then from Hoeffding's inequality:

 $\mathbb{P}(\text{majority voting of } f_k(X) \neq Y) \lesssim e^{-\kappa \varepsilon^2}$

ightarrow exponential decrease to 0!

Idea: build base methods as independent as possible and average them.

- 1. split the training set into K subsets of size n/K
- 2. train a different "base learner" on each subset

Issue: *n* may be too small \rightarrow not enough data per "base learner" \rightarrow Bagging

Introduced by Breiman 1996

To fit a new "base learner"

- 1. sample *n* data with replacement from the training set
- 2. train the "base learner" on this subset of observations

Each base learner gets \approx 36.8% of the data. Remaining points are called "out-of-bag". We can estimate the performance of each base learner with the out-of-bag error

Introduced by Breiman 2001

Idea: build many (\approx 400) random decisions trees and average their predictions.

predict
$$\frac{24.7+23.3}{2} = 24$$

How to build uncorrelated trees?

- bagging: each tree is built over sample of training points
- random choice of the covariate to cut

Advantages:

- No over-fitting (the more trees we build, the better)
- Easy computation of an error estimate: "out-of-bag": no-need of cross validation
- efficient for small data sets n
- Drawbacks: computational cost, black box

Random forests is a powerful tool to order explanatory variables by predictive importance.

First, we build the forest and compute *E* its "out-of-bag" error.

For each variable X_i , we compute its importance as follows

- randomly permute the values of X_i among training data
- update the "out-of-bag" error E_i
- get the importance of X_i given by $E_i E$

Outline

Introduction

Supervised learning

Empirical risk minimization: OLS, Logistic regression, Ridge, Lasso, Quantile regression

Calibration of the parameters: cross-validation

Local averages

Deep learning

Unsupervised learning

Clustering

Dimensionality Reduction Algorithms

Tools for Machine Learning

Successful application domains: Image (object recognition), Audio (speech recognition), Text (parsing)

What is it used for?

- Prediction: regression, classification,
- Generation: denoising, reconstruction of partial/missing data, generation of new data

What is it?

- Models with graphs structure (networks) with multiple layers (deep)
- Typically non-linear models

- A neuron is a non-linear transformation of a linear combination of inputs.
- A column of neurons taking the same input x forms a new layer

Deep neural network

- A neuron is a non-linear transformation of a linear combination of inputs.
- A column of neurons taking the same input x forms a new layer

Deep neural network

- A neuron is a non-linear transformation of a linear combination of inputs.
- A column of neurons taking the same input x forms a new layer

Training a neural networks: backpropagation (gradient descent using $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$). Avoid over-fitting: dropout [Hinton et al. 2012]

Build data-specific models: convolutional neural networks [LeCun et al. 1998]

Unsupervised learning

Outline

Introduction

Supervised learning

- Empirical risk minimization: OLS, Logistic regression, Ridge, Lasso, Quantile regression
- Calibration of the parameters: cross-validation
- Local averages
- Deep learning

Unsupervised learning

Clustering

Dimensionality Reduction Algorithms

Tools for Machine Learning

Clustering

- Idea: group together similar instances
- Requires data but no labels
- Useful when you don't know what you are looking for

The similarity is measured by a metric (ex: $||x - y||_2^2$).

The results crucially depends on the metric choice: depends on data.

Types of clustering algorithms:

- model based clustering (mixture of Gaussian)
- hierarchical clustering: a hierarchy of nested clusters is build using divisive or agglomerative approach
- Flat clustering: no hierarchy (k-means, spectral clustering)

Clustering

- Idea: group together similar instances
- Requires data but no labels
- Useful when you don't know what you are looking for

The similarity is measured by a metric (ex: $||x - y||_2^2$).

The results crucially depends on the metric choice: depends on data.

Types of clustering algorithms:

- model based clustering (mixture of Gaussian)
- hierarchical clustering: a hierarchy of nested clusters is build using divisive or agglomerative approach
- Flat clustering: no hierarchy (k-means, spectral clustering)
Clustering

- Idea: group together similar instances
- Requires data but no labels
- Useful when you don't know what you are looking for

The similarity is measured by a metric (ex: $||x - y||_2^2$).

The results crucially depends on the metric choice: depends on data.

Types of clustering algorithms:

- model based clustering (mixture of Gaussian)
- hierarchical clustering: a hierarchy of nested clusters is build using divisive or agglomerative approach
- Flat clustering: no hierarchy (k-means, spectral clustering)

- Initialization: sample *K* points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the aver-
- aged of its assigned points
 Stop when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

- Initialization: sample K points as cluster centers
- Alternate:
 - 1. Assign points to closest center
 - 2. Update cluster to the averaged of its assigned points
- **Stop** when no point's assignment change.

Guaranteed to converge in a finite number of iterations. Initialization is crucial.

Outline

Introduction

Supervised learning

- Empirical risk minimization: OLS, Logistic regression, Ridge, Lasso, Quantile regression
- Calibration of the parameters: cross-validation
- Local averages
- Deep learning

Unsupervised learning

Clustering

Dimensionality Reduction Algorithms

Tools for Machine Learning

Assume that you have a data matrix (with column-wise zero empirical mean)

$$X := \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,p} \\ \vdots & \vdots & \dots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,p} \end{bmatrix}$$

If *p* is large, some columns (i.e., explanatory variables) may be linearly correlated.

- bad statistical property: risk minimization not identifiable, the covariance matrix $(X^{\top}X)$ is not invertible \rightarrow unstable estimators
- **bad computational property**: we need to store $p \gg 1$ columns with redundant information

PCA reduces the *p* dimensions of the data set *X* down to *k* principal components.

Assume that you have a data matrix (with column-wise zero empirical mean)

$$X := \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,p} \\ \vdots & \vdots & \dots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,p} \end{bmatrix}$$

How does it work?

1. Find the vector *u*₁ such that the projection of the data on *u* has the greatest variance.

$$u_1 := \underset{\|u\|=1}{\arg \max} \|X^{\top} u\|^2 = u^{\top} X^{\top} X u$$

 \Rightarrow this is the principal eigenvector of $X^{\top}X$.

- 2. More generally, if we wish a k-dimensional subspace we choose u_1, \ldots, u_k the top k eigenvectors of $X^T X$.
- 3. The u_i form a new orthogonal basis of the data

Tools for Machine Learning

i de la

broadly used by the statistic community, huge library, well-known slow, less used by computer scientists, old language

general-purpose language, growing fast

not (yet?) so good for statistical analysis (smaller library)

References

L. Bottou, F. E. Curtis, and J. Nocedal. "Optimization methods for large-scale machine learning". In: *arXiv* reprint *arXiv*:1606.04838 (2016).

L. Breiman. "Bagging predictor". In: Machine Learning 24.2 (1996), pp. 123–140.

L. Breiman. "Random Forests". In: Machine Learning 45.1 (Oct. 2001), pp. 5–32.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. *Classification and Regression Trees*. Belmont, CA: Wadsworth International Group, 1984.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. *The Elements of Statistical Learning*. Springer Series in Statistics. New York, NY, USA: Springer New York Inc., 2001.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. "Improving neural networks by preventing co-adaptation of feature detectors". In: *arXiv preprint arXiv:*1207.0580 (2012).

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition". In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

Wikipedia. The free encyclopedia.