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Introduction




What is it?

Machine Learning: artificial intelligence which can learn and model some
phenomena without being explicitely programmed

Machine Learning C Statistics + Computer Sciences

» Traditional programming:

A ‘zebra’

N ‘tiger’

5
!§ input output

» Machine learning:

‘tiger’ ‘zebra’

& " IR

training data input output  chosen program /
model

Image from Francis Bach lecture



The machine learning revolution

Big data / machine learning / data science / artificial intelligence / deep learning, a
revolution?

- Technical progress: increase in computing power and storage capacity, lower
costs



Moore’s law: more computing power
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Moore’s Law: reduced costs

$1,000,000.00 ‘ hard drive cost per gigabyte (USD)
8.
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Limits : - debits do not follow
- miniaturization — reach the limits of classical physics — quantum mechanics



The machine learning revolution

Big data / machine learning / data science / artificial intelligence / deep learning, a
revolution?

- Technical progress: increase in computing power and storage capacity, lower
costs
- Exponential increase in amount of data: Volume, Variability, Velocity, Veracity
- IBM: 10" bytes created each day — 90% of the data < 2 years
- In all area: sciences, industries, personal life
- In all forms: video, text, clicks, numbers



The machine learning revolution

Big data / machine learning / data science / artificial intelligence / deep learning, a
revolution?

- Technical progress: increase in computing power and storage capacity, lower
costs
- Exponential increase in amount of data: Volume, Variability, Velocity, Veracity
- IBM: 10" bytes created each day — 90% of the data < 2 years
- In all area: sciences, industries, personal life
- In all forms: video, text, clicks, numbers
- Methodological advancement to analyze complex datasets: high dimensional
statistics, deep learning, reinforcement learning,...



Overview of most popular machine learning methods

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X. The training data has a known

label Y.
Examples: .
- Xis a picture, and Y is a cat or a dog ' @
- Xisapicture,and Y € {0,...,9} is a digit . .
- Xis are videos captured by a robot playing table . . .
tennis, and Y are the parameters of the robots to @
return the ball correctly . @
- Xis a music track and Y are the audio signals of each
instrument

- Unsupervised learning: training data is not labeled and does not have a known result

Examples: @ ©)

- detect change points in a non-stationary time-series

- detect outliers ®® ®®
- cluster data in homogeneous groups @ @@
- compress data without loosing much information

- density estimation @ @

- Others: reinforcement learning, semi-supervised learning, online learning,...
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Overview of most popular machine learning methods

Two main categories of machine learning algorithms:

- Supervised learning: predict output Y from some input data X. The training data has a known
label Y.

Classification Regression @ @ ®@

SVM Lasso, Ridge
Logistic regression Nearest Neighbors @ @ @
Random Forest Neural Networks @ @

- Unsupervised learning: training data is not labeled and does not have a known result

Dimensionality @@

reduction
@ ®

Clustering

K-means, the Apriori al-
PCA, ICA

gorithm, Birch, Ward, X @ @
Spectral Cluster word embedding

- Others: reinforcement learning, semi-supervised learning, online learning,...



Supervised learning




Supervised learning

Goal: from training data, we want to predict an output Y (or the best action) from the
observation of some input X.

Difficulties: Y is not a deterministic function of X. There can be some noise:

Y =) +e
The function fis unknown and can be sophisticated. . . @
— hard to perform well systematically .

®

Possible theoretical approaches: perform well . ‘ ‘

- in the worst-case: minimax theory, game theory @ @

- in average, or with high probability .
Algorithmic approaches:

- local averages: K-nearest neighbors, decision trees

- empirical risk minimization: linear regression, lasso, spline regression, SVM,

logistic regression

- online learning

- deep learning

- probabilist models: graphical models, Bayesian methods



Supervised learning: theory

Some data (X, Y) € X x Y is distributed according to a probability distribution P.
We observe training data D, := {(X;, V1), .. .. (X, Yn) }-

We must form prediction into a decision set A by choosing a prediction function

f: x = A
NG N>

observation decision

Our performance is measured by a loss function £ : A x YV — R. We define the risk

R(f) :== E[€(f(X),Y)] = expected loss of f

Goal: minimize R(f) by approaching the performance of the oracle f* = arg ming. = R(f)

‘ Least square regression Classification
A=Y R {0,1,...,K—1}
Z(va) (CI _y)z I[asz’y
R(f) E[(fX) — V)] P(f(X) # V)
f E[Y[X] arg max, P(Y = R[X)



Supervised learning

Empirical risk minimization: OLS, Logistic regression, Ridge, Lasso, Quantile
regression



Empirical risk minimization

Idea: estimate R(f) thanks to the training data with the empirical risk

R() ::%Z((f(xs),v‘) ~ R() = E[¢(f),Y)]
i=1

average error on training data expected error

We estimate?n by minimizing the empirical risk

/]’:n € argmin R, N -
fer

Many methods are based on empirical risk minimization: ordinary least square,
logistic regression, Ridge, Lasso,...

Choosing the right model: F is a set of models which needs to be properly chosen:

RGn) = minR()  + R(?n)*;gi;f?(f)
N—— e ——

Approximation error Estimation error



Error

A Underfitting Overfitting
- —_—

Expected error

Training error

>

Best choice Complexity of F



Overfitting: example in regression

Linear model: Y =aX+b

Training error: 0.1
2 Expected error: 0.08
wn
©
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Overfitting: example in regression

Cubic model: Y = aX+bX?+cX3+d

Training error: 0.03
2 Expected error: 0.05
wn
©
> 2
n
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o
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0.0 0.2 0.4 0.6 0.8 1.0



Overfitting: example in regression

Polynomial model: Degree =14

Training error: 0.01
2 Expected error: 0.17
wn
©
> 2
n
9
o
=

0.0 0.2 0.4 0.6 0.8 1.0



Least square Linear regression

Given training data (X;,Y;) fori =1,...,n, with X; € R% and Y; € {0,1} learn a
predictor f such that our expected square loss

E[(f00) - Y)’]

is small.

Y f(X)
We assume here that fis a linear combination
of the input x = (x1,...,Xq)

d
ol = S it =
i=1




Ordinary Least Square

Input X € RY output Y € R, and ¢ is the square loss: L(a,y) =

(a—y). Y 1(X)
The Ordinary Least Square regression (OLS) minimizes the em-
pirical risk

. 1 <&

Rn(w) = n Z(Yr - WTX/)Z

i=1

This is minimized in w € RY when X' Xw — XY = 0, where
X=[Xi,....%] " €eR™%andy=[v,...,Y,] " €R"

Assuming X is injective (i.e., X X is invertible) and there is an exact solution

w=(x"x)"xTv.

7
g
What happens if d > n?



Ordinary Least Square: how to compute w,?

If the design matrix X" X is invertible, the OLS has the closed form:

W € arg min Ry(w) = (XiX)HXTY.
w

Question: how to compute it?
- inversion of (X' X) can be prohibitive (the cost is O(d®)!)
- OQR-decomposition: we write X = OR, with Q an orthogonal matrix and R an
upper-triangular matrix. One needs to solve the linear system:

Rw=Q'Y, with  R= .
0 -«

- iterative approximation with convex optimization algorithms [Bottou, Curtis, and
Nocedal 2016: (stochastic)-gradient descent, Newton,...

Wiyq = wj = nVRn(w;)



Classification

Given training data (X;,Y;) fori =1,...,n, with X; € R% and Y; € {0,1} learn a

classifier f(x) such that

fxi)

Linearly separable

wX =0

>0

<0

=

=

Y, = +1
Y,':O

Non Linearly separable




Linear classification

We would like to find the best linear classifier such
that

>0 = Y=+1

fu(X) =wTX
<0 = Y=0

Empirical risk minimization with the binary loss?

S
- IR £ 05
Wp = argmin — Ly . o 7 )
" ere 1 ; FhTxz0 binary
"®  This is not convex in w. Very hard to compute! 0



Logistic regression

Idea: replace the loss with a convex loss

(WX, y) =ylog (1+ e ¥) 4+ (1—y)log (1+ " ¥

wX =0
binary

error

0.5

<)

Probabilistic interpretation: based on likelihood maximization of the model:
1
Satisfied for many distributions of X|Y: Bernoulli, Gaussian, Exponential, ...

Computation of the minimizer of the empirical risk (No closed form of the solution)

- Use a convex optimization algorithm (Newton, gradient descent,...)

20



Support Vector Machine (SVM)

In SVM, the linear separator (hyperplane) is chosen by maximizing the margin. Not by
minimizing the empirical risk.

b Sparsity: it only depends on a few training points, called the support vectors

In practice, we use soft margins because no perfect linear separation is possible.



Non-linear regression/classification

Until now, we have only considered linear predictions of x = (x1, ..., Xq)

d
fu(x) = Z WiX; .
1=1

But this can perform pretty bad... How to perform non-linear regression?

Non linear regression Non Linearly separable

f(X) ©

22



Non-linear regression/classification

Idea: map the input X into a higher dimensional space where the problem is linear.

Example: given an input x = (X1, X2, x3) perform a linear method on a transformation
of the input like

d(X) = (X1, X%, . . ., X3X0, X3X3) € R

Linear transformations of ®(x) are polynomials of x! The previous methods works by
replacing x with ®(x).

Non linear regression Non Linearly separable

f(X) ©

22



Spline regression

A spline of degree p is a function formed by connecting polynomial segments of
degree p so that:

- the function is continuous

- the function has D - 1 continuous derivatives

- the pth-derivative is constant between knots

This can be done by choosing the good transformation ®,(x) and the right
regularization ||®p(x)]|.

Difficulties: choose the number of knots and the degree

23



Regularization

?%
How to avoid over-fitting if there is not enough data?

Error
Underfitting Overfitting
- —_ >

Expected error

Training error —

Best choice Complexity of F

Control the complexity of the solution
- explicitly by choosing F small enough: choose the degree of the polynomials,...
- implicitly by adding a regularization term

inR AlIf2
min n() + Al
The higher the norm ||f]] is, the more complex the function is.

b We do not need to know the best complexity F in advance
e Complexity controlled by X, which need to be calibrated.

24



Ridge regression

The most classic regularization in statistics for linear regression:

Wy = arg min — Z(Y —w'X)? + /\Z wi
weRd i

The exact solution is unique because the problem is now strongly convex:
W= (X"X+nA)"'XTy

The regularization parameter A controls the matrix conditioning:
- if A = 0: ordinary linear regression
- if A= oo Wy — 0

25



The Lasso: how to choose among a large set of variables with few observa-

tions

The Lasso corresponds to Ly regularization:

_ 1< !
Wy = arg min — Z(Y, - WTX,-)2 + A Z |w;
werd M5 i=1

b Powerful if d > n: many potential variables, few observations
6 Wy is sparse: most of its values will be 0 — can be used to choose variables

B2

n— X"ﬁ”g = constante

Other formulation of the Lasso:
38 > 0 such that

n

~ 1 Ty 2
Wp € arg min — i —w X))
Iwllh<p N ,2:;

— t

[Bi] + [B2] =1
A = argming |[Y" — X"ﬂ”;

B

26



The Lasso: how to choose among a large set of variables with few observa-

tions

The Lasso corresponds to Ly regularization:

n

_ 1 !
Wy = arg min — Z(Y, - WTX,-)2 + A Z |w;
werd N5 Pt

b Powerful if d > n: many potential variables, few observations
6 Wy is sparse: most of its values will be 0 — can be used to choose variables

'®  The Lasso is biased: W, X # E[Y|X]. Hence, it is better to:

Perform Lasso

1

Choose variables with w; > 0

1

Perform Ridge on this sub-model only

Another solution is Elastic Net:

n

W, = arg min ! Z(Y, —w'X)? 4+ A i wi| + A2 Z w?

werd n i=1

Many extensions of the Lasso exist: Group Lasso,...

26



Lasso: the regularization path

The Lasso corresponds to Lq regularization:

N 1 n d
Wp = arg min — Z(Y,- —wX)? + ) Z |w;l
werd N =1 i=1

Plot of the evolution of the coefficients of W, as a function of X:

BLARS,i
I~ ¥ | 4 A
s A A3 A2 A1
sign@ £s (L) (L1) (L1)




Probabilistic prediction

In some situation, we are not interested by prediction the average case E[Y|X] only,
but by the distribution of Y|X. — give a measure of uncertainty of our prediction

Solution: modify the loss function:
- square loss ¢(a,y) = (a — y)”: prediction of the expected value
- absolute loss #(a,y) = |a — y|: prediction of the median
(50% to be above Y, and 50% chance to be below)
- pinball loss ¢(a,y) = (a — y)(7 — La<y): prediction of the 7-quantile
((1 — 7) chance to be above Y and 7 chance to be below)

observation
— prevision

28
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Supervised learning

Calibration of the parameters: cross-validation

29



How to choose the parameters? Test set

All the methods in machine learning depend on learning parameters.

How to choose them? First solution: use a test set.
- randomly choose 70% of the data to be in the training set
- the remainder is a test set

New training set

Initial training set

‘ \" ==

We choose the parameter with the smallest error on the test set.

b very simple
'® waste data: the best method is fitted only with 70% of the data
'®  with bad luck the test set might be lucky or unlucky



How to choose the parameters? Cross-validation

Cross-validation:
- randomly break data into K groups
- for each group, use it as a test set and train the data on the (K — 1) other groups

New training set Test set

D

()
(5

We choose the parameter with the smallest average error on the test sets.

b only 1/K of the data lost for training
'®  Ktimes more expensive

Initial training set

—

-

I

In practice: choose K ~ 10.



Supervised learning

Local averages

32



K-Nearest Neighbors

Classify data based on similarity with neighbors.

When observing a new input x, find the k-closest training data points to x and for
- classification: predict the most frequently occuring class
- regression: predict the average value

33
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K-Nearest Neighbors

Classify data based on similarity with neighbors.

When observing a new input x, find the k-closest training data points to x and for
- classification: predict the most frequently occuring class
- regression: predict the average value

K=20

33



K-Nearest Neighbors

b Advantages:
- No optimization or training
- Easy to implement
- Can get very good performance

'® Drawbacks:
- Slow at query time: must pass through all training data at each
- Easily fooled by irrelevant inputs
- Bad for high-dimensional data (d > 20)

7
Difficulties:

- choice of K
- what distance for complex data?

34



Decision Tree

Introduced by Breiman et al. 1984

Idea: partitioned the input space in an inductive and diadic fashion.
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Decision Tree

Introduced by Breiman et al. 1984

Idea: partitioned the input space in an inductive and diadic fashion.
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Decision Tree

Introduced by Breiman et al. 1984

Idea: partitioned the input space in an inductive and diadic fashion.

To construct the tree, we need to answer two questions:

- Location of the cuts: which variable, what threshold?
— minimize the inter-groups variance

Y PR - Depth of the tree: when do we stop? Over-fitting risk!
oo . - continue while variance decreases enough
By oy - pruning: build a large tree and prune it by minimiz-

ing a penalized error:

Test error(T) + Asize(T)

b Advantage: interpretable '®  Drawbacks: instable (butterfly effect),
computational cost

35



Decision trees: example for spam detection

char_freq_dollar < 0.0555

word_freq_remove < 0.055 word_fred_hp <0.4

]

spam email

char_freq_exclamdtion_mark < 0.191

spam
word_freq_{hp <0.025 capital_run_length| average <2.7655
capital_n,m_lﬂmxx—«w.—s—‘ ,——l
email email spam
email email

36



Ensemble algorithms

Ensemble algorithms are based on the following idea: averaging adds stability.

Example: Assume that Y € {0, 1} and that you have K independent classification
methods fp, k =1,...,Ksuch that P(f,(X) # Y) < . Then from Hoeffding's inequality:

PP(majority voting of fy(X) # Y) < e ke
— exponential decrease to 0!

Idea: build base methods as independent as possible and average them.
1. split the training set into K subsets of size n/K
2. train a different “base learner” on each subset

Issue: n may be too small — not enough data per “base learner” — Bagging



Bagging (Boostrap) regat

Introduced by Breiman 1996
To fit a new “base learner”

1. sample n data with replacement from the training set

2. train the “base learner” on this subset of observations

Each base learner gets = 36.8% of the data. Remaining points are called “out-of-bag”.

We can estimate the performance of each base learner with the out-of-bag error

38



Random Forests

Introduced by Breiman 2001

Idea: build many (~ 400) random decisions trees and average their predictions.

1 1
125 46 15 123 46 5
18 [ S
B A § ; 11
2 | - redict 2474233 — 94
B By P 2
""""""""" 25 : 25
23 2
33 2 a7 2
2% 3. 2%

How to build uncorrelated trees?
- bagging: each tree is built over sample of training points
- random choice of the covariate to cut

b Advantages:
- No over-fitting (the more trees we build, the better)
- Easy computation of an error estimate: “out-of-bag”: no-need of cross validation
- efficient for small data sets n

'®  Drawbacks: computational cost, black box

39



Variable selection with random forests

Random forests is a powerful tool to order explanatory variables by predictive
importance.

First, we build the forest and compute E its “out-of-bag” error.
For each variable X;, we compute its importance as follows

- randomly permute the values of X; among training data
- update the “out-of-bag” error E;

- get the importance of X; given by E; — E

40



Supervised learning

Deep learning

41



Successful application domains: Image (object recognition), Audio (speech
recognition), Text (parsing)

What is it used for?
- Prediction: regression, classification,
- Generation: denoising, reconstruction of partial/missing data, generation of new
data

What is it?
- Models with graphs structure (networks) with multiple layers (deep)
- Typically non-linear models

42



Deep neural network

e A neuron is a non-linear transformation of a linear combination of inputs.

Inputs Neuron

X1 — fwTx + b)

Xy — . — Output

X3 —>

\/

X4 —

43



Deep neural network

e A neuron is a non-linear transformation of a linear combination of inputs.
e A column of neurons taking the same input x forms a new layer

Input Hidden Output
layer layer layer

X1 —
Xy —
X3 —

X4 —>

43



Deep neural network

e A neuron is a non-linear transformation of a linear combination of inputs.
e A column of neurons taking the same input x forms a new layer

Input Hidden Output
layer layer layer

X1 —>

X3 —

X4 —>

of _ of 09y

Training a neural networks: backpropagation (gradient descent using 2% = b ox

Avoid over-fitting: dropout [Hinton et al. 2012]

Build data-specific models: convolutional neural networks [LeCun et al. 1998]
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Unsupervised learning




Unsupervised learning

Clustering

4t



Clustering

e Idea: group together similar instances
e Requires data but no labels

e Useful when you don't know what you are looking for

%
&

The similarity is measured by a metric (ex: [|x — y|13).

The results crucially depends on the metric choice: depends on data.

Types of clustering algorithms:
- model based clustering (mixture of Gaussian)
- hierarchical clustering: a hierarchy of nested clusters is build using divisive or
agglomerative approach
- Flat clustering: no hierarchy (k-means, spectral clustering)
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- Flat clustering: no hierarchy (k-means, spectral clustering)
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K-means

- Initialization: sample K points as
cluster centers
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K-means

) '*“ '..0 J. : ... ‘-. - Initialization: sample K points as
| ot oo '; °e : cluster centers
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: R R R
(1

1. Assign points to closest center
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ol o aged of its assigned points

[
° o
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K-means

. J: .c. - Initialization: sample K points as
ot oo ’;'- L cluster centers
0 ° ::’":"n.:’:’. . - Alternate:
N . §o: '\o‘.":ﬁ::‘:' — L 1. Assign points to closest center
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- . 1= change.
L]

Guaranteed to converge in a finite number of iterations.
Initialization is crucial.
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Unsupervised learning

Dimensionality Reduction Algorithms

47



Principal component analysis

Assume that you have a data matrix (with column-wise zero empirical mean)

X110 X120 ... Xip

Xna  Xn2 ... Xnp

If p is large, some columns (i.e., explanatory
variables) may be linearly correlated.
e bad statistical property: risk minimization not "

identifiable, the covariance matrix (X7 X) is not g B ox xS

invertible — unstable estimators o x X :x
e bad computational property: we need to store B “ x>: e x

p > 1 columns with redundant information N Z )

PCA reduces the p dimensions of the data set X
down to k principal components. i (S
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Principal component analysis

Assume that you have a data matrix (with column-wise zero empirical mean)

X110 X120 ... Xip

Xna  Xn2 ... Xnp

How does it work?
1. Find the vector uq such that the projection of

the data on u has the greatest variance. _ A
g Uy X X
up == argmax X ul]> = uT X" Xu % o Sx
llull=1 < o
" x XX X
= this is the principal eigenvector of XT X. x X
X
2. More generally, if we wish a k-dimensional
subspace we choose U1, ..., U, the top k -
! X, (skill)

eigenvectors of X' X.
3. The u; form a new orthogonal basis of the data
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Tools for Machine Learning
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